首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper presents a multi-proxy climate record of an 11 m long core collected in Lago Puyehue (southern Chile, 40°S) and extending back to 18,000 cal yr BP. The multi-proxy analyses include sedimentology, mineralogy, grain size, geochemistry, loss-on-ignition, magnetic susceptibility and radiocarbon dating. Results demonstrate that sediment grain size is positively correlated with the biogenic sediment content and can be used as a proxy for lake paleoproductivity. On the other hand, the magnetic susceptibility signal is correlated with the aluminium and titanium concentrations and can be used as a proxy for the terrigenous supply. Temporal variations of sediment composition evidence that, since the Last Glacial Maximum, the Chilean Lake District was characterized by three abrupt climate changes superimposed on a long-term climate evolution. These rapid climate changes are: (1) an abrupt warming at the end of the Last Glacial Maximum at 17,300 cal yr BP; (2) a 13,100–12,300 cal yr BP cold event, ending rapidly and interpreted as the local counterpart of the Younger Dryas cold period, and (3) a 3,400–2,900 cal yr BP climatic instability synchronous with a period of low solar activity. The timing of the 13,100–12,300 cold event is compared with similar records in both hemispheres and demonstrates that this southern hemisphere climate change precedes the northern hemisphere Younger Dryas cold period by 500 to 1,000 years. This is the third in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

3.
Studies combining sedimentological and biological evidence to reconstruct Holocene climate beyond the major changes, and especially seasonality, are rare in Europe, and are nearly completely absent in Germany. The present study tries to reconstruct changes of seasonality from evidence of annual algal successions within the framework of well-established pollen zonation and 14C-AMS dates from terrestrial plants. Laminated Holocene sediments in Lake Jues (10°20.7′ E, 51°39.3′ N, 241 m a.s.l.), located at the SW margin of the Harz Mountains, central Germany, were studied for sediment characteristics, pollen, diatoms and coccal green algae. An age model is based on 21 calibrated AMS radiocarbon dates from terrestrial plants. The sedimentary record covers the entire Holocene period. Trophic status and circulation/stagnation patterns of the lake were inferred from algal assemblages, the subannual structure of varves and the physico-chemical properties of the sediment. During the Holocene, mixing conditions alternated between di-, oligo- and meromictic depending on length and variability of spring and fall periods, and the stability of winter and summer weather. The trophic state was controlled by nutrient input, circulation patterns and the temperature-dependent rates of organic production and mineralization. Climate shifts, mainly in phase with those recorded from other European regions, are inferred from changing limnological conditions and terrestrial vegetation. Significant changes occurred at 11,600 cal. yr. BP (Preboreal warming), between 10,600 and 10,100 cal. yr. BP (Boreal cooling), and between 8,400 and 4,550 cal. yr. BP (warm and dry interval of the Atlantic). Since 4,550 cal. yr. BP the climate became gradually cooler, wetter and more oceanic. This trend was interrupted by warmer and dryer phases between 3,440 and 2,850 cal. yr. BP and, likely, between 2,500 and 2,250 cal. yr. BP.  相似文献   

4.
Antarctic climate changes influence environmental changes at both regional and local scales. Here we report Holocene paleolimnological changes in lake sediment core Sk4C-02 (length 378.0 cm) from Lake Skallen Oike in the Soya Kaigan region of East Antarctica inferred from analyses of sedimentary facies, a range of organic components, isotope ratios of organic carbon and nitrogen, and carbon-14 dating by Tandetron accelerator mass spectrometry. The sediment core was composed of clayish mud (378.0–152.5 cm) overlain by organic sediments (152.5 cm-surface). The age of the surface and the core bottom were 150 (AD1950-1640) and ca. 7,030 ± 73 calibrated years before present (cal BP), respectively, and the mean sedimentation rate was estimated to be 0.55 mm/year. Multi-proxy analyses revealed that the principal environmental change in the core is a transition from marine to lacustrine environments which occurred at a depth of 152.5 cm (ca. 3,590 cal BP). This was caused by relative sea level change brought about by ongoing retreat of glaciers during the mid-Holocene warming of Antarctica, and ongoing isostatic uplift which outpaced changes in global (eustatic) sea level. The mean isostatic uplift rate was calculated to be 2.8 mm/year. The coastal marine period (378.0–152.5 cm, ca. 7,030–3,590 cal BP) was characterized by low biological production with the predominance of diatoms. During the transition period from marine to freshwater conditions (152.5-approximately 135 cm, ca. 3,590–3,290 cal BP) the lake was stratified with marine water overlain by freshwater, with a chemocline and an anoxic (sulfidic) layer in the bottom of the photic zone. Green sulfur bacteria and Cryptophyta were the major photosynthetic organisms. The Cryptophyta appeared to be tolerant of the moderate salinity and stratified water conditions. The lacustrine period (approximately 135 cm-surface, ca. 3,290 cal BP-present) was characterized by high biological production by green algae (e.g. Comarium clepsydra and Oedegonium spp.) with some contributions from cyanobacteria and diatoms. Biological production during this period was 8.7 times higher than during the coastal marine period.  相似文献   

