首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the time dependence of the number of deaths reported through Internet after earthquakes and/or earthquake-generated tsunami. An approximate relation N(t) = N 0 [1 − exp(−αt)] is used to describe such temporal variation, in which N(t) is the number of deaths reported at time t, N 0 is the final number of deaths, and α is the coefficient reflecting the rescue process. We considered 12 earthquake cases since 2001 using the information from the web, which shows that the N-t relation approximates the data, and the logarithm of α is reversely proportional to the magnitude of earthquake, albeit with significant uncertainties. Quick and rough estimate of the final death toll can be made using this simple and approximate relation, with the empirical α-M relation as a reference. For the 12 cases under consideration, quick and rough estimate of fatalities can be obtained 2 days after the earthquake, fitting the real situation in the order of magnitudes. Although being very rough, this estimate can assist the emergency decision-making and can be revised as time lapses. When more and more data becomes available, curve fitting can provide both N 0 and α at the same time. The method is tested against the data of the recent Yushu earthquake on April 14, 2010.  相似文献   

2.
Earthquake hazard maps for Syria are presented in this paper. The Peak Ground Acceleration (PGA) and the Modified Mercalli Intensity (MMI) on bedrock, both with 90% probability of not being exceeded during a life time of 50, 100 and 200 years, respectively are developed. The probabilistic PGA and MMI values are evaluated assuming linear sources (faults) as potential sources of future earthquakes. A new attenuation relationship for this region is developed. Ten distinctive faults of potential earthquakes are identified in and around Syria. The pertinent parameters of each fault, such as theb-parameter in the Gutenberg-Richter formula, the annual rate 4 and the upper bound magnitudem 1 are determined from two sets of seismic data: the historical earthquakes and the instrumentally recorded earthquake data (AD 1900–1992). The seismic hazard maps developed are intended for preliminary analysis of new designs and seismic check of existing civil engineering structures.  相似文献   

3.
In this study, stochastic finite fault modeling is used to simulate Uttarkashi (1991) and Chamoli (1999) earthquakes using all available source, path, and site parameters available for the region. These two moderate earthquakes are recorded at number of stations of a strong motion network. The predicted peak ground accelerations at these stations are compared with the observed data and the ground motion parameters are constrained. The stress drop of Uttarkashi and Chamoli earthquakes is constrained at 77 and 65?bars, respectively, whereas the quality factor Q C is 112 $ f^{0.97} $ and 149 $ f^{0.95} $ for these two regions. The high-frequency attenuation parameter Kappa is in the range 0.04?C0.05. The constrained ground motion parameters are then used to simulate Mw 8.5 earthquake in central seismic gap region of Himalaya. Two scenarios are considered with epicenter of future great earthquake at locations of Uttarkashi and Chamoli earthquakes using above constrained parameters. The most vulnerable towns are the towns of Dehradun and Almora where expected PGA is in excess of 600?cm/s2 at VS30 520?m/s when the epicenter of the great earthquake is at the location of Uttarkashi (1991) earthquake. The towns of Shimla and Chandigarh can expect PGA close to 200?cm/s2. Whereas when the epicenter of the great earthquake is at the location of Chamoli (1999) earthquake, the towns of Dehradun and Almora can expect PGA of around 500 and 400?cm/s2, respectively, at VS30 620?m/s. The National Capital Region, Delhi can expect accelerations of around 80?cm/s2 in both the cases. The PGA contour maps obtained in this study can be used to assess the seismic hazard of the region and identify vulnerable areas in and around central Himalaya from a future great earthquake.  相似文献   

