首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
The characteristics of the boundary layer over complex terrain (Lannemezan - lat.: 43.7° N and, long.: 0.7 ° E) are analyzed for various scales, using measurements obtained during the COCAGNE Experiment. In this first part, the dynamic characteristics of the flow are studied with respect to atmospheric stability and the relief at small (~20 km) and medium scales (~100 km). These relief scales depend on the topographical profile of the Lannemezan Plateau along the dominant axis of the wind (E-W) and the Pyrénées Mountains located at the south of the experimental site. The terrain heterogeneities have a standard deviation of ~48 m and a wavelength of ~2 km.The averaged vertical profiles of wind speed and direction over the heterogeneous terrain are analyzed. The decrease of wind speed within the boundary layer is greater than over flat terrain (WANGARA Experiment). However, a comparison between ETTEX (complex terrain) and COCAGNE vertical wind speed profiles shows good agreement during unstable conditions. In contrast, during neutral conditions a more rapid increase with normalized height is found with COCAGNE than with ETTEX and WANGARA data. The vertical profiles of wind direction reveal an influence of the Pyrénées Mountains on the wind flow. The wind rotation in the BL is determined by the geostrophic wind direction-Pyrénées axis angle (negative deviation) as the geostrophic wind is connected with the Mountain axis.When the geostrophic wind does not interact with the Pyrénées axis, the mean and turbulent wind flow characteristics (drag coefficient C D, friction velocity u *) depend on the topography of the plateau. When the wind speed is strong (>6 m s -1), an internal boundary layer is generated from the leading edge of the Plateau.  相似文献   

2.
The meteorology at the Cabauw tower site in the Netherlands has been modelled for 2005 using a local scale prognostic meteorological and air pollution model called TAPM. A number of performance measures have been used to assess model accuracy, including comparison statistics such as root-mean-square error (RMSE) and index of agreement (IOA). Results show that the model performs very well for prediction of wind and temperature at the six tower levels that range from 10 to 200 m above the ground, as well as performing well for radiation and surface fluxes. The model simulation shows almost no bias in mean and standard deviations of wind and temperature at each tower height level, with small RMSE (e.g. RMSE of 1.2 m s−1 for 10-m wind speed, and 1.6°C for 10-m temperature) and high correlation and IOA (e.g. IOA of 0.92 for 10-m wind speed and 0.98 for 10-m temperature). Results for radiation and surface fluxes also show good performance, although some biases were seen for these variables, and possibilities for future model development were identified. An examination of model sensitivity also explored several aspects of the model configuration and input.  相似文献   

3.
北京城市化发展对大气边界层特性的影响   总被引:17,自引:3,他引:14  
徐阳阳  刘树华  胡非 《大气科学》2009,33(4):859-867
利用中国科学院大气物理研究所大气边界层物理与大气化学国家重点实验室的北京325 m气象塔1993年~2003年夏季 (7月~9月) 的观测资料, 统计分析了各年的风速与温度廓线分布特征。统计分析结果表明, 随着城市化的发展, 相对风速有逐年减小的趋势, 并且越靠近地面, 相对风速的减小越明显, 这反映了城市建筑对近地面层空气流动的摩擦作用。对风速廓线进行线性拟合得到风速随高度的垂直递增率, 发现无论是100 m以下的近地面层还是较高层, 风速的垂直递增率都随城市化发展存在逐年增大的趋势, 表明粗糙下垫面的影响已经向高层扩展。根据温度廓线计算了各年的温度垂直递减率, 发现其有增大的趋势, 这表明城市化发展对边界层热力结构同样有显著影响。本文还依据统计整理得到的近中性层结下的风速廓线资料, 利用莫宁-奥布霍夫相似理论计算了下垫面的空气动力学参数, 结果表明, 地表粗糙度、 零平面位移随着城市化发展皆有明显增加的趋势。同时, 分析了各空气动力学参数与平均风速及无量纲风速的关系。其中, 摩擦速度和平均风速二者基本成正相关, 且摩擦速度随平均风速的增大而增大的趋势越发明显。本文研究结果对研究城市化发展对区域大气边界层结构、 气候和环境影响有参考意义, 可为城市大气边界层模式和区域气候模式提供参数化依据。  相似文献   

