首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We applied both single-sample and isochron methods of cosmogenic-nuclide burial dating to determine the age of the sedimentary fill in Unaweep Canyon, western Colorado, USA. This stratigraphic sequence is of interest because it documents capture and diversion of the ancestral Gunnison River by the Colorado River during late Cenozoic incision of the Colorado Plateau. Seven 26Al–10Be burial ages from sedimentary infill penetrated by a borehole in central Unaweep Canyon, as well as a 26Al–10Be burial isochron age formed by multiple clasts and grain-size separates in a sample from the stratigraphically lower Gateway gravels, indicate that canyon blockage, initiation of lacustrine sediment accumulation, and presumed river capture, took place 1.41 ± 0.19 Ma. Lacustrine sedimentation ceased 1.34 ± 0.13 Ma.  相似文献   

2.
Quantifying rates of river incision and continental uplift over Quaternary timescales offer the potential for modelling landscape change due to tectonic and climatic forcing. In many areas, river terraces form datable archives that help constrain the timing and rate of valley incision. However, old river terraces, with high-level deposits, are prone to weathering and often lack datable material. Where valleys are incised through karst areas, caves and sediments can be used to reconstruct the landscape evolution because they can record the elevation of palaeo-water tables and contain preserved datable material. In Normandy (N. France), the Seine River is entrenched into an extensive karstic chalk plateau. Previous estimates of valley incision were hampered by the lack of preserved datable fluvial terraces. A stack of abandoned phreatic cave passages preserved in the sides of the Seine valley can be used to reconstruct the landscape evolution of the region. Combining geomorphological observations, palaeomagnetic and U/Th dating of speleothem and sediments in eight caves along the Lower Seine valley, we have constructed a new age model for cave development and valley incision. Six identified cave levels up to ∼100 m a.s.l. were formed during the last ~1 Ma, coeval with the incision of the Seine River. Passage morphologies indicate that the caves formed in a shallow phreatic/epiphreatic setting, modified by sediment influxes. The valley's maximum age is constrained by the occurrence of late Pliocene marine sand. Palaeomagnetic dating of cave infills indicates that the highest-level caves were being infilled prior to 1.1 Ma. The evidence from the studied caves, complemented by fluvial terrace sequences, indicates that rapid river incision occurred during marine isotope stage (MIS) 28 to 20 (0.8–1 Ma), with maximal rates of ~0.30 m ka−1, dropping to ~0.08 m ka−1 between MIS 20–11 (0.8–0.4 Ma) and 0.05 m ka−1 from MIS 5 to the present time. © 2020 John Wiley & Sons, Ltd.  相似文献   