4.
The Algerian margin is a seismically active region, where during the last century, several large magnitude earthquakes took place. This study combines geotechnical and sedimentological data with numerical modelling to quantitatively assess the present-day slope stability of the Algerian margin. Geotechnical laboratory tests, such as cyclic triaxial tests, oedometric tests and vane shear tests were carried out on sediment cores collected on the study area. The liquefaction potential of a sediment column located about 30 km from the Boumerdès earthquake epicentre of 21st May 2003 was evaluated theoretically for an earthquake of M w  = 6.8. We show that thin sand and silt beds such as those described on recovered sediment cores are the main cause of sediment deformation and liquefaction during earthquakes. Numerical calculations showed that the slope failure may occur during an earthquake characterised by a PGA in excess of 0.1g, and also that, under a PGA of 0.2g liquefaction could be triggered in shallow silty–sandy deposits. Moreover, comparison of the predicted slope failure with failure geometries inferred from seafloor morphology showed that earthquakes and subsequent mass movements could explain the present-day morphology of the study area.  相似文献   

5.
Deterministic seismic microzonation of Kolkata city   总被引:1,自引:0,他引:1  
This paper presents the deterministic seismic microzonation of densely populated Kolkata city situated on the world’s largest delta island with very soft and thick soil deposit in the surficial layers. A fourth-order accurate staggered-grid finite-difference algorithm for SH-wave propagation simulation in visco-elastic medium is used for the linear computation of ground motion amplifications in sedimentary deposit. Different maps such as for fundamental frequency (F 0), peak ground acceleration (PGA), peak ground velocity, and peak ground displacement are developed for variety of end-users communities, including structural and geotechnical engineers for performance-based designs, building officials, emergency managers, land-use planners, private businesses, and the general public. The scenario of simulated amplification factors in the different frequency bands revealed that the Kolkata city is very much prone to severe damage even during a moderate earthquake and very selective damage may occur at some of the localities during local and distant earthquakes. The deterministically predicted PGA at bedrock level is 0.0844 g and the maximum PGA predicted at the free surface is 0.6 g in Kolkata city due to maximum credible earthquake (M w = 5.4) associated with Eocene Hinge Zone at a depth of 36 km. The seismic microzonation of Kolkata city reveals that the Nager Bazar and Nimtala areas are the safest regions with earthquake point of view.  相似文献   

6.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

7.
The Kutch region of Gujarat in India is the locale of one of the most devastating earthquake of magnitude (M w) 7.7, which occurred on January 26, 2001. Though, the region is considered as seismically active region, very few strong motion records are available in this region. First part of this paper uses available data of strong motion earthquakes recorded in this region between 2006 and 2008 years to prepare attenuation relation. The developed attenuation relation is further used to prepare synthetic strong motion records of large magnitude earthquakes using semiempirical simulation technique. Semiempirical simulation technique uses attenuation relation to simulate strong ground motion records of any target earthquake. The database of peak ground acceleration obtained from simulated records is used together with database of peak ground acceleration obtained from observed record to develop following hybrid attenuation model of wide applicability in the Kutch region: $$ \begin{aligned} \ln \left( {\text{PGA}} \right) & = - 2.56 + 1.17 \, M_{\text{w}} - \, 0.015R - 0.0001\ln \left( {E + 15} \right) \\ &\quad 3.0 \le M_{\text{w}} \le 8.2;\quad 12 \le R \le 120;\quad {\text{std}} . {\text{ dev}}.(\sigma ): \pm 0.5 \\ \end{aligned} $$ ln ( PGA ) = ? 2.56 + 1.17 M w ? 0.015 R ? 0.0001 ln ( E + 15 ) 3.0 ≤ M w ≤ 8.2 ; 12 ≤ R ≤ 120 ; std . dev . ( σ ) : ± 0.5 In the above equation, PGA is maximum horizontal ground acceleration in gal, M w is moment magnitude of earthquake, R is hypocentral distance, and E is epicentral distance in km. The standard deviation of residual of error in this relation is 0.5. This relation is compared with other available relations in this region, and it is seen that developed relation gives minimum root mean square error in comparison with observed and calculated peak ground acceleration from same data set. The applicability of developed relation is further checked by testing it with the observed peak ground acceleration from earthquakes of magnitude (M w), 3.6, 4.0, 4.4, and 7.7, respectively, which are not included in the database used for regression analysis. The comparison demonstrates the efficacy of developed hybrid attenuation model for calculating peak ground acceleration values in the Kutch region.  相似文献   

