首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Sedimentary deposits in the foreland basin of the northeastern Qilian Mountains are crucial documents recording tectonic activity and climate changes on the Tibetan Plateau. In this study, luminescence dating was used to date alluvial conglomerates and fluvial terrace sediments collected from the Beida River in the Jiuquan Basin, a foreland basin in the Hexi Corridor, northeastern Qilian Mountains. Detailed sedimentology and luminescence ages reveal that alluvial conglomerates accumulated from before 620 ka to 12 ka and that sediment accumulation rates increased at ∼330 ka and ∼35 ka, coinciding with the dates of two tectonic events (∼350 and ∼50 ka) and followed by climate cooling (from marine isotope stage (MIS) 9 to MIS 8 and from MIS 3 to MIS 2). This reveals that variations in the sediment accumulation rates are controlled by the coupling of tectonic uplift and climate cooling. The highest terrace (T7) that developed on the alluvial conglomerate base formed at ∼ 12 ka. The incision rate in the early Holocene was ∼2.1 mm/yr and increased to ∼14.6 mm/yr during the middle and late Holocene. The variations in the river incision rate provide geomorphic evidence for Holocene climate patterns in arid and semiarid areas. Luminescence dating offers a credible temporal framework for the deposits and reveals climate and tectonic effects on the evolution of the foreland basin, northeastern Qilian Mountains.  相似文献   

2.
Geospatial techniques play a crucial role in geomorphic studies, particularly in the challenging terrains like mountainous regions, inaccessible areas and densely vegetated landscapes, where geomorphic features cannot be recorded easily. Tectono-geomorphologic observations provide important clues regarding the landscape evolution, morpho-dynamics and ongoing tectonism of the region. The present study has been carried out in the Zanskar Basin (ZB), located to the south of the Indus Tsangpo Suture Zone (ITSZ), in the hinterland of the NW Himalaya. This study has been carried out to assess and evaluate active tectonics by employing tectono-geomorphic analysis, dynamics in drainage networks, geomorphological field observations and the Geographic Information System (GIS) environment. High-resolution satellite images, topographic maps and the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) were used to generate primary data sets, which were corroborated with field investigations for valid inferences. The geometry of the ZB suggests that continuous tectonic activity exerts first-order control on the overall shape, size and structure of the ZB. This first-order response is clearly reflected in the landforms modified by tectonic processes, namely, linear mountain fronts, elongated shape and tilting of the basin, braided and meandering river courses and lower stream length gradient index values in hard rock terrain. The ZB exhibits several eye-catching geomorphic features, such as well-defined triangular facets with wide base lengths and wine-glass valleys with small outlets along the footwall block of the Zanskar Shear Zone/South Tibetan Detachment System (ZSZ/STDS), as well as the presence of wind gaps, water gaps, bedrock incision, incised and entrenched valleys, narrow gorges and a high incision rate inferring active tectonics and recent uplift in the region. In addition, the existence of uplifted river terraces, as well as the stepped morphology of fans and strath terraces, suggests that the region is experiencing recent activity and ongoing tectonic uplift. These modified geomorphic characteristics suggest that the hinterland, which is part of the NW Himalaya, is tectonically quite active and has experienced a differential rate of tectonics during its evolution. The quantified geomorphic indices and their relations with the tectonics, climate and erosion activity infer that the basin geometry is mostly controlled by the ZSZ/STDS that dips 20°–70° NE, the south-dipping Zanskar Counter Thrust (ZCT) and other local tectonic elements like the Choksti Thrust (CT), Stondgey Thrust, Zangla Thrust and tectonic structures. The synergised results of quantified geomorphic indices and tectono-geomorphic evidence in the ZB strongly indicate that both the past and ongoing tectonism have significantly shaped and modified geomorphology of the ZB.  相似文献   