3.
The relative chronology of landscape evolution across the unglaciated Appalachian plateaus of Kentucky and Tennessee is well documented. For more than a century, geomorphologists have carefully mapped and correlated upland erosional surfaces inset by wide‐valley straths and smaller terraces. Constraining the timing of river incision into the Appalachian uplands was difficult in the past due to unsuitable dating methods and poorly preserved surface materials. Today, burial dating using the differential decay of cosmogenic 26Al and 10Be in clastic cave sediments reveals more than five million years of landscape evolution preserved underground. Multilevel caves linked hydrologically to the incision history of the Cumberland River contain in situ sediments equivalent to fluvial deposits found scattered across the Eastern Highland Rim erosional surface. Cave sediments correlate with: (1) thick Lafayette‐type gravels on the Eastern Highland Rim deposited between c. 5·7 and c. 3·5 Ma; (2) initial incision of the Cumberland River into the Eastern Highland Rim after c. 3·5 Ma; (3) formation of the Parker strath between c. 3·5 Ma and c. 2·0 Ma; (4) incision into the Parker strath at c. 2 Ma; (5) formation of a major terrace between c. 2·0 Ma and c. 1·5 Ma; (6) shorter cycles of accelerated incision and base level stability beginning at c. 1·5 Ma; and (7) regional aggradation at c. 0·85 Ma. Initial incision into the Appalachian uplands is interpreted as a response to eustasy at 3·2–3·1 Ma. Incision of the Parker strath is interpreted as a response to eustasy at 2·5–2·4 Ma. A third incision event at c. 1·5 Ma corresponds with glacial reorganization of the Ohio River basin. Widespread aggradation of cave passages at c. 0·85 Ma is interpreted as the beginning of intense glacial–interglacial cycling associated with global climate change. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among which the biggest altitude above river level is 401m and the formation age of the highest terrace is 1.57 Ma B.P. Based on comparative analysis of the Yellow River terraces located separately in the Mijiashan mountain, the Chemuxia gorge, the Heishanxia gorge and the other river terraces in the vast extent of the northern part of China, it has been found that the tectonic processes resulting in the formation of the terrace series is one of multi-gradational features, i.e., a terrace series can include the various terraces produced by tectonic uplifts of different scopes or scales and different ranks. The Yellow River terrace series in the study region can be divided into three grades. Among them, in the first grade there are 6 terraces which were formed separately at the same time in the vast extent of the northern part of China and represent the number and magnitude of uplift of the Qinghai-Xizang Plateau since 1.6 Ma B. P. ; in the second grade there are 5 terraces which were separately and simultaneously developed within the Haiyuan-Tianjingshan tectonic region and represent the number and magnitude of uplift of this tectonic region itself since 1.6Ma B. P.; in the third grade there are 10 terraces which developed on the eastern slope of the Mijiashan mountain and represent the number and amplitude of uplift of the Haiyuan tectonic belt itself since 1.6Ma B.P. Comparison of the terrace ages with loess-paleosoil sequence has also showed that the first grade terraces reflecting the vast scope uplifts of the Qinghai-Xizang Plateau are very comparable with climatic changes and their formation ages all correspond to the interglacial epochs during which paleosoils were formed. This implies that the vast extent tectonic uplifts resulting in river down-cutting are closely related to the warm-humid climatic periods which can also resnit in river downward erosion after strong dry and cold climatic periods, and they have jointly formed the tectonic-climatic cycles. There exists no unanimous and specific relationship between the formation ages of the second and third grade terraces and climatic changes and it is shown that the formation of those terraces was most mainly controlled by tectonic uplifts of the Tianjingshan block and the Haiyuan belt. The river terraces in the study region, therefore, may belong to 2 kinds of formation cause. One is a tectonic-climatic cyclical terrace produced jointly by vast extent tectonic uplifts and climatic changes, and the terraces of this kind are extensively distributed and can be well compared with each other among regions. Another is a pulse-tectonic cyclical terrace produced by local tectonic uplifts as dominant elements, and their distribution is restricted within an active belt and can not be compared with among regions.  相似文献   

5.
Collision between the Indian and the Eurasian plates since the early Cenozoic produces one of the world’s most remarkable continental escarpments between the Tibetan Plateau and the adjacent Sichuan Basin. Yet Tertiary sediments are rare in the Sichuan Basin; the oldest preserved Late Cenozoic deposits called Dayi conglomerates directly overlie the Cretaceous or Jurassic red beds. Using cosmogenic 10Be and 26Al burial dating, we obtain deposition ages of ~2.0 Ma and catchment erosion rates of ~400 mm/ka for the Dayi conglomerates. Zircon U–Pb age distributions suggest derivation of these conglomerates from the Songpan-Ganzi flysch, the Pengguan complex and Late Permian and Triassic granite plutons in the headwater regions of the Min Jiang (Jiang, a Chinese term, means river). The formation of the poorly-sorted, sub-angular to sub-rounded and tens-centimeter-sized deposits in the western margin of the Sichuan Basin, after long distance transportation, is best explained by glacial activity ~2.0 Ma ago in east Tibet.  相似文献   