8.
Probabilistic seismic hazard of Pakistan, Azad-Jammu and Kashmir   总被引:2,自引:2,他引:0  
The seismic hazard study for Pakistan and Azad Jammu and Kashmir has been conducted by using probabilistic approach in terms of peak ground acceleration (PGA) in m/s2 and also seismic hazard response spectra for different cities. A new version of Ambraseys et al. (Bull Earthq Eng 3:1–53, 2005) ground acceleration model is used, and parameterization is based on most recent updated earthquake catalogs that consisted of 14,000 events. The threshold magnitude was fixed at M w 4.8, but seismic zones like northern Pakistan–Tajikistan, Hindukush and northern Afghanistan–Tajikistan border had M w 5.2. The average normalized ‘a’ and ‘b’ values for all zones are 6.15 and 0.95, respectively. Seismicity of study area was modeled, and ground motion was computed for eight frequencies (0.025, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5 s) for different annual exceedance rates of 0.02, 0.01, 0.005, 0.002 and 0.001 (return periods 50, 100, 200, 500 and 1,000 years) for stiff rocks at the gridding of 0.1° × 0.1°. Seismic hazard maps based on computed PGA for 0.02, 0.01 and 0.002 annual exceedance are prepared. These maps indicate the earthquake hazard of Pakistan and surrounding areas in the form of acceleration contour lines, which are in agreement with geological and seismotectonic characteristics of the study area. The maximum seismic hazard values are found at Muzaffarabad, Gilgit and Quetta areas.  相似文献   

9.
In this paper, the ground motion at Guwahati city for an 8.1 magnitude earthquake on Oldham fault in the Shillong plateau has been estimated by stochastic finite-fault simulation method. The corresponding acceleration time histories on rock level at several sites in the epicentral region have been computed. These results are validated by comparing them with the estimates obtained from Medvedev–Sponheuer–Karnik (MSK) intensity observations of 1897 Shillong earthquake. Using the local soil parameters, the simulated rock level acceleration time history at Guwahati city is further amplified up to the ground surface by nonlinear site response analysis. The results obtained are presented in the form of peak ground acceleration (PGA) contour map. The maximum amplification for PGA over Guwahati city is as high as 2.5. Based on the simulated PGA, the liquefaction susceptibility at several locations in the city has been estimated. The results are presented in the form of contours of factor of safety against liquefaction at different depths below the ground surface. It is observed that over a large part of the Guwahati city, the factor of safety against liquefaction is less than one, indicating that the city is highly vulnerable to liquefaction in the event of this earthquake. The contour maps obtained can be used in identifying vulnerable areas and disaster mitigation.  相似文献   

10.
On May 12, 2008, at 1428 hours (Beijing time), a catastrophic earthquake, with a magnitude of Ms 8.0, struck the Sichuan Province, China. About 200,000 landslides, as a secondary geological hazard associated with the earthquake, were triggered over a broad area. These landslides were of almost all types such as shallow, disrupted landslides, rock falls, deep-seated landslides, and rock avalanches. Some of these landslides damaged and destroyed large part of some towns, blocked roads, dammed rivers, and caused other serious damages. The purpose of this study is to detect correlations between landslide occurrence and the surface rupture plane, ground shaking conditions (measured by peak ground acceleration, PGA), lithology, slope gradient, slope aspect, topographic position, and distance from drainages by using two indices, landslide area percentage (LAP) and the landslide number density (LND), based on geographic information system (GIS) technology and statistical analysis method in a square region (study area) of Beichuan County, Sichuan Province, China. There were 5,096 landslides related with the earthquake which were delineated by visual interpretation and selected field checking throughout the study area. The total area (horizontal projection) of the 5,096 landslides is about 41.103 km2. The LAP, which is defined as the percentage of the plane area affected by landslides, was 10.276 %, and the LND, means the number of landslides per square kilometers, was 12.74 landslides/km2. Statistical analysis results show that both LAP and LND have a positive correlation with slope gradient and a negative correlation with distance from the surface rupture. However, the correlation between the occurrence of landslides with PGA, topographic position, and distance from drainages are uncertain, or has just a little positive correlation. The correlation between landslide and slope aspect also shows the effect of the directivity of the seismic wave. The Zbq formation had the most concentrated landslide activity with the LND value of 21.78 landslides/km , 2 and the ∈1 q Gr. geological units had the highest LAP value. Furthermore, weight index (W i) model is performed with a GIS platform to derive landslide hazard index map. The success rate of the model was 71.615 % and, thus, it was valid. In addition, comparison of five landslide controlling parameters’ influence on landslide occurrences was also carried out.  相似文献   