4.
Diurnal wind variations are examined at the Boulder Atmospheric Observatory which is located 25 km east of the foothills of the Rocky Mountains. Data were obtained from a 300-m tower which was instrumented at eight levels and operated almost continuously for three weeks during September 1978. Observations on clear days, for which the diurnal heating and cooling of the local terrain slopes can be expected to affect the winds, show that daytime winds tend to be easterly (upslope) throughout the 300-m depth. At night, a temperature inversion typically develops to about 100 m. Below this level, the nocturnal flow tends to be downslope; above the inversion, a distinctly different regime of flow develops. A diurnal wind oscillation, characterized by strong southerly flow beginning near sunset and ending near midnight, occurred in the upper layer on 25% of the days during the study period. Rapid clockwise rotation of the wind vector occurred during the period of increased wind speed. This oscillation occurred only on days when the synoptic-scale geostrophic wind was southerly. It is suggested that this non-steady state behavior is an inertial oscillation affected by the diurnally varying temperature gradients and local topography.  相似文献   

5.
A method is given to calculate the surface layer parameters: u * (friction velocity) and T * (temperature scale) from wind speed and temperature profiles.The problem is formulated as a minimization of a least-square function, which is constructed from the difference between the measured profiles and the well-known Kansas profile relations.The wind speed and temperature profiles are treated simultaneously in this procedure. All the available wind speed and temperature measurements are used in order to reduce the effect of measurement errors.Estimates of the goodness of fit and confidence limits on the estimated parameters are discussed.The method has been applied to data obtained during experiments in a wide variety of conditions: Project Prairie Grass, experiments over Lake Flevo and experiments at the meteorological tower at Cabauw, the last two in the Netherlands.  相似文献   

6.
Large-scale turbulence structures in the near-neutral atmospheric boundary layer (ABL) are investigated on the basis of observations made from the 213-m tall meteorological tower at Tsukuba, Japan. Vertical profiles of wind speed and turbulent fluxes in the ABL were obtained with sonic anemometer-thermometers at six levels of the tower. From the archived data, 31 near-neutral cases are selected for the analysis of turbulence structures. For the typical case, event detection by the integral wavelet transform with a large time scale (180 s) from the streamwise velocity component (u) at the highest level (200 m) reveals a descending high-speed structure with a time scale of approximately 100 s (a spatial scale of 1 km at the 200-m height). By applying the wavelet transform to the u velocity component at each level, the intermittent appearance of large-scale high-speed structures extending also in the vertical is detected. These structures usually make a large contribution to the downward momentum transfer and induce the enhancement of turbulent kinetic energy. This behaviour is like that of “active” turbulent motions. From the analysis of the two-point space–time correlation of wavelet coefficients for the u velocity component, the vertical extent and the downward influence of large-scale structures are examined. Large fluctuations in the large-scale range (wavelet variance at the selected time scale) at the 200-m level tend to induce the large correlation between the higher and lower levels.  相似文献   

7.
利用塔中80m梯度观测塔探测系统采集的资料,详细的分析了2006年4月10日沙尘暴过境时,塔克拉玛干沙漠腹地近地层风速、温度和湿度廓线的演变特征。结果表明:风速廓线满足风速值随高度增高而增大,风速梯度随高度增高而减小的对数律关系;沙尘暴由爆发前到过境时,温度廓线的温度值由随高度增高而增大转变为温度值随高度增高而减小,同时在贴地层2m处存在一微弱拐点;沙尘暴过境时,近地层大气出现微弱逆湿现象,并在不同高度上存在多处拐点,比湿增减在时间上与风速的增减呈负相关性,且整个沙尘暴天气是一个降温增湿的过程。  相似文献   

8.
基于台站观测资料,评估了欧洲中期天气预报中心(ECMWF)最高时空分辨率的第五代大气再分析资料(ERA5)对1979~2018年间中国大陆区域10 m高度风速的气候特征及其变化趋势的再现能力,并同步对比分析了ERA5资料100 m高度风速的特征和长期趋势。结果表明,ERA5资料10 m和100 m风速在空间分布、年—季节—月尺度演变的气候特征方面与台站观测非常一致,10 m风速气候态空间相关系数达到0.66。观测和再分析资料均显示,中国近地层风速呈现出显著的区域性特征,风速大值区主要分布在内蒙古、东北地区西部、新疆北部以及青藏高原西部地区,上述区域的风速季节差异也相对明显,春季风速最大。台站观测、ERA5资料10 m和100 m全国平均风速在4月达到最大值,分别为2.6、3.0、4.5 m s–1,8月为最小值,分别为2.0、2.4、3.5 m s–1。从月平均序列来看,ERA5资料的10 m风速较台站观测偏高0.3~0.5 m s–1,而100 m的风速较10 m风速整体偏高1.2~1.4 m s–1。在风速变化方面,台站观测风速在中国陆地区域整体呈下降趋势–0.4 m s–1(39 a)–1,春季下降趋势最显著[–0.5 m s–1(39 a)–1],且1979~1992年冬季风速降幅最大[–0.7 m s–1(14 a)–1],2013年以后风速逐渐增强。ERA5资料两个高度层的风速在整个中国区域均没有明显的长期变化趋势,4个季节风速变化趋势的空间分布与观测也存在差异,100m风速的长期变化趋势与10 m一致但变化幅度大于10 m风速。总之,ERA5资料对中国大陆区域气候平均风速具有较好的再现能力,但无法呈现台站观测风速的长期变化趋势。  相似文献   