6.
Fluvial terraces are important geomorphic markers for modern valley development.When coupled with numeric ages,terraces can provide abundant information about tectonic,climatic,paleohydrological and the paleoenvironmental changes.On the basis of the paleomagnetic,electron spin resonance(ESR) and optically stimulated luminescence(OSL) dating,in addition to an investigation of local loess-paleosol sequences,we confirmed that 13 fluvial terraces were formed,and then preserved,along the course of the Upper Weihe River in the Sanyangchuan Basin over the past 1.2 Ma.Analyses of the characteristics and genesis of these terraces indicate that they resulted from the response of this particular river system to climate change over an orbital scale.These changes can further be placed within the context of local and regional tectonic uplift,and represent an alternation between lateral migration and vertical incision,dependent upon the predominance of climatic and tectonic controls during different periods.Most of the terraces are strikingly similar in that they have several meters of paleosols which have developed directly on top of fluvial deposits located on the terrace treads,suggesting that the abandonment of terraces due to river incision occurred during the transitions from glacial to interglacial climates.The temporal and spatial differences in the distribution patterns of terraces located on either side of the river valley indicate that a tectonic inversion occurred in Sanyangchuan Basin at-0.62 Ma,and that this was characterized by a transition from overall uplift to depression induced by fault activity.Synthesized studies of the Basin's terraces indicate that formation of the modern valley of the Upper Weihe River may have begun in the late Early Pleistocene between1.4-1.2 Ma.  相似文献   

7.
8.
Landscape evolution is modulated by the regional tectonic uplift,climate change,and river dynamics.However,how to distinguish these mechanisms through the research of surface exhumation and fluvial incision remains controversial.In this study,cosmogenic~(10)Be,~(26)Al,and~(21)Ne concentrations in quartz from cave deposits,modern river sediments,and bedrocks were measured to constrain the applicability of cosmogenic~(21)Ne and discuss Quaternary landscape evolution history in the Guizhou Plateau,southeast China.Using the~(26)Al-~(10)Be and~(21)Ne-~(10)Be pairs to distinguish the cosmogenic~(21)Ne concentration from the excess~(21)Ne,we found that the nucleogenic~(21)Ne produced by the U and Th decay in quartz is significant in the samples although there is the possibility of inherited cosmogenic~(21)Ne.Combining with previous studies,we suggest that the precise approach for applying the cosmogenic~(21)Ne could be reached by (1) estimating the contribution from nucleogenic~(21)Ne,(2) avoiding samples with complex burial histories to exclude inherited cosmogenic~(21)Ne,and (3) combining the~(10)Be-~(26)Al-~(21)Ne nuclides method for the Quaternary samples.In addition,both pre-burial basin denudation rates and burial ages derived from the~(26)Al-~(10)Be pair were used to determine the different timescale surface denudation rate and fluvial incision rate in relation to previous work.The consistency of the different timescales pre-burial basin denudation rate,~(36)Cl surface denudation rate,and modern basin denudation rate indicates that the landscape-scale surface denudation has been likely stabilized since the Quaternary in the Guizhou Plateau area.The slightly higher river incision rates than the local surface denudation rate show that the river dynamics may not have reached a steady-state due to the regional tectonic uplift in the Guizhou Plateau.  相似文献   

9.
On the basis of a newly-constructed record of magnetic susceptibility (SUS) and the depositional rate change of eolian loess-red clay sequences in the last 7.2 Ma BP from the hea Plateau, together with a cornperison of a record of °18O values from the equatorial East Pacific Ocean and eolian Quartz flux variations fmm the North Pacific Ocean, the evolutiomuy process of the Late Cenozoic Great Glaciation in the Northern Hemisphere can be divided into three stages: the arrival stage around 7.2–3.4 Ma BP, the initial stage at about 3.4—2.6 Ma BP, and the Great Ice Age since 2.6 Ma BP. The evolution of the East Asian monsoon is characterized by paid winter and summer monsoons, and it is basically composed of the initial stage of weak winter and summer monsoons, the transitional stage of simultaneous increase in intensity of winter and summer monsoons, and the prevailing stage of strong winter and week summer monsoons, or weak winter and strong summer monsoons. The Late Cenowic global tectonic uplift, paaicdarly the Qinghai-Xizang Plateau uplift and the associated CO2 concentration variation, controls the dng processes of the onset of Great Glaciation and the long-term changes of East Asian monsoom climate in the Northern Hemisphere to a large extent. The accelerating uplift of the Qinghai-Xizang Plateau between 3.4 and 2.6 Ma BP provided an important driving force to global climiatic change. Project supported by the foundation of Chinese Academy of Sciences (Grant No. KZ951-A1-402), the State Science and Technology Committee (Grant No. 95-pre-40)and the Chinese Nature Science Foundation (Grant No. 49672140)  相似文献   