11.
12.
Seismic hazard in terms of peak ground acceleration (PGA) has been evaluated in northern Algeria using spatially smoothed seismicity data. We present here a preliminary seismic zoning in northern Algeria as derived from the obtained results.Initially, we have compiled an earthquake catalog of the region taking data from several agencies. Afterwards, we have delimited seismic areas where the b and mmax parameters are different. Finally, by applying the methodology proposed by Frankel [Seismol. Res. Lett. 66 (1995) 8], and using four complete and Poissonian seismicity models, we are able to compute the seismic hazard maps in terms of PGA with 39.3% and 10% probability of exceedance in 50 years.A significant result of this work is the observation of mean PGA values of the order of 0.20 and 0.45 g, for return periods of 100 and 475 years, respectively, in the central area of the Tell Atlas.  相似文献   

13.
Kijko  A.  Retief  S. J. P.  Graham  G. 《Natural Hazards》2002,26(2):175-201
In this part of our study the probabilistic seismic hazard analysis (PSHA) for Tulbagh was performed. The applied procedure is parametric and consists essentially of two steps. The first step is applicable to the area in the vicinity of Tulbagh and requires an estimation of the area-specific parameters, which, in this case, is the mean seismic activity rate, , the Gutenberg-Richter parameter, b, and the maximum regional magnitude, mmax. The second step is applicable to the Tulbagh site, and consists of parameters of distribution of amplitude of the selected ground motion parameter. The current application of the procedure provides an assessment of the PSHA in terms of peak ground acceleration (PGA) and spectral acceleration (SA). The procedure permits the combination of both historical and instrumental data. The historical part of the catalogue only contains the strongest events, whereas the complete part can be divided into several subcatalogues, each assumed complete above a specified threshold of magnitude. In the analysis, the uncertainty in the determination of the earthquake was taken into account by incorporation of the concept of `apparent magnitude'. The PSHA technique has been developed specifically for the estimation of seismic hazard at individual sites without the subjective judgement involved in the definition of seismic source zones, when the specific active faults have not been mapped or identified, and where the causes of seismicity are not well understood. The results of the hazard assessment are expressed as probabilities that specified values of PGA will be exceeded during the chosen time intervals, and similarly for the spectral accelerations. A worst case scenario sketches the possibility of a maximum PGA of 0.30g. The results of the hazard assessment can be used as input to a seismic risk assessment.  相似文献   

14.
Assessment of Global Seismic Loss Based on Macroeconomic Indicators   总被引:5,自引:0,他引:5  
Cha  L. S. 《Natural Hazards》1998,17(3):269-283
Most earthquake loss studies use a probabilistic approach in which predicted damages in various categories of structure and facilities in the region in concern are estimated and added together to obtain a total loss for particular intensity ranges. Such an approach requires a detailed inventory database of the structures and facilities in the region, which is not always readily available in many regions of the world. We have used an alternative means of estimating earthquake losses based on several macroeconomic indices such as the gross domestic product and population. Using published earthquake loss data for 1980–1995, the relations between GDP and earthquake loss have been formulated empirically for several intensity ranges. The world's land surface was divided into unit cells 0.5° lat. × 0.5° long. in size. The GDP of each cell was apportioned based on its population and GDP, and the population of the region to which it belongs. The predicted seismic loss of the cell was then estimated from the seismic hazard probability function, its GDP, and the empirical relation between GDP and seismic loss. A global seismic loss map is then compiled both for the intensity at 10% probability of exceedance and the probable maximum intensity. Employing readily available socioeconomic data as the basis for the vulnerability analysis, the method enables us to obtain seismic loss estimates for regions without the need for a detailed inventory of exposed structures or collateral geological information. Since such statistics are frequently compiled by the world's leading political and financial institutions, the seismic loss estimates can also be upgraded easily for the fast developing areas of the world.  相似文献   