5.
Wetlands and lakes in the Tanana Valley, Alaska, have provided important resources for prehistoric humans who inhabited this region. We examine an ~11,200?cal?yr BP record of environmental and paleolimnological changes from Quartz Lake in the middle Tanana Valley. Our data are also presented in the context of recent archaeological findings in the lake??s general vicinity that have 18 associated AMS 14C dates. We analyzed the stable-carbon and nitrogen isotope composition of total organic matter from the core, coupled with oxygen and carbon isotope analyses of Pisidiidae shells (fingernail clams), in addition to chironomid assemblage changes. Lacustrine sediments began to accumulate at ~11,200?cal?yr BP. Initially, autochthonous production was low and allochthonous organic input was negligible between 11,000 and 10,500?cal?yr BP, and were associated with relatively cool conditions at Quartz Lake at ~10,700?cal?yr BP. After 10,500?cal?yr BP, autochthonous production was higher coincident with a shift to chironomid assemblages dominated by taxa associated with warmer summer climates. A decrease in ??13C values of total organic carbon (TOC) and organic content of the sediment between 9,000 and 4,000?cal?yr BP may indicate declining autochthonous primary production. This period ended with an abrupt (~7???) decrease in the ??18O values from Pisidiidae shells at ~3,000?cal?yr BP, which we hypothesize represented an episodic connection (flood) of the lake with flow from the nearby (~6?km) Tanana River. Our findings coincide with evidence for major flooding at other locations connected to the Tanana River and further afield in Alaska. From ~3,000?cal?yr BP Quartz Lake subsequently appeared to become a relatively closed system, as indicated by the ??18OPisidiidae and ??13CPisidiidae data that are positively correlated and generally higher, which also correlates with a shift to moderately higher abundances of littoral chironomids. The cause of the transition to closed-basin conditions may have been geomorphic rather than climatic. This evidence of a progressively stronger evaporative influence on the lake??s closed hydrology after ~3,000?cal?yr BP is consistent with our modern ??18O and ??D water data from Quartz Lake that plot along a regional evaporative line we base on isotopic measurements from other local lakes and rivers.  相似文献   

6.
Stable isotopes and trace-element contents of ostracod (Candona neglecta) valves mostly from the Holocene portion of two assembled cores from Petit Lac (Lake Geneva, Switzerland-France) were analysed in order to depict the geochemical record of post-glacial environmental changes of this lake. Additional stable isotope and trace element data from the gastropod Bithynia tentaculata (shells and opercula) from some intervals of these cores, as well as previous data from bulk carbonate from the lower part of the studied intervals were also considered. Mg/Ca and Sr/Ca molar ratios for the Holocene lake water have been estimated from evaluations of the partitioning coefficients for Mg and Sr for C. neglecta and B. tentaculata taking into account the modern-lake water composition. This study shows an overall gentle trend to higher δ18O values in C. neglecta valves from the Boreal interval (mean −8.44‰) to the upper part of the core (mean −8.11‰). This trend is superimposed to higher frequency oscillations of stable isotope values and trace element ratios, especially through the upper Older Atlantic and the Subboreal. The overall isotopic oxygen trend includes several shifts in δ18O of about 1‰. These shifts are interpreted as major regional-global climate changes that have also been observed in other coeval δ18O and pollen records which reflect the Holocene climate variability in other European basins. Especially well-defined peaks in some episodes like Older Atlantic (~8200 yr BP), Younger Atlantic – Subboreal transition (~5600 yr BP) and early Subatlantic (~ 2500 yr BP) correspond to well-recognized events in globally-distributed records. Some of these shifts are correlated with pulses in the lake-level curve of the Lake Geneva. An erratum to this article is available at .  相似文献   