10.
The island of Crete in the forearc of the Hellenic subduction zone has a rugged topography with local relief exceeding 2 km. Based on the elevation of marine shorelines, rates of rock uplift during the Late Holocene were previously estimated to range between 1 and 4 mm/a in different parts of the island. These rates may, however, not be representative for longer timescales, because subduction earthquakes with up to 9 m of vertical coseismic displacement have affected Crete in the Late Holocene. Here we use a well preserved sequence of marine terraces near Kato Zakros in eastern Crete to determine the rate of rock uplift over the last ∼600 ka. Field investigations and topographic profiles document a flight of more than 13 marine bedrock terraces that were carved into limestones of the Tripolitza unit. Preliminary age constraints for the terraces were obtained by 10Be exposure dating of rare quartz-bearing sandstone clasts, which are present on some terraces. The 10Be ages of these samples, which have been corrected for an inherited nuclide component, yielded exposure ages between ∼100 ka and zero. Combined with geomorphologic evidence the two oldest 10Be ages suggest that the terraces T4 and T5, with shoreline angles at an elevation of ∼68 and ∼76 m above sea level, respectively, formed during the marine isotope stage 5e about 120 ka ago. The correlation of the higher terraces (T6 to T13) with regional sea-level highstands indicates sustained rock uplift at a rate of ∼0.5 m/ka since at least ∼600 ka. As normal faulting has dominated the tectonics of Crete during the last several million years, upper crustal shortening can be ruled out as a cause for rock uplift. We argue that the sustained uplift of the island results from the continuous underplating of sediments, which are transferred from the subducting African plate to the base of the crust beneath Crete.  相似文献   

11.
Upstream knickpoint propagation is an essential mechanism for channel erosion, carrying changes in base level, tectonics and climate across the landscape. Generally, the terraces on cross-sections at steady-state conditions have been widely reported. However, many landscapes in the field appear to be in a transient state. Here, we explore the mechanism of knickpoint initiation and fluvial evolution in a transient setting in the northeastern Tibetan Plateau. Analysis of channel profiles and terrace correlation indicates that the Yellow River is adjusted to match the increase in differentiated fault activity and climate change in a regional setting of continuous uplift. Consequently, a series of terraces were formed, and the number of terrace steps increased downstream, in the headwaters of the Yellow River. All terraces were dated using the optically stimulated luminescence method. The top terrace, distributed continuously in the whole basin with a gradient, was deposited during a cold period and abandoned at the climatic transition from cold to warm state, at approximately 14.6–9.5 ka. After that, one terrace formed at around 4.2 ka in the upper reach. In correlation with the continuous topographic gradient surface of this terrace, three terrace steps were formed in the down reach during the period from 9.5 ka to 4.2 ka. This phenomenon might indicate multiple phases of continuous headward migration of fluvial knickpoint waves and terrace formation during the downcutting. It was caused by fault activity and tectonic uplift of the gorge at the outlet of the basin, under influence of the gradual integration of the Yellow River from downstream. This phenomenon shows that the fluvial incision in a transient state along the high relief margin of the orogenic plateau can be caused by fault activity, in addition to widespread surface uplift, climatically driven lake spillover and the establishment of external drainage.  相似文献   