15.
In situ stress measurements by hydraulic fracturing were carried out in the 617 m deep borehole specially drilled in the epicentral zone of the 1993 Latur earthquake for the purpose of research. The stress measurements carried out at 592 m depth in this borehole are the deepest of all such measurements made so far in the Indian shield. The maximum and minimum principal horizontal stresses (S H max andS h min) have been derived from the hydrofracture data using the classical method. TheS H max andS h min are found to be 16.5 and 9.6 MPa at 373 m depth, and 25.0 and 14.1 MPa at 592 m depth, indicating that the vertical gradients ofS hmax andS hmin in the epicentral zone are 39 MPa/km and 21 MPa/km respectively. The principal horizontal stresses in the epicentral zone are comparable with those at Hyderabad and 30% higher than in most other comparable intra-continental regions. Analysis of the results indicate that the stresses in the focal region of the 1993 Latur earthquake have not undergone any significant change following its occurrence and this is in agreement with a similar inference drawn from the seismic data analysis. It appears that the Latur earthquake was caused due to rupturing of the overpressured fault segment at the base of the seismogenic zone.  相似文献   

16.
Probabilistic seismic hazard analysis for Bangalore   总被引:5,自引:3,他引:2  
This article presents the results of probabilistic seismic hazard analysis (PSHA) for Bangalore, South India. Analyses have been carried out considering the seismotectonic parameters of the region covering a radius of 350 km keeping Bangalore as the center. Seismic hazard parameter ‘b’ has been evaluated considering the available earthquake data using (1) Gutenberg–Richter (G–R) relationship and (2) Kijko and Sellevoll (1989, 1992) method utilizing extreme and complete catalogs. The ‘b’ parameter was estimated to be 0.62 to 0.98 from G–R relation and 0.87 ± 0.03 from Kijko and Sellevoll method. The results obtained are a little higher than the ‘b’ values published earlier for southern India. Further, probabilistic seismic hazard analysis for Bangalore region has been carried out considering six seismogenic sources. From the analysis, mean annual rate of exceedance and cumulative probability hazard curve for peak ground acceleration (PGA) and spectral acceleration (Sa) have been generated. The quantified hazard values in terms of the rock level peak ground acceleration (PGA) are mapped for 10% probability of exceedance in 50 years on a grid size of 0.5 km × 0.5 km. In addition, Uniform Hazard Response Spectrum (UHRS) at rock level is also developed for the 5% damping corresponding to 10% probability of exceedance in 50 years. The peak ground acceleration (PGA) value of 0.121 g obtained from the present investigation is slightly lower (but comparable) than the PGA values obtained from the deterministic seismic hazard analysis (DSHA) for the same area. However, the PGA value obtained in the current investigation is higher than PGA values reported in the global seismic hazard assessment program (GSHAP) maps of Bhatia et al. (1999) for the shield area.  相似文献   

17.
A moderate earthquake (Ms = 6.2) occurred in the Cukurova region in the southern part of Turkey, on 27 June 1998. It resulted in loss of 145 lives and significant damage particularly in the settlements close to the epicenter at the south of Ceyhan town. Widespread liquefaction and associated sand boils, ground fissures and ground deformations due to lateral spreading occurred during this earthquake. In this study, main characteristics of the earthquake are presented and liquefaction throughout the site was assessed. An attempt was also made to establish preliminary microzonation maps for Ceyhan using the data from liquefaction susceptibility analyses. The results of the analyses indicated that the data from the liquefied sites were within the empirical bounds suggested by the field-performance evaluation method. Fortunately, most of the riversides were used for agricultural purposes alone, damage to structures from liquefaction and associated ground failures were rather limited. Preliminary assessments indicated that at depths of about 5 m the liquefaction potential of thin sand layers tends to diminish.  相似文献   