7.
This study presents detailed lithostratigraphy and stable carbon and nitrogen isotopic variations in a 520-cm-long sediment core from a cirque basin in the Labsky důl Valley, Krkonoše Mountains, Czech Republic. Detailed study of the core reveals five major periods of sedimentation during the last 7600 years: silt and sand deposition during ~7.6–5.1 ka cal BP, Sphagnum peat accumulation during ~5.1–4.0 ka cal BP, sandy silt and sand during ~4.0–2.8 ka cal BP, raised peat bog during ~2.8–2.0 ka cal BP (Sphagnum peat), and sedimentation of sandy silt since ~2.0 ka cal BP. The δ13C values of the organic matter in the core vary in the range typical for C3 plants, from −24.35 to −27.68‰, whereas the δ15N values vary from −2.65 to +4.35‰. Core sections having ash contents ≥70% have δ15N > 1‰ and δ13C < −26‰, whereas those having ≤70% ash content have δ15N < 1‰ and δ13C > −26‰. Strong linear correlations are observed between δ13C and δ15N values as well as between C:N ratios and δ15N values in the horizons with ash content >10%, primarily for sand and silt horizons. On the other hand, poor correlations between δ13C and C:N ratio, as well as δ15N and C:N ratio, were observed in Sphagnum peat layers (45–125 and 185–265 cm). We conclude that the primary stable isotope variations are not preserved in the layers where significant correlation between δ15N and C:N ratio is observed. The relatively small δ13C variation in the uppermost Sphagnum peat layer suggests stable temperature during ~2.8–2.0 ka cal BP.  相似文献   

8.
Microfossils have been critical in unravelling the complex postglacial history of Georgian Bay. Thecamoebians (testate amoebae/rhizopods) record paleolimnological conditions, and pollen stratigraphy allows correlation across the basin, where sedimentation has been spatially and temporally discontinuous. Because parts of Georgian Bay have been non-depositional or erosional since the end of the Nipissing transgression (~5,000 (5,800 cal) BP), early Holocene features are exposed on the lakebed. Among these are shoreline features, such as submerged beaches and relict channels, associated with low-level Lake Hough that was driven far below the level of basin overflow. Cores taken throughout Georgian Bay record the existence of closed basin conditions that persisted several centuries around 7,500 (8,300 cal) BP, corresponding to the late Lake Hough lowstand. Evidence for hydrologic closure includes a low-diversity centropyxid-dominated thecamoebian fauna around the boundary between pollen subzones 2a and 2b in the Flowerpot Beach core, Flowerpot and Killarney basins, and in Severn Sound. This low-diversity centropyxid-dominated fauna is interpreted as recording the development of slightly brackish conditions as a result of a hydrologic deficit associated with relatively arid conditions in the Great Lakes basin during the early Holocene pine zone (~8,800–7,200 (9,900–8,050 cal) BP). The rest of the Holocene record in Georgian Bay (where it is preserved) is more diverse and dominated by difflugiid thecamoebians: predominantly Difflugia oblonga prior to human settlement, and Cucurbitella tricuspis since high-density human occupation and agriculture (and resulting eutrophication) began with the Wendat First Nations people around Severn Sound about 750 years ago. The implication that water budget fluctuations leading to discernible variations in lake level and water chemistry occurred in the relatively recent geologic past is significant to studies of global climate change and resource management in the Great Lakes, one of the world’s largest freshwater resources.  相似文献   

9.
A pollen record from Puyehue area (40°S; 72°W) in the southern Lake District, Chile, indicates that prior to 13,410 14C yr BP (ca. 16,500–15,200 cal yr BP), cold resistant and hygrophilous vegetation, particularly Nothofagus forest and myricaceous vegetation, covered the area. From ca. 15,000 cal yr BP onward, the forest became increasingly dense. Between 10,010 and 7450 14C yr BP (ca. 11,000–8000 cal yr BP), the expansion of Nothofagus obliqua and the spread of grasses suggests the climate became warmer and semi-arid. Lowland deciduous forest (Nothofagus obliqua, Aextoxicon punctatum, Laurelia sempervirens) and Valdivian rainforest (Nothofagus dombeyi, Eucryphia cordifolia, Caldcluvia paniculata, Aextoxicon punctatum, Laureliopsis philippiana) were abundant. During the next two thousand years, stable warm climatic conditions prevailed, and the diversity of the vegetation increased. From 5760 to 1040 14C yr BP (ca. 6500–900 cal yr BP), the North Patagonian rainforest expanded. The presence of Pilgerodendron/Fitzroya, together with Nothofagus forest, suggests that humid conditions prevailed. During the last millennium, human impact intensified and regional vegetation was disturbed, particularly the lowland deciduous forest and Valdivian rainforest. North-Patagonian and subantartic taxa, such as Podocarpus nubigena, Pilgerodendron/Fitzroya, Nothofagus dombeyi type, Austrocedrus chilensis and Drimys winteri, occupied the low and high-altitude parts of the Cordillera. Five hundred years ago, shrub and grasses expanded in the Nothofagus forest, suggesting that forest became more open under cool–cold, and humid climatic conditions. These conditions prevail to the present day. This is the fourth in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   