9.
气象高塔数据资料弥足珍贵, 对其进行质量控制将为后续科学研究和业务工作的开展提供便利; 此外, 利用塔基观测资料计算空气动力学参数有助于校正模式空气动力学参数理论值。对2017-2018年深圳356 m气象梯度观测塔共13层的每10 s风速、风向、相对湿度、温度探测资料进行数据质量控制, 基于莫宁-奥布霍夫相似理论和数据质量控制后的气象梯度观测塔近地层(10 m、20 m、40 m、50 m和80 m) 1分钟平均的风温资料, 利用最小二乘法拟合迭代计算了近中性条件下深圳气象梯度观测塔下垫面空气动力学粗糙度(z0)和零平面位移(d)。结果表明:深圳气象梯度观测塔的气象探测资料数据质量很高, 连续两年平均数据缺失率为1.28%, 数据错误率为0.01%。近中性边界层条件下, 深圳气象梯度观测塔下垫面空气动力学粗糙度均值为0.35 m, 零平面位移均值为5.33 m, 结果合理可信。研究表明空气动力学参数受下垫面非均匀性、植株柔软性、气流来向、风速等的共同影响。   相似文献   

10.
南疆沙漠腹地大气边界层气象要素廓线分析   总被引:1,自引:0,他引:1  
利用塔中80m观测塔梯度系统采集的2006年8月、10月和2007年1月、4月的风、温度、湿度资料,结合气象站的同步气象资料,对南疆沙漠腹地近地层四季的晴天平均风速、温度、湿度廓线分布特征进行分析。结果表明,晴天平均风速白天随高度升高增加缓慢,夜间较快,低层风速白天比夜间大,高层则白天比夜间小,春夏季风速较大;四季平均温度廓线表现为夜间辐射型、早上过渡型、白天日射型和傍晚过渡型等四种类型,早、晚过渡时间四季各有不同,日最低、最高温度出现时间四季则相差不大;冬季夜间比湿随高度升高而增大,整个80m近地层表现为逆湿状态,其他季节逆湿一般出现在0.5—1m、1~2m、32—47m、63—80m等4个层次上,各逆湿层出现的时间各季节有所差异。  相似文献   

11.
论塔层风 、温廓线   总被引:1,自引:0,他引:1  
赵鸣 《大气科学》1993,17(1):65-76
本文改进了Zilitinkevich的工作,得到在塔层内动力学上合理的风廓线.并近似推求了不稳定层结下边界层高度h的表达式,使风、温廓线能用于不同层结.由近地层理论从近地层风、温求出通量后,即可推求塔层风、温分布.325m气象塔资料证明这一廓线达到一定的精度.  相似文献   

12.
Tethered Lifting System (TLS) estimates of the dissipation rate of turbulent kinetic energy (e){(\varepsilon)} are reasonably well correlated with concurrent measurements of vertical velocity variance (sw2){(\sigma_{w}^{2})} obtained from sonic anemometers located on a nearby 60-m tower during the CASES-99 field experiment. Additional results in the first 100 m of the nocturnal stable boundary layer confirm our earlier claim that the presence of weak but persistent background turbulence exists even during the most stable atmospheric conditions, where e{\varepsilon} can exhibit values as low as 10−7 m2 s−3. We also present a set of empirical equations that incorporates TLS measurements of temperature, horizontal wind speed, and e{\varepsilon} to provide a proxy measurement for sw2{\sigma_{w}^{2}} at altitudes higher than tower heights.  相似文献   