18.
On April 20 th, 2013, an earthquake of magnitude MW 6.6 occurred at Lushan of Sichuan on the southern segment of the Longmenshan fault zone, with no typical coseismic surface rupture. This work plotted an isoseismal map of the earthquake after repositioning over 400 post–earthquake macro–damage survey points from peak ground acceleration(PGA) data recorded by the Sichuan Digital Strong Earthquake Network. This map indicates that the Lushan earthquake has a damage intensity of IX on the Liedu scale, and that the meizoseismal area displays an oblate ellipsoid shape, with its longitudinal axis in the NE direction. No obvious directivity was detected. Furthermore, the repositioning results of 3323 early aftershocks, seismic reflection profiles and focal mechanism solutions suggests that the major seismogenic structure of the earthquake was the Dayi Fault, which partly defines the eastern Mengshan Mountain. This earthquake resulted from the thrusting of the Dayi Fault, and caused shortening of the southern segment of the Longmenshan in the NW–SE direction. Coseismal rupture was also produced in the deep of the Xinkaidian Fault. Based on the above seismogenic model and the presentation of coseismic surface deformation, it is speculated that there is a risk of more major earthquakes occurring in this region.  相似文献   

19.
“5.12”汶川大地震和“4.20”芦山地震均触发了大量的崩塌、滑坡。实震资料显示,不同地震烈度区地震触发崩塌滑坡规模的整体分布规律会发生变化。这一统计层面的认知亟待得到物理试验的验证。在自组织临界状态理论的概念框架下,开展了振动台砂堆模型试验。试验表明:输入地震波峰值加速度(PGA)为0.075g~0.125g时,落砂量与发生频率的关系可用幂律描述;PGA增加到0.15g~0.25g时,该关系服从对数正态分布;PGA增加到0.35g~0.45g时,该关系具有正态分布特征。元胞自动机模拟试验结果表明,随扰动强度增加,砂堆模型的动力学特性也经历了幂律-幂律弱化-正态分布的演变过程。按照物理学中的普适性原理,汶川、芦山地震Ⅸ度区崩塌滑坡规模与出现频率之间所呈现负幂律分布的现象,以及汶川地震Ⅺ度区所呈现的对数正态分布,可能是具有普适性意义的规律。这些认识可望为不同烈度区地震触发崩塌滑坡灾势预测提供科学依据。  相似文献   

20.
Hydration of organic coatings in soils is expected to affect the sorption of oxyanions onto hydrous Fe and Al oxides. We hypothesized that the hydration of polygalacturonate (PGA) coatings on alumina (Al2O3) increases their permeability for phosphate. Pure and PGA-coated alumina were equilibrated in deionized water for 2 and 170 h at pH 5 and 20 °C before studying (i) their porosity with N2 gas adsorption and 1H NMR relaxometry, (ii) structural changes of PGA-coatings with differential scanning calorimetry (DSC), and (iii) the kinetics of phosphate sorption and PGA desorption in batch experiments. Scanning electron micrographs revealed that PGA molecules formed three-dimensional networks with pores ranging in size from <10 to several hundred nanometers. Our NMR results showed that the water content of intraparticle alumina pores decreased upon PGA sorption, indicating a displacement of pore water by PGA. The amount of water in interparticle alumina pores increased strongly after PGA addition, however, and was attributed to water in pores of PGA and/or in pores at the PGA-alumina interface. The flexibility of PGA molecules and the fraction of a PGA gel phase increased within one week of hydration, implying restructuring of PGA. Hydration of PGA coatings increased the amount of phosphate defined as instantaneously sorbed by 84%, showing that restructuring of PGA enhanced the accessibility of phosphate to external alumina surfaces. Despite the fact that the efficacy of phosphate to displace PGA was higher after 170 h than after 2 h, a higher phosphate surface loading was required after 170 h to set off PGA desorption. Our findings imply that the number of PGA chain segments directly attached to the alumina surface decreased with time. We conclude that hydration/dehydration of polymeric surface coatings affects the sorption kinetics of oxyanions, and may thus control the sorption and transport of solutes in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号