10.
A sedimentary sequence from the Mediterranean coastal basin of Lago di Massaciuccoli (Tuscany, Italy) was analyzed for diatoms, covering two periods over the past ca. 7,000 years. The site was selected because it is situated in a sensitive position at the limit between Mediterranean and Central European climates and biomes. Our focus is on the impact of accelerated human activity during the recent past (water uptake in the catchment, sand extraction, wastewater discharge) and on a phase of evident change between 6,600 and 5,400 cal. BP. The diatom record suggests fresh-water conditions and rather high lake levels until ca. 6,000 years ago. The subsequent shift towards brackish conditions peaked at around 5,500 cal. BP. We relate this shift to a pervasive change towards a drier climate that has been observed elsewhere in the Mediterranean and Northern African regions, and stands in contrast to the shift towards a cooler and more humid climate in the nearby Alps (200–350 km distant) and in central Europe. Pollen and charcoal records from a previous study on the same sedimentary sequence were used to gain additional insights about the causes of the changes in the diatom assemblages and apply numerical methods to search for common trends and correlations.  相似文献   

11.
Diatom-based inferences of post-glacial hydrological change from a sedimentary record from Felker Lake, British Columbia, show millennial-scale pacing of climate over the past approximately 11670 calendar years with change at ca. 8140 cal. year BP, ca. 6840 cal. year BP, ca. 5700 cal. year BP, and ca. 2230 cal. year BP. Early postglacial diatom assemblages are dominated by fragilaroid taxa, suggesting that cool and moist climate conditions and relatively high lake levels prevailed at this time. Early Holocene warming near ca. 8140 cal. year BP promoted Cyclotella bodanica var. lemanica, a fall bloomer competitive in limnological conditions associated with warmer water and stratified conditions. Short-lived peaks of Stephanodiscus parvus/minutulus between ca. 6340 cal. year BP and ca. 5860 cal. year BP indicate periodic increases in nutrient availability and prolonged mixing likely associated with long cool and moist spring seasons. The diatom-inferred depth of Felker Lake increased during the mid-Holocene to reach a record high-stand at ca. 5860 cal. year BP. Large changes in hydrological variability and terrestrial vegetation at Felker Lake occurred after ca. 2230 cal. year BP when high-amplitude centennial-scale fluctuations in diatom-inferred lake depth and salinity are observed. Change is first documented in terrestrial vegetation at this time by a shift from open Pinus parklands to a landscape that periodically supported populations of Cupressaceae. Three record low-stand high-salinity events are reconstructed between ca. 1910 cal. year BP and ca. 1800 cal. year BP, ca. 1030 cal. year BP and ca. 690 cal. year BP, and ca. 250 cal. year BP and ca. 140 cal. year BP. The low lake-level episode of ca. 1030 cal. year BP–ca. 690 cal. year BP is coeval with the Medieval Warm Period (ca. 1000 cal. year BP–ca. 600 cal. year BP), a period of intense drought in western North America. Post-glacial hydrological change at Felker Lake is coherent with regional, hemispherical, and global paleoclimate events, suggesting that millennial-and centennial-scale shifts in water availability are a persistent feature of the climate of western North America.  相似文献   