13.
以内陆某核电厂为例,简述了利用流体力学软件STAR-CCM+模拟内陆核电厂厂区流场及大型自然通风冷却塔雾羽扩散的实现原理,介绍如何将SolidWorks2010建立的核电厂厂区模型导入到STAR-CCM+,给出了STAR-CCM+划分网格的过程,说明了边界层划分的基本假定条件和参数。将STAR-CCM+模拟的数据与风洞实验数据进行了比较,结果显示了较好的一致性。结果表明:在离地面5m的高度处,大型自然通风冷却塔背风面形成较大的空腔区,空腔区风速较小,只有1-1.5 m/s,部分区域达到静风;在冷却塔两侧风速相比入口速度增大了1.66倍;在离开地面100 m的高空,冷却塔背风面的空腔区依然比较明显,冷却塔两侧风速相比入口风速,其变化趋于平稳;在沿主导风向的轴线上,冷却塔两侧风的扰动依次加强;单台冷却塔雾羽最大的抬升高度出现在下风向距离3300 m处,最大抬升高度为690 m,4台冷却塔雾羽在下风向距离3300 m的抬升高度约为850 m,是单台冷却塔的1.23倍。  相似文献   

14.
利用2010年12月至2014年5月宁波近海凉帽山370m高塔气象梯度风观测和浙江北部沿海自动气象站测风资料,对浙江北部近海风速垂直廓线进行分析,结果发现:受地形影响,偏南、偏北风时塔基风速一般比上一层风速大。不同天气系统影响下近地边界层风廓线不同,南风型320m以下风速基本遵从对数律。热带气旋影响型和北风型时风廓线可分为3段,常通量层内基本满足对数律,该层向上一段高度热带气旋影响型风速变化不大,北风型反而减小,再往上风速又继续增大。北风型风廓线的这种3段结构表现比热带气旋影响型更为清楚,约80~109m风速出现相对极大值,200~250m间存在风速极小值。满足对数律的近地边界层内小风比大风具有更好的拟合优度。浙江北部沿海自动气象站测风资料不同风型统计分析与高塔风廓线表现基本一致。  相似文献   

15.
德国VDI3784的S/P模式为三维流体动力学积分模式,其方程主要描述了无穷小体积元素的质量、动量、静态污染物质量浓度及能量的守恒。利用德国模式进行了冷却塔烟气排放不同参数、不同大气条件下烟气抬升高度的敏感性试验。结果表明:在影响烟气抬升高度的3个气象要素(风速、气温和湿度)中,风速和气温的变化对结果影响较大,而湿度影响较小。在D类稳定度,当环境风速从0.1 m/s增加到15.0 m/s时,抬升高度从711.7 m变为38.5 m。随着环境温度的升高,抬升高度明显单调变小;当稳定度为A类,环境温度从10升到40时,烟气抬升最大高度从688.9 m降低到45.1 m,降低了14倍多。而环境湿度的变化,对抬升高度的影响不是很明显。对于E类稳定度和F类稳定度,当环境湿度从20%增加到70%,最大抬升高度分别从115.3 m和84.6 m降到112.9 m和81.7 m,分别降低了3.43%和2.08%。在影响烟气抬升高度的其他3个因素(凉水塔直径、烟气出口速度和混合气体温度)中,混合气体温度的变化对结果影响较大,而凉水塔直径和烟气出口速度的影响较小。在各类稳定度条件下,当出口温度从20变到90时,烟气抬升高度增加1.2—13.3倍;在各类稳定度条件下,当凉水塔直径从30 m变到90 m,烟气抬升高度仅增加0.63—1.40倍;在各类稳定度条件下,当出口速度从2.5 m/s变到8.0 m/s,烟气抬升高度增加了0.24—0.74倍。  相似文献   

16.
塔中春季阴天近地层风速、温度和湿度廓线特征分析   总被引:1,自引:0,他引:1  
利用塔中最新安装的80 m梯度观测塔探测系统采集的资料,详细分析了2006年4月2日1次阴天天气时塔克拉玛干沙漠腹地近地层风速、温度和湿度廓线演变特征,并与典型晴天廓线做了对比,得到以下结果:(1)阴天,夜间风速廓线风速值随高度增高而增大,但不是以对数增长,而是以比对数关系更快的速度增长;白天,风速很小,近地层10 m上下廓线分布规律各异;(2)温度廓线有夜间辐射型、早上过渡型、白天日射型及傍晚过渡型4种类型,与晴天类似;(3)比湿廓线存在一个极小值,其出现高度以上比湿随高度增加而增加,廓线呈逆湿特征,极小值出现高度以下比湿随高度减小而增加。  相似文献   