12.
The Longxi region contains different kinds of Cenozoic sediments, including eolian deposits, reworked loess, fluvial and lacustrine deposits. The provenance evolution of these sediments is of great significance in exploring the uplift, tectonic deformation and associated with geomorphic evolution of the Northeastern Tibetan Plateau. In this paper, we used the single-grain zircon provenance analysis to constrain the provenances for the Paleogene alluvial conglomerates and for the Neogene fluvial-lacustrine sediments, and compared them with results from the loess deposits since the Miocene. The results show that: (1) the Paleogene alluvial conglomerates contain a large number of detrital zircons ranging from 560 to 1100 Ma that were derived from the Yangzi Block. However, the sediments of early Miocene have much fewer zircons of this age span, which are characterized by an abundance of zircon ages in the ranges of 200–360 Ma. This indicates that the Paleogene alluvial conglomerates mainly come from the middle and/or southern West Qinling, and the early Miocene sediments are primarily from the northern West Qinling; (2) Late Neogene fluvial sediments (11.5 Ma onward) in Tianshui-Qinan region are dominated by zircon ages of 380–450 Ma. This zircon population is similar to that of the exposed intrusive rocks of southern part of the Liupan Mountains, implying that the southern part of Liupan Mountains probably had already uplifted by 11.5 Ma; (3) Late Miocene lacustrine sediments in Tianshui region have a zircon age spectra that is remarkably different from coeval fluvial deposits, but is similar to the zircon age distributions of the Miocene loess in Qinan region, late Miocene-Pliocene Hipparion red clay and Quaternary loess. This indicates that fine particles within these Miocene lacustrine sediments in Tianshui region may be dominated by aeolian materials. This study reveals that provenance changes of Cenozoic sediments in Tianshui-Qinan region and its geomorphic evolution are closely related to the multi-stage uplift of the Northeastern Tibetan Plateau. In particular, the major uplift of the Northern Tibetan Plateau during late Oligocene-early Miocene may have not only provided the source areas and wind dynamic conditions for the deposits of the Miocene loess, but also provided the geomorphic conditions for its accumulation.  相似文献   

13.
Seven LA-ICP-MS zircon U-Pb datings from granitoids in the southern basement of the Songliao basin were done in order to constrain the ages of the basin basement. The cathodoluminescence (CL) images of the zircons from seven granitoids indicate that they are euhedral-subhedral ones with striped ab-sorption and obvious oscillatory zoning rims. The dating results show that a weighted mean 206Pb/238U age is 236±3 Ma for quartz diorite (sample No.T6-1) located in the western slope of the basin,that weighted mean 206Pb/238U ages are 319±1 Ma (2126 m) and 361±2 Ma (1994 m) for diorite (sample No.YC1-1) and granite (sample No.YC1-2) located in northern part of southeastern uplift of the basin,respectively,and that weighted mean 206Pb/238U ages are 161±5 Ma,165±2 Ma,165±1 Ma and 161±4 Ma for samples Q2-1,SN121,SN122,and SN72 granitoids located in southern part of southeastern uplift of the basin,respectively. The statistical results of ages suggest that the middle Jurassic granitoids con-stitute the main part of basement granitoids,and that the Hercynian and Indo-Sino magmatisms also occur in the basin basement. It is implied that the Songliao basin should be a rift one formed in the intracontinent or active continental margin settings in the late Mesozoic after the Middle Jurassic orogeny took place.  相似文献   

14.
Relief generation in non‐glaciated regions is largely controlled by river incision into bedrock but datable fluvial terraces that allow quantifying incision rates are not always present. Here we suggest a new method to determine river incision rates in regions where low‐relief surfaces are dissected by streams. The approach consists of three steps and requires the 10Be concentrations of a stream sediment sample and a regolith sample from the low‐relief surface. In the first step, the spatial distribution of 10Be surface concentrations in the given catchment is modelled by assuming that denudation rates are controlled by the local hillslope angles. The slope–denudation rate relation for this catchment is then quantified by adjusting the relation between slope angle and denudation rate until the average 10Be concentration in the model is equal to the one measured in the stream sediment sample. In the second step, curved swath profiles are used to measure hillslope angles adjacent to the main river channel. Third, the mean slope angle derived from these swath profiles and the slope–denudation relation are used to quantify the river incision rate (assuming that the incision rate equals the denudation rate on adjacent hillslopes). We apply our approach to two study areas in southern Tibet and central Europe (Black Forest). In both regions, local 10Be denudation rates on flat parts of the incised low‐relief surface are lower than catchment‐wide denudation rates. As the latter integrate across the entire landscape, river incision rates must exceed these spatially averaged denudation rates. Our approach yields river incision rates between ~15 and ~30 m/Ma for the Tibetan study area and incision rates of ~70 to ~100 m/Ma in the Black Forest. Taking the lowering of the low‐relief surfaces into account suggests that relief in the two study areas increases at rates of 10–20 and 40–70 m/Ma, respectively. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

