首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deep-circulation flow at mid-latitude in the western North Pacific   总被引:1,自引:1,他引:1  
Direct current measurements with five moorings at 27–35°N, 165°E from 1991 to 1993 and with one mooring at 27°N, 167°E from 1989 to 1991 revealed temporal variations of deep flow at mid-latitude in the western North Pacific. The deep-circulation flow carrying the Lower Circumpolar Deep Water from the Southern Ocean passed 33°N, 165°E northwestward with a high mean velocity of 7.8 cm s−1 near the bottom and was stable enough to continue for 4–6 months between interruptions of 1- or 2-months duration. The deep-circulation flow expanded or shifted intermittently to the mooring at 31°N, 165°E but did not reach 35°N, 165°E although it shifted northward. The deep-circulation flow was not detected at the other four moorings, whereas meso-scale eddy variations were prominent at all the moorings, particularly at 35°N and 29°N, 165°E. The characteristics of current velocity and dissolved oxygen distributions led us to conclude that the deep-circulation flow takes a cyclonic pathway after passing through Wake Island Passage, passing 24°N, 169.5–173°E and 30°N, 168–169°E northward, proceeds northwestward around 33°N, 165°E, and goes westward through the south of the Shatsky Rise. We did not find that the deep-circulation flow proceeded westward along the northern side of the Mid-Pacific Seamounts and eastward between the Hess Rise and the Hawaiian Ridge toward the Northeast Pacific Basin.  相似文献   

2.
Pacific ocean circulation based on observation   总被引:2,自引:1,他引:1  
A thorough understanding of the Pacific Ocean circulation is a necessity to solve global climate and environmental problems. Here we present a new picture of the circulation by integrating observational results. Lower and Upper Circumpolar Deep Waters (LCDW, UCDW) and Antarctic Intermediate Water (AAIW) of 12, 7, and 5 Sv (106 m3s−1) in the lower and upper deep layers and the surface/intermediate layer, respectively, are transported to the North Pacific from the Antarctic Circumpolar Current (ACC). The flow of LCDW separates in the Central Pacific Basin into the western (4 Sv) and eastern (8 Sv) branches, and nearly half of the latter branch is further separated to flow eastward south of the Hawaiian Ridge into the Northeast Pacific Basin (NEPB). A large portion of LCDW on this southern route (4 Sv) upwells in the southern and mid-latitude eastern regions of the NEPB. The remaining eastern branch joins nearly half of the western branch; the confluence flows northward and enters the NEPB along the Aleutian Trench. Most of the LCDW on this northern route (5 Sv) upwells to the upper deep layer in the northern (in particular northeastern) region of the NEPB and is transformed into North Pacific Deep Water (NPDW). NPDW shifts southward in the upper deep layer and is modified by mixing with UCDW around the Hawaiian Islands. The modified NPDW of 13 Sv returns to the ACC. The remaining volume in the North Pacific (11 Sv) flows out to the Indian and Arctic Oceans in the surface/intermediate layer.  相似文献   

3.
Full-depth conductivity-temperature-depth-oxygen profiler (CTDO2) data at low latitudes in the western North Pacific in winter 1999 were analyzed with water-mass analysis and geostrophic calculations. The result shows that the deep circulation carrying the Lower Circumpolar Water (LCPW) bifurcates into eastern and western branch currents after entering the Central Pacific Basin. LCPW colder than 0.98°C is carried by the eastern branch current, while warmer LCPW is carried mainly by the western branch current. The eastern branch current flows northward in the Central Pacific Basin, supplying water above 0.94°C through narrow gaps into an isolated deep valley in the Melanesian Basin, and then passes the Mid-Pacific Seamounts between 162°10′E and 170°10′E at 18°20′N, not only through the Wake Island Passage but also through the western passages. Except near bottom, dissolved oxygen of LCPW decreases greatly in the northern Central Pacific Basin, probably by mixing with the North Pacific Deep Water (NPDW). The western branch current flows northwestward over the lower Solomon Rise in the Melanesian Basin and proceeds westward between 10°40′N and 12°20′N at 150°E in the East Mariana Basin with volume transport of 4.1 Sv (1 Sv=106 m3 s−1). The current turns north, west of 150°E, and bifurcates around 14°N, south of the Magellan Seamounts, where dissolved oxygen decreases sharply by mixing with NPDW. Half of the current turns east, crosses 150°E at 14–15°N, and proceeds northward primarily between 152°E and 156°E at 18°20′N toward the Northwest Pacific Basin (2.1 Sv). The other half flows northward west of 150°E and passes 18°20′N just east of the Mariana Trench (2.2 Sv). It is reversed by a block of topography, proceeds southward along the Mariana Trench, then detours around the south end of the trench, and proceeds eastward along the Caroline Seamounts to the Solomon Rise, partly