12.
Pollen and diatoms preserved in the radiocarbon dated sediments of Two Frog Lake in the Seymour-Belize Inlet Complex of the central mainland coast of British Columbia document postglacial climate change. Two Frog Lake was isolated from the sea prior to 11,040 ± 50 yr BP (13,030 cal. yr BP) when the climate was cool and dry, and open Pinus contorta woodlands covered the landscape. These woodlands were replaced by a mixed conifer forest ca. 10,200 yr BP (ca. 12,300 cal. yr BP) when the climate became moister. A relatively dry and warm early Holocene climate allowed Pseudotsuga menziesii to migrate northward to this site where it grew with Picea, Tsuga heterophylla and Alnus. The climate became cooler and moister at ca. 8,000 yr BP (ca. 9,200 cal. yr BP), approximately 500–1,000 years prior to sites located south of Two Frog Lake and on the Queen Charlotte Islands, but contemporary with sites on the northern mainland coast of British Columbia and south coastal Alaska. Climate heterogeneity in central coastal British Columbia appears to have occurred on a synoptic scale, suggesting that atmospheric dynamics linked to a variable Aleutian Low pressure system may have had an important influence on early Holocene climate change in the Seymour-Belize Inlet Complex. The transition to cooler and moister conditions facilitated the expansion of Cupressaceae and the establishment of a modern-type coastal temperate rainforest dominated by Cupressaceae and T. heterophylla. This was associated with progressive lake acidification. Diatom changes independent of vegetation change during the late Holocene are correlative with the mid-Neoglacial period, when cooler temperatures altered diatom communities.  相似文献   

13.
A 12.87-m-long sediment core was retrieved from closed-basin Lake Daihai in the monsoon–arid transition zone of north-central China. Oxides of major elements and their ratios normalized to Al in the AMS-14C-dated core were employed to evaluate chemical weathering intensity (CWI) in the lake drainage basin, which reflects hydrothermal conditions in the study area. Lower CWI periods occurred prior to 14.5 ka BP, and during the intervals ca. 11.7–10.3, 3.5–3.2, 2.6–1.7 ka BP, and 1.2–0 ka BP, indicating relatively low temperatures and moisture availability. Greater CWI during the intervening periods ca. 14.5–11.7, 10.3–9.0, 3.2–2.6, and 1.7–1.2 ka BP, with the maximum CWI at ca. 6.7–3.5 ka BP, imply ameliorated hydrothermal conditions in the lake basin, i.e. higher temperatures and precipitation. Exceptionally low CWI, associated with high CaO/MgO ratio during ca. 9.0–6.7 ka BP, suggests higher evaporation rates in the area under warmer temperature. Overall, CWI displays in-phase variations with changes in organic matter (TOC, TN), carbonate (CaCO3) and pollen assemblages, all of which are related to variations in monsoon effective precipitation. High CWI indicates strong monsoon-induced precipitation, whereas low CWI reflects a weak precipitation regime. The optimum hydrothermal status, recorded by the strongest CWI and maximum monsoon effective precipitation during ca. 6.7–3.5 ka BP defines the Holocene climate optimum (HCO) in the Lake Daihai region. These results indicate that the HCO prevails after the early Holocene in the monsoon–arid transition zone of north-central China. Temperature and precipitation variations during most of the Holocene, inferred from the lake sediments, are due largely to insolation forcing. Dry but warm conditions ca. 9.0–6.7 ka BP, however, probably reflect the complex interactions between insolation and geography (e.g. altitude and local topography).  相似文献   

14.
Three lake sediment sequences (lakes Nero, Chashnitsy, Zaozer’e) from the Rostov-Jaroslavl’ region north of Moscow were studied to provide information on palaeoclimatic and palaeoenvironmental changes during the past 15,000 cal yr. The multi-proxy study (i.e., pollen, macrofossils, mineral magnetic measurements, total carbon, nitrogen and sulphur) is chronologically constrained by AMS 14C measurements. Lake Nero provided the longest sedimentary record back to ca. 15,000 cal yr BP, while sediment accumulation began around ca. 11,000 cal yr BP in the two other lakes, possibly due to melting of permafrost. Limnic plant macrofossil remains suggest increased lake productivity and higher mean summer temperatures after 14,500 cal yr BP. While the late glacial vegetation was dominated by Betula and Salix shrubs and various herbs, it appears that Betula sect. Albae became established as early as 14,000 cal yr BP. Major hydrological changes in the region led to distinctly lower lake levels, starting 13,000 cal yr BP in Lake Nero and ca. 9000 cal yr BP in lakes Chashnitsy and Zaozer’e, which are situated at higher elevations. These changes resulted in sedimentary hiatuses in all three lakes that lasted 3500–4500 cal yr. Mixed broad-leaved – coniferous forests were widespread in the area between 8200 and 6100 cal yr BP and developed into dense, species-rich forests between 6100 and 2500 cal yr BP, during what was likely the warmest interval of the studied sequences. Agricultural activity is documented since 500 cal yr BP, but probably began earlier, since Rostov was a major capital by 862 A.D. This apparent gap may be caused by additional sedimentary hiatuses around 2500 and 500 cal yr BP.  相似文献   