3.
River terraces represent important records of landscape response to e.g. base-level change and tectonic movement. Both these driving forces are important in the southern Iberian Peninsula. In this study, Optically Stimulated Luminescence (OSL) dating was used to date two principal river terraces in the Tabernas Basin, SE Spain. A total of 23 samples was collected from the fluvial terraces for dating using quartz OSL. Sixteen of the samples could not be dated because of low saturation levels (e.g. typical 2xD0 < 50 Gy). The remaining seven samples (5 fossil and 2 modern analogues) were investigated using both multi-grain and single-grain analysis. Single grain results show that: (i) measurements from multi-grain aliquots overestimate ages by up to ∼ 4 ka for modern analogues and young samples (<5 ka), presumably because (ii) the presence of many saturated grains has biased the multi-grain results to older ages. Despite the unfavourable luminescence characteristics we are able to present the first numerical ages for two terrace aggradation stages in the Tabernas Basin, one at ∼16 ka and the other within the last 2 ka.  相似文献   

4.
In this paper we tested the applicability of the Optically Stimulated Luminescence (OSL) technique through Single-Aliquot Regenerative-dose (SAR) protocol, on single grain quartz extracted from alluvial–coastal sediments. Five samples were collected from deposits belonging to a flight of seven orders of coastal–alluvial terraces outcropping in the area between Mt. Etna volcano and the Catania Plain (Sicily, southern Italy), at the front of the Sicilian fold and thrust system. After various performance tests, we obtained OSL ages ranging between 240 ± 12 and 80 ± 4 ka, consistent with the normal evolutionary model of a terraced sequence, moving from the highest to the lowest elevation. Obtained data allowed us to determine a mean uplift rate of 1.2 mm/year during the last 240 ka, mostly related to regional uplift processes coupled with sea-level changes. Moreover, terraces belonging to the two highest orders are folded, forming a large anticline. According to our results, the frontal thrust of the Sicilian chain was active between 236 and 197 ka ago, even though seismological and geodetic data suggest current activity to the back.  相似文献   

5.
We present the results of K-feldspar IRSL dating of the four lower terraces (T3–T6) of the Portuguese Tejo River, in the Arripiado-Chamusca area. Terrace correlation was based upon: a) analysis of aerial photographs, geomorphological mapping and field topographic survey; b) sedimentology of the deposits; and c) luminescence dating. Sediment sampled for luminescence dating gave unusually high dose rates, of between 3.4 and 6.2 Gy/ka and, as a result, quartz OSL was often found to be in saturation. We therefore used the IRSL signal from K-feldspar as the principal luminescence technique. The K-feldspar age results support sometimes complex geomorphic correlations, as fluvial terraces have been vertically displaced by faults (known from previous studies). Integration of these new ages with those obtained previously in the more upstream reaches of the Tejo River in Portugal indicates that the corrected K-feldspar IRSL ages are stratigraphically and geomorphologically consistent over a distance of 120 km along the Tejo valley. However, we are sceptical of the accuracy of the K-feldspar ages of samples from the T3 and T4 terraces (with uncorrected De values >500 Gy). In these cases the Dose Rate Correction (DRC) model puts the natural signals close to luminescence saturation, giving a minimum corrected De of about 1000 Gy, and thus minimum terrace ages; this may even be true for those doses >200 Gy. Luminescence dating results suggest that: T3 is older than 300 ka, probably ca. 420–360 ka (~Marine Isotope Stage [MIS]11); T4 is ca. 340–150 ka (~MIS9-6); T5 is 136–75 ka (~MIS5); T6 is 60–30 ka (MIS3); an aeolian sand unit that blankets T6 and some of the older terraces is 30–≥12 ka. Collectively, the luminescence ages seem to indicate that regional river downcutting events may be coincident with periods of low sea level (associated, respectively, with the MIS10, MIS6, MIS4 and MIS2).  相似文献   

6.
2015年4月25日尼泊尔发生了MW7.8地震, 本文基于震前、 震后两景Sentinel-1A雷达影像, 采用D-InSAR两轨差分干涉法提取了此次地震的同震形变场。 结果显示, 同震形变场位于喜马拉雅造山带—主边界逆冲断裂(MBT)和主前锋逆冲断裂(MFT)附近, 形变场整体表现为自西北向往东南方向延伸近150 km的纺锤形包络状, 以大面积隆起抬升形变为主, 视线向最大隆升形变达1.18 m, 抬升区北侧存在一小沉陷区, 以InSAR观测值定位同震最大形变中心。 基于均匀介质弹性半空间模型(Okada模型)与InSAR观测数据反演了断层滑动分布。 反演结果表明该地震属于典型逆冲型地震, 发震断层为主喜马拉雅逆冲断裂(MHT), 同震破裂从主喜马拉雅逆冲断裂(MHT)向上沿着主前锋逆冲断裂(MFT)传递。 基于InSAR同震形变场局部形变细节, 结合震区地质背景、 断裂分布及断层运动特征, 获得了同震破裂拟出露地表迹线。  相似文献   