15.
The timing and petrogenesis of mid-Miocene flood basalt volcanism in the northwest United States has been extensively addressed, yet the chemical characteristics and temporal details of the Steens Basalt, exposed on the Oregon Plateau, are poorly defined. Steens Basalt volcanism has generally been accepted to have occurred at ∼ 16.6 Ma, coeval and/or just prior to the onset of Columbia River Basalt Group volcanism to the north. New major and trace element analyses and nine 40Ar/39Ar ages ranging from 15.51 ± 0.28 to 16.58 ± 0.18 Ma were obtained on Oregon Plateau flood basalt lava flows from stratigraphic sections in close proximity to Steens Mountain. Additionally, new 40Ar/39Ar ages were obtained on the uppermost and thirty-first lava flow down from the top of the ∼ 1 km section of Steens Basalt exposed at Steens Mountain and yield eruption ages of 16.59 ± 0.10 and 16.55 ±0.10 Ma, respectively. Field relations between these basalt sections suggest that multiple eruptive centers were present in the vicinity of Steens Mountain.  相似文献   

16.
Several caves of the Guangxi Zhuang Autonomous Region, southern China, have delivered Gigantopithecus blacki remains, an extinct Pleistocene giant ape, in association with abundant mammalian faunas. To determine their geological ages, fossil teeth from Mohui and Sanhe Caves were dated using the coupled ESR/U-series method. The teeth from Mohui Cave gave age estimates of 1.69 ± 0.22 Ma and 1.29 ± 0.11 Ma. The Sanhe Cave samples had age estimates ranging from 910 ± 200 ka to 600 ± 150 ka with error weighted mean ages of 890 ± 130 ka and 720 ± 90 ka for the layers 5 and 4, respectively. Our results and previous paleomagnestism data place the Gigantopithecus fauna at Mohui Cave between Olduvai and Jaramillo subchrons and suggest that it was coeval with Chuifeng, Longgupo and Liucheng assemblages. The Sanhe fauna is younger, of late early Pleistocene age, and can be dated to the period between Jaramillo subchron and B/M boundary.  相似文献   

17.
Archeological research over the past several years has started to provide evidence relevant to understanding both the timing of and processes for human colonization of the high Qinghai-Tibetan Plateau. Much of this research has been in the Qinghai Lake area and the Qaidam Basin in the northeastern Qinghai-Tibetan Plateau. However, chronological data are still limited. Recently, a hearth was discovered in the Jiangxigou site in the south of the Qinghai Lake area, which was likely used by prehistoric hunters. The site is in the mouth of a canyon approximately 4.5 km from Qinghai Lake. Previous ages in this site are based on 14C dating only. The current study provides additional OSL dates for the hearth. The ages of four OSL samples bracketing the hearth range from 12.9 ± 0.9 to 14.4 ± 1.0 ka, but standard deviations overlap extensively and they likely represent the same age. The OSL ages show that by about 14.3 ± 1.0 ka prehistoric peoples were living in the Qinghai Lake area.  相似文献   