15.
Variations in the oxygen-isotope composition of paleo-water bodies in the Lake Superior Basin provide information about the timing and pathways of glacial meltwater inflow into and within the Lake Superior Basin. Here, the oxygen-isotope compositions of Lake Superior have been determined using ostracodes from four sediment cores from across the Basin (Duluth, Caribou and Ile Parisienne sub-basins, Thunder Bay trough). The δ18O values indicate that lake water (Lake Minong) at ~10,600–10,400 cal [~9,400–9,250] BP was dominated by glacial meltwater derived from Lake Agassiz and the Laurentide Ice Sheet (LIS). From that time to ~9,000 cal [~8,100] BP, a period associated with formation of thick varves across the Lake Superior Basin, the δ18O values of Lake Minong decreased even further (−24 to −28‰), symptomatic of an increasing influx of glacial meltwater. Its supply was reduced between ~9,000 and ~8,900 cal [~8,100–8,000] BP, and lake water δ18O values grew higher by several per mil during this period. Between ~8,900 and ~8,800 cal [~8,000–7,950] BP, there was a return to δ18O values as low as −29‰ in some parts of the Lake Superior Basin, indicating a renewed influx of glacial meltwater before its final termination at ~8,800–8,700 cal [~7,950–7,900] BP. The sub-basins in the Lake Superior Basin generally displayed very similar patterns of lake water δ18O values, typical of a well-mixed system. The final stage of glacial meltwater input, however, was largely expressed near its input (Thunder Bay trough) and recognizable in dampened form mainly in the Duluth sub-basin to the west. Water in the easternmost Ile Parisienne sub-basin was enriched in 18O relative to the rest of the lake, particularly after ~10,000 cal [~8,900] BP, probably because of a strong influence of local precipitation/runoff, and perhaps also enhanced evaporation. By ~9,200 cal [~8,250] BP, lake water δ18O values in the Ile Parisienne sub-basin were similar to the adjacent Lake Huron Basin, suggesting a strong hydraulic connection between the two water bodies, and common responses to southern Ontario’s shift to warmer and dry climatic conditions after ~9,000 cal [~8,100] BP.  相似文献   

16.
The study of global climate change for the last 2000 years is very important for predicting climate evolution in the future. In order to explore the evidence of climate change for that period, the Chinese scientists made convincing statements using high-resolution substitution data such as tree-ring, coral and ice core. Continuous accumulated peat sediment is the better substitution data to provide climate information. Selecting the peatlands with a certain area and less human interference, th…  相似文献   

17.
Millennial-scale climate variability has not been well documented in arid northwest China due to the scarcity of high-resolution, well-dated paleoclimate records. Here we present multi-proxy records from sediment cores taken in freshwater Hurleg Lake on the northeastern Tibetan Plateau, which reveal millennial-scale lake-level and climate variations over the past 8,000 years. This high-elevation region is very sensitive to large-scale climate change, thus allowing us to better understand Holocene climate variations in East Asia. The lake-level record, derived from lithology, magnetic mineralogy, carbonate isotopes, ostracode shell isotopes and trace elements, X-ray fluorescence (XRF), and gray scale data, indicates a highly variable and generally dry climate from 7.8 to 1 ka (1 ka = 1,000 cal year BP), and a relatively stable and wet climate after 1 ka. Superimposed on this general trend, six dry intervals at 7.6–7.2 ka, 6.2–5.9 ka, 5.3–4.9 ka, 4.4–3.8 ka, 2.7–2.4 ka, and 1.7–1.1 ka were detected from the high-resolution carbonate content and XRF data. The generally dry climate between 7.8 and 1 ka was almost synchronous with the decrease of East Asian and Indian monsoon intensities shortly after 8 ka. The six dry intervals can be correlated with weak monsoon events recorded in the East Asia and Indian monsoon regions, as well as the North Atlantic cold events. Our data suggest that millennial-scale monsoon variations could cause highly variable climate conditions in arid northwest China during the Holocene. These millennial-scale climate variations may reflect changes in solar variation and/or changes in oceanic and atmospheric circulation.  相似文献   