7.
In tectonically active regions, geomorphic features such as fluvial terraces can be interpreted as the consequence of tectonic and climatic forcing. However, deciphering and distinguishing tectonic impacts and climate changes remain a challenge. In this study, we examine the terraces along the Hongshuiba river and Maying river, which flow across the Fudongmiao-Hongyazi fault in the northern margin of the Qilian Mountains. Our purpose is to analyze the relative roles of tectonics and climate in shaping orogenic topography in this area. 8~9 levels of river terraces were identified through field observations, interpretation of satellite images and using DEMs. According to relative heights and ages of T5 of the Hongshuiba river and T6 of the Maying river, the incision rates are calculated to be (10.2±2.0)mm/a and (12.2±2.8)mm/a, respectively. Furthermore, the thrust rate along the Fodongmiao-hongyazi fault was determined based on offset terraces and OSL dating, which are ten times less than river incision rates approximately. Comparing the uplift rate and incision rate in the northern margin of the Qilian Mountains and adjacent areas, we inferred that climate change is the most plausible controlling factor in the evolution of the river terraces, while tectonics plays a minor role in this process.  相似文献   

8.
Holocene and Pleistocene tectonic deformation of the coast in the Mexico subudction margin is recorded by geomorphic and stratigraphic markers. We document the spatial and temporal variability of active deformation on the coastal Mexican subduction margin. Pleistocene uplift rates are estimated using wave-cut platforms at ca. 0.7?C0.9?m/ka on the Jalisco block coast, Rivera-North America tectonic plate boundary. We examine reported measurements from marine notches and shoreline angle elevations in conjunction with their radiocarbon ages that indicate surface uplift rates increasing during the Holocene up to ca. 3?±?0.5?m/ka. In contrast, steady rates of uplift (ca. 0.5?C1.0?m/ka) in the Pleistocene and Holocene characterize the Michoacan coastal sector, south of El Gordo graben and north of the Orozco Fracture Zone (OFZ), incorporated within the Cocos-North America plate boundary. Significantly higher rates of surface uplift (ca. 7?m/ka) across the OFZ subduction may reflect the roughness of subducting plate. Absence of preserved marine terraces on the coastal sector across El Gordo graben likely reflects slow uplift or coastal subsidence. Stratigraphic markers and their radiocarbon ages show late Holocene (ca. last 6?ka bp) coastal subsidence on the Guerrero gap sector in agreement with a landscape barren of marine terraces and with archeological evidence of coastal subsidence. Temporal and spatial variability in recent deformation rates on the Mexican Pacific coast may be due to differences in tectonic regimes and to localized processes related to subduction, such as crustal faults, subduction erosion and underplating of subducted materials under the southern Mexico continental margin.  相似文献   

9.
通过对阿尔金断裂带西段莫勒切河河口附近卫星影像解译、野外调查测量及地貌面样品年龄测定,利用宽谷阶地、堆积阶地获取构造隆升速率、构造变形方式及加积速率,并结合区域气候资料探讨该区阶地发育对气候变化的响应.莫勒切河出山口发育4级阶地(T<‘4>,T<‘3>,T<‘2>,T<‘1>),其中T<‘4>、T<‘3>为宽谷阶地,T...  相似文献   