17.
Turbulence measurements in the lower half of the convective boundary layer (CBL), which includes both mixed layer and surface layer, were carried out with five sonic anemometers mounted on a 213-m tower over a complex flat suburban area with patches of forest, agricultural land, houses and buildings. Also made were radiosoundings of temperature, humidity and wind speed, to determine the CBL height. The sonic anemometer data of wind speed and temperature were processed to derive the second-moment turbulent statistics and were analyzed to investigate the applicability of variance methods to estimate regional surface fluxes of sensible heat. It was found that the temperature variances in the lower mixed layer, coupled with universal functions, produced sensible heat fluxes H over the area with an rms error of the order of 40 Wm-2 when compared with H values derived from the eddy correlation method. The variance of the vertical wind speed did not produce as good a result. In contrast, the surface-layer temperature variances yielded H values with rms error of the order of 20 Wm-2, even though the underlying surface was non-uniform and highly non-isothermal, above which enhanced temperature variances could be suspected.  相似文献   

18.
Temperature and wind speed profiles obtained from 3?years of radio acoustic sounding system sodar measurements at a rural site in the northern Spanish plateau were fitted to polynomial functions. Depending on the extrema of these fits, several groups of profiles were considered. Daily evolution of temperature profiles corresponded to the lower boundary layer evolution. However, wind speed profiles revealed a frequent low-level jet during the whole day. CO2 surface concentrations were analysed, and surface CO2 dilution was also considered by selection of thin canopies with variable depth, resulting in dilution rates of 7 and 18?ppm when the layer increased 100?m for the 95th percentile and temperature and wind speed profiles, respectively.  相似文献   

19.
In this paper we analyse diabatic wind profiles observed at the 213 m meteorological tower at Cabauw, the Netherlands. It is shown that the wind speed profiles agree with the well-known similarity functions of the atmospheric surface layer, when we substitute an effective roughness length. For very unstable conditions, the agreement is good up to at least 200 m or z/L–7(z is height, L is Obukhov length scale). For stable conditions, the agreement is good up to z/L1. For stronger stability, a semi-empirical extension is given of the log-linear profile, which gives acceptable estimates up to ~ 100 m. A scheme is used for the derivation of the Obukhov length scale from single wind speed, total cloud cover and air temperature. With the latter scheme and the similarity functions, wind speed profiles can be estimated from near-surface weather data only. The results for wind speed depend on height and stability. Up to 80 m, the rms difference with observations is on average 1.1 m s–1. At 200 m, 0.8 m s–1 for very unstable conditions increasing to 2.1 m s–1 for very stable conditions. The proposed methods simulate the diurnal variation of the 80 m wind speed very well. Also the simulated frequency distribution of the 80 m wind speed agrees well with the observed one. It is concluded that the proposed methods are applicable up to at least 100 m in generally level terrain.  相似文献   

20.
We evaluated the performance of the three-dimensional Weather Research and Forecasting (WRF) mesoscale model, specifically the performance of the planetary boundary-layer (PBL) parametrizations. For this purpose, Cabauw tower observations were used, with the study extending beyond the third GEWEX Atmospheric Boundary-Layer Study (GABLS3) one-dimensional model intercomparison. The WRF model (version 3.4.1) contains 12 different PBL parametrizations, most of which have been only partially evaluated. The GABLS3 case offers a clear opportunity to evaluate model performance, focusing on time series of near-surface weather variables, radiation and surface flux budgets, vertical structure and the nighttime inertial oscillation. The model results revealed substantial differences between the PBL schemes. Generally, non-local schemes tend to produce higher temperatures and higher wind speeds than local schemes, in particular, for nighttime. The WRF model underestimates the 2-m temperature during daytime (about \(2\) K) and substantially underestimates it at night (about \(4\) K), in contrast to the previous studies where modelled 2-m temperature was overestimated. Considering the 10-m wind speed, during the night turbulent kinetic energy based schemes tend to produce lower wind speeds than other schemes. In all simulations the sensible and latent heat fluxes were well reproduced. For the net radiation and the soil heat flux we found good agreement with daytime observations but underestimations at night. Concerning the vertical profiles, the selected non-local PBL schemes underestimate the PBL depth and the low-level jet altitude at night by about 50 m, although with the correct wind speed. The latter contradicts most previous studies and can be attributed to the revised stability function in the Yonsei University PBL scheme. The local, turbulent kinetic energy based PBL schemes estimated the low-level jet altitude and strength more accurately. Compared to the observations, all model simulations show a similar structure for the potential temperature, with a consistent cold bias ( \(\approx \) 2 K) in the upper PBL. In addition to the sensitivity to the PBL schemes, we studied the sensitivity to technical features such as horizontal resolution and domain size. We found a substantial difference in the model performance for a range of 12, 18 and 24 h spin-up times, longer spin-up time decreased the modelled wind speed bias, but it strengthened the negative temperature bias. The sensitivity of the model to the vertical resolution of the input and boundary conditions on the model performance is confirmed, and its influence appeared most significant for the non-local PBL parametrizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号