18.
Two cores were recovered from raised peat bogs on the tropical northern Leizhou Peninsula, south China. Multiple sediment variables including organic matter (OM) content, the stable carbon isotope signature of OM, low-frequency magnetic susceptibility and degree of humification, indicate that the regional paleoclimate played an important role in determining the nature of peat that accumulated. Based on comparison with other climate proxies, the bulk peat δ13C record was interpreted as an indicator of variation in the East Asian (EA) summer monsoon, and to a lesser extent, the Indian summer monsoon, during the last glacial period between ~49 and 10 cal ka BP. More negative bulk δ13C values reflect wetter and warmer conditions, and thus a strong EA summer monsoon. More positive values indicate drier and cooler conditions. A warm and wet period occurred between ~46 and 28 cal ka BP, implying a strengthening of the EA summer monsoon. A climate shift occurred at ~22 cal ka BP and the driest and coldest period appeared between ~19 and 16 cal ka BP, suggesting weakening of the EA summer monsoon. After ~12 cal ka BP, climate shifted towards wetter and warmer conditions again. It has been suggested that variations in orbitally induced solar insolation played a role in the last glacial climate of the study region. Several millennial—scale arid and cold phases characterized by C4 plants, or by more positive δ13C values during periods when C3 plants dominated, show agreement with the Greenland GISP2 ice core and the Chinese stalagmite records. Interactions between high northern latitude cold air advection and summer moisture transported across the tropical ocean, and the migration of the mean position of the Intertropical Convergence Zone (ITCZ) would have favored these millennial–scale phases. Additionally, changes in heat transport to the North Atlantic would also have influenced climate in the region.  相似文献   

19.
Studies in the middle Basento river basin supported by reliable chronological data (tephra layers and a number of absolute datings) have allowed the reconstruction of Late Pleistocene–Holocene geomorphological evolution of the middle to low Fossa Bradanica area (Basilicata, southern Italy). The original Upper Pleistocene hillslope has been dissected by deep gullies leaving relict slope pediments. Holocene filling of the Basento river valley and gullies occurred as a succession of downcut and fill episodes. A first phase of accumulation occurred in the Late Neolithic, which was followed by a downcutting between 4500 and 3700 cal. yr BP. A second deposition phase took place in the Greek–Roman period between 2800 and 1620 cal. yr BP, which was interrupted at around 2500 cal. yr BP. Another downcutting phase took place between 1620 and 1500 cal. yr BP, followed by a deposition phase between 1440 and 1000 cal. yr BP. After 1000 cal. yr BP a deep downcutting took place. Evidence collected with this study, coupled with climate data recorded in other Italian and European locations, suggests that filling and downcutting episodes in Fossa Bradanica were predominantly climate-driven. Anthropogenic impact only intensified or weakened these processes.  相似文献   

20.
Since the end of the Last Glacial Maximum, hydrology in Europe has been influenced by both climate changes, and since Neolithic times, an increase in human activity. Paleohydrological reconstructions, especially from lake studies, can help identify the respective impact of these two factors. The present work focuses on a lacustrine geosystem, the Sarliève paleolake in the Massif Central (France), in an unusually dry, temperate area. The lake sediment geometry (core drillings, geotechnical methods), and the geochemical and mineralogical characterization of the catchment rocks and soils, and of the lacustrine deposits, indicate major variations in paleohydrology during the last 12,000 years as dated by 14C, palynology and tephrochronology. In addition, a model quantifying detrital versus biochemical lacustrine components was developed to identify hydrological trends. The data show that the Sarliève area was characterized mainly by remarkably dry conditions, hence sharpening the climatic trends at middle latitudes in Western Europe. Three main hydrological phases are distinguished since the Late Glacial: (1) 13.7–7.5 ka cal BP, a dominant dry climate, with a peak at ca. 8 ka cal BP, leading to a lowstand in water level and unusual mineral authigenesis, zeolite then dolomite, constituting up to 60% of the lacustrine sediments; (2) 7.5 to ca. 5.3 ka cal BP, repeated short-duration hydrological alternations that could have been climate-driven: lowstands in water level with up to 60% biochemical minerals versus higher water levels with <10% biochemical minerals; (3) 5.3 ka cal BP to the Middle Ages (i.e. beginning in the 5th century AD), a hydrological trend towards perennial high water level, with mainly detrital sediments, probably linked to climate evolution, except periods of obvious human-driven drying during the last two millennia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号