10.
2015年4 月25 日尼泊尔MW7.8特大地震发生在喜马拉雅山南麓, 震源机制解表明该地震为低角度逆冲型地震.通过收集地震区的活动构造研究资料、卫星影像解释和野外实地考察,认为尼泊尔MW7.8地震区地表分布三条主要的逆冲断裂,由北向南分别为喜马拉雅主中央断裂(MCT)、喜马拉雅主边界断裂(MBT)和喜马拉雅主前缘断裂(MFT).主边界断裂和主前缘断裂为晚更新世以来的活动断裂,但至今为止也没有发现喜马拉雅主中央断裂晚第四纪活动的依据.野外调查未发现尼泊尔MW7.8地震在喜马拉雅山南麓的主要断裂上形成地震地表破裂带.喜马拉雅山南麓的构造特征为薄皮构造,表现为浅部陡倾断坡-深部缓倾断坪(7°左右)-深部断坡(11°左右)的构造样式.深部断坡-断坪又称为主喜马拉雅断裂(MHT),其中的深部断坡是尼泊尔地震主震(MW7.8)和最大余震(MW7.3)的发震构造.余震大致沿北西向的高喜马拉雅山前缘呈条带状分布,主要分布在低喜马拉雅山区内.剖面上,余震大致分布在主喜马拉雅断裂的上盘推覆体内,推测尼泊尔MW7.8地震时深部断坡发生错动,其地震位移沿深部断坡-断坪向南传播引起上盘的褶皱带缩短变形,进而触发低喜马拉雅和次喜马拉雅褶皱带内产生次级破裂从而产生余震.  相似文献   

11.
The actively deformed foreland of eastern Qilian Shan (mountains) contains well‐preserved geomorphic features such as erosion surfaces, river terraces and tectonically uplifted alluvial fans, providing suitable archives for research on regional tectonic activities and palaeoclimatic changes. These geomorphic surfaces are well dated by using a combination of magnetostratigraphy, electron spin resonance, thermoluminescence, infra‐red stimulated luminescence, radiocarbon dating, and correlation with the well‐established loess–palaeosol sequences of China. Our results show that the erosion surface formed about 1·4 Ma ago, and the age of river terraces is 1·24 Ma, 820–860 ka, 780 ka, 420–440 ka, 230–250 ka, 140 ka, 60 ka and 10 ka, respectively. Valley incision rates of c. 0·09–0·25 m ka?1 have been identified. The repetitive stratigraphic and geomorphic pattern of these terraces indicates the fluvial sedimentation–incision cycles are tightly associated with the 100‐ka glacial–interglacial climatic cycles. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The Guizhou Plateau represents a geomorphic transition between the Tibetan Plateau and the Yangtze River Plain. It likely formed in response to the propagation of surface uplift in southeastern Tibet during India-Eurasia continental collision. However, the uplift history of the region is unclear largely due to a lack of datable material. The bedrock geology is dominated by carbonate rocks, which contains numerous multi-level caves in the main river valleys that are linked to the river incision history. Cosmogenic 26Al and 10Be burial dating of sediments in caves and river terraces from the northwestern and southern plateau reveals the fluvial chronology and provides the first direct determination of long-term river incision rates. The caves and terraces on the Liuchong River in NW Guizhou yield burial ages of between 0.41 ± 0.12 Ma and 2.85 ± 0.21 Ma, indicating an average incision rate of 57 ± 3 m/Ma. Four level caves at Libo in southern Guizhou yield burial ages of between 0.56 ± 0.16 Ma and 3.54 (+0.25/-0.22) Ma, indicating slightly slower incision rate (47 ± 5 m/Ma). These new results imply that the high elevation of the Guizhou Plateau had developed before the Late Pliocene, and that surface uplift during the Late Cenozoic was largely uniform across the region.  相似文献   

13.
焉耆盆地北缘和静逆断裂-褶皱带中晚第四纪变形速率   总被引:4,自引:4,他引:0  
焉耆盆地为南天山内部的一个山间盆地,盆地北缘发育1排第四纪新生褶皱带,即和静逆断裂-褶皱带。中晚第四纪以来,由于和静逆断裂-褶皱带的持续活动使得在褶皱生长过程中形成的多期洪积地貌面发生反向掀斜变形。利用高精度差分GPS,对褶皱带中部哈尔莫敦背斜区内的多期变形地貌面的地形形态进行了测绘,判定背斜的生长主要以翼旋转为主。利用背斜北翼不同地貌面的反向掀斜角度,分别计算了不同期次地貌面的隆升和缩短变形量。结合原地宇宙成因核素深度剖面法和光释光测年法,对背斜区内的F4,F3b,F2洪积台地面和T1阶地面的形成年龄进行了测定,发现背斜在距今约550ka、428.3+57.6-47.2ka和354.3+34.2-34.8ka不同时段的平均隆升速率从0.31±0.24mm/a下降至0.15±0.02mm/a,同时背斜北翼的翼旋转速度也呈逐渐减小的趋势。但背斜自起始变形开始,缩短速率却大致保持恒定为约0.3mm/a。而这一恒定的缩短速率与现今横跨和静逆断裂-褶皱带所观测的GPS速率具有很好的一致性,说明在天山内部的哈尔莫敦背斜区,短尺度的GPS速率可以代表长尺度的地壳应变速率,同时反映出山体内部一系列断层和褶皱构造在吸收和调节整体变形量时也起到一定的作用。  相似文献   

14.
In a study of which the main objective was to assess the impact of climate change and tectonics on the formation of river terraces along the Sankosh River, the eastern foreland of the Himalayas, the authors obtained geochrono-logical data using luminescence technique. Four strath river terraces (T4–T1) were distinguished within the valley bottom, and alluvial sediments from three terraces (T4, T2 and T1) were dated to the age range from 143 to 14 ka. The alluvial mantels of river terraces were then linked to the scheme of glacial-interglacial cycle. The paper, however, suffers from few inconsistent and missing information, and the assessment on the landscape evolution of the river valley is incomprehensive. The authors relied on feldspars and therefore the IRSL method was used, but “OSL ages” are discussed at the end. They state that (i) tectonics creates space for sediment accommodation and (ii) the luminescence ages flank deposition and incision phases. Despite the fact that the statements are questionable, the ways these happen are not elucidated within the paper. Due to the lack of geochronological data for T3 terrace, its formation is very enigmatic. It is even more mysterious in the light of the data for the other terraces, but the authors made no attempt to explain this riddle. However, that certain inability of reconstructing the history of T3 would shed a shadow on the robustness of the ages obtained.  相似文献   

15.
祁连山西段酒西盆地区阶地构造变形的研究   总被引:25,自引:3,他引:22  
对祁连山西段酒西盆地晚第四纪阶地的研究表明,该区早第四纪以挤压褶皱、逆冲为特征的构造变形在晚更新世期间乃至全新世仍继承性地进行着,表现为横穿褶皱和逆断裂带的河流及冲沟阶地面的形成、阶地类型的转变、阶地级数的增多和阶地面被断错或发生拱曲变形.其中祁连山北缘大断裂晚更新世晚期以来的垂直运动速率约为1.92~2.00mm/a.老君庙背斜逆断裂带在晚更新世初以来的垂直运动速率约为1.15~2.56mm/a.白杨河背斜逆断裂带晚更新世初以来的垂直运动速率约为0.32~0.58mm/a.  相似文献   

16.
Fluvial terraces are important geomorphic markers for modern valley development.When coupled with numeric ages,terraces can provide abundant information about tectonic,climatic,paleohydrological and the paleoenvironmental changes.On the basis of the paleomagnetic,electron spin resonance(ESR) and optically stimulated luminescence(OSL) dating,in addition to an investigation of local loess-paleosol sequences,we confirmed that 13 fluvial terraces were formed,and then preserved,along the course of the Upper Weihe River in the Sanyangchuan Basin over the past 1.2 Ma.Analyses of the characteristics and genesis of these terraces indicate that they resulted from the response of this particular river system to climate change over an orbital scale.These changes can further be placed within the context of local and regional tectonic uplift,and represent an alternation between lateral migration and vertical incision,dependent upon the predominance of climatic and tectonic controls during different periods.Most of the terraces are strikingly similar in that they have several meters of paleosols which have developed directly on top of fluvial deposits located on the terrace treads,suggesting that the abandonment of terraces due to river incision occurred during the transitions from glacial to interglacial climates.The temporal and spatial differences in the distribution patterns of terraces located on either side of the river valley indicate that a tectonic inversion occurred in Sanyangchuan Basin at-0.62 Ma,and that this was characterized by a transition from overall uplift to depression induced by fault activity.Synthesized studies of the Basin's terraces indicate that formation of the modern valley of the Upper Weihe River may have begun in the late Early Pleistocene between1.4-1.2 Ma.  相似文献   

17.
The island of Crete in the forearc of the Hellenic subduction zone has a rugged topography with local relief exceeding 2 km. Based on the elevation of marine shorelines, rates of rock uplift during the Late Holocene were previously estimated to range between 1 and 4 mm/a in different parts of the island. These rates may, however, not be representative for longer timescales, because subduction earthquakes with up to 9 m of vertical coseismic displacement have affected Crete in the Late Holocene. Here we use a well preserved sequence of marine terraces near Kato Zakros in eastern Crete to determine the rate of rock uplift over the last ∼600 ka. Field investigations and topographic profiles document a flight of more than 13 marine bedrock terraces that were carved into limestones of the Tripolitza unit. Preliminary age constraints for the terraces were obtained by 10Be exposure dating of rare quartz-bearing sandstone clasts, which are present on some terraces. The 10Be ages of these samples, which have been corrected for an inherited nuclide component, yielded exposure ages between ∼100 ka and zero. Combined with geomorphologic evidence the two oldest 10Be ages suggest that the terraces T4 and T5, with shoreline angles at an elevation of ∼68 and ∼76 m above sea level, respectively, formed during the marine isotope stage 5e about 120 ka ago. The correlation of the higher terraces (T6 to T13) with regional sea-level highstands indicates sustained rock uplift at a rate of ∼0.5 m/ka since at least ∼600 ka. As normal faulting has dominated the tectonics of Crete during the last several million years, upper crustal shortening can be ruled out as a cause for rock uplift. We argue that the sustained uplift of the island results from the continuous underplating of sediments, which are transferred from the subducting African plate to the base of the crust beneath Crete.  相似文献   

18.
位于龙门山逆冲推覆构造带东侧的龙泉山背斜,构成了四川前陆盆地的前陆隆起。通过室内航空相片对凯江跨背斜段的地貌面的解译,结合野外考察可知凯江发育3级阶地,其中T1、T2为堆积阶地,T3为基座阶地。在野外用差分GPS测量了阶地的空间坐标信息,同时采集了各级阶地堆积物的测年样本,并经实验分析约束了阶地的形成年龄。另外,对石油地震剖面解译揭示出龙泉山背斜北段地壳缩短和隆升主要是通过褶皱膝折带迁移机制进行的,滑脱层的深度约6km。利用面积守恒准则计算出龙泉山背斜晚更新世以来的地壳缩短速率约为(1.36±0.41)mm/a、隆升速率为(0.64±0.19)mm/a。通过滑脱层的推覆抬升机制形成的龙泉山背斜,给青藏高原东缘变形模式中的逆断层推覆地壳缩短造山增加了证据。  相似文献   

19.
天山北麓活动背斜区河流阶地与古地震事件   总被引:2,自引:2,他引:2       下载免费PDF全文
利用航空遥感照片和Google earth卫星影像,对天山北麓独山子活动背斜区奎屯河两侧的河流地貌进行解释,结合野外调查发现,奎屯河流经独山子背斜段发育7级基座阶地,阶地基座为上新统独山子组泥岩,其上部为2.5 ~ 15m厚的砂砾石层和砂质黏土.在开挖或剥离的各级阶地堆积物剖面中采集细粒堆积物样品,实验室中采用细粒石英...  相似文献   

20.
The Muzaffarabad region in western Himalaya, the site of the devastating earthquake of 8 October 2005 of magnitude 7.6, occupies a unique tectonic position, encompassed by the Himalayan arc to the east and the complex thrust zones of Pamir and Hindukush in the north and northwest respectively. Further, the region is entangled in a peculiar overturned syntaxial bend of the Main Central Thrust (MCT), north of Main Boundary Thrust (MBT). A study of focal mechanisms and stress inversion in each of these regions indicates varied stress regimes demonstrating their distinct tectonic character. While shallow plane thrust faulting with low dip angles is generally witnessed along the Himalayan arc, a transition to steep fault plane dips up to 45° is seen in the Muzaffarabad region on the western side. It is inferred that the stress field in Muzaffarabad region is not a mere extension of that in the Himalayan arc but is controlled by the complex interplay of the surrounding diverse tectonic structural units comprising the Himalaya, Hindukush and Pamir, rather than merely the tectonic forces of India–Eurasia collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号