18.
Five samples from a biotite-hornblende granodiorite phase of the 42.5 Ma Quxu pluton, Gangdese batholith, southern Tibet, have been collected at 250 m vertical intervals. Biotite from these rocks yields monotonically decreasing40Ar/39Ar isochron ages with decreasing elevation of 26.8 ± 0.2, 23.3 ± 0.5, 19.7 ± 0.3, 18.4 ± 0.4,and17.8 ± 0.1Ma (Tc = 335°C). Coexisting K-feldspars have virtually identical minimum apparent40Ar/39Ar ages of 17.0 ± 0.4Ma (Tc = 285°C). These data indicate parts of southern Tibet experienced a pulse of uplift in the early Miocene with the rate of uplift rising from 0.07 to 4.4 mm/year in the interval 20 to 17 Ma. An apatite fission track age of 9.9 ± 0.9Ma from this locality constrains the average uplift rate at this site to about 0.81 mm/year between 17 and 9.9 Ma and 0.30 mm/year from 9.9 Ma to present. K-feldspar from the Dagze granite, 30 km to the east, near Lhasa, yields a minimum apparent40Ar/39Ar age of 35.9 ± 0.9Ma (Tc = 227°C) which indicates an average uplift rate there of 0.21 mm/year since then. The marked pulse of uplift of the Quxu granodiorite and the difference in uplift history between the Dagze and Quxu plutons suggests southern Tibet has experienced discrete pulses of uplift variable in both space and time. These data are not consistent with models which require a large proportion of uplift of the Tibetan plateau to have occurred in the last 2 Ma. The data support the suggestion that convergence between India and Asia was largely accommodated by tectonic escape during the opening of the South China Sea 32 to 17 Ma ago and permit distributed shortening as a mechanism for crustal thickening and uplift of this part of the Tibetan plateau subsequent to 20 Ma.  相似文献   

19.
In this paper we tested the applicability of the Optically Stimulated Luminescence (OSL) technique through Single-Aliquot Regenerative-dose (SAR) protocol, on single grain quartz extracted from alluvial–coastal sediments. Five samples were collected from deposits belonging to a flight of seven orders of coastal–alluvial terraces outcropping in the area between Mt. Etna volcano and the Catania Plain (Sicily, southern Italy), at the front of the Sicilian fold and thrust system. After various performance tests, we obtained OSL ages ranging between 240 ± 12 and 80 ± 4 ka, consistent with the normal evolutionary model of a terraced sequence, moving from the highest to the lowest elevation. Obtained data allowed us to determine a mean uplift rate of 1.2 mm/year during the last 240 ka, mostly related to regional uplift processes coupled with sea-level changes. Moreover, terraces belonging to the two highest orders are folded, forming a large anticline. According to our results, the frontal thrust of the Sicilian chain was active between 236 and 197 ka ago, even though seismological and geodetic data suggest current activity to the back.  相似文献   

20.
本文通过峨眉山基底卷入构造带低温热年代学(磷灰石和锆石裂变径迹、锆石(U-Th)/He)研究,结合典型构造-热结构特征诠释峨眉山晚中-新生代冲断扩展变形与热年代学耦合性.峨眉山磷灰石裂变径迹(AFT)和锆石(U-Th)/He(ZHe)年龄值分别为4~30Ma和16~118Ma.ZHe年龄与海拔高程关系揭示出ZHe系统抬升剥蚀残存的部分滞留带(PRZ).低温热年代学年龄与峨眉山构造分带性具有明显相关性特征:万年寺逆断层上盘基底卷入构造带AFT年龄普遍小于10Ma,万年寺逆断层下盘扩展变形带AFT年龄普遍大于10 Ma;且空间上AFT年龄与断裂带具有明显相关性,它揭示出峨眉山扩展变形带中新世晚期以来断层冲断缩短构造活动.低温热年代学热史模拟揭示峨眉山构造带晚白垩世以来的多阶段性加速抬升剥蚀过程,基底卷入构造带岩石隆升幅度大约达到7~8km,渐新世以来抬升剥蚀速率达0.2~0.4mm·a-1,其新生代多阶段性构造隆升动力学与青藏高原多板块间碰撞过程及其始新世大规模物质东向扩展过程密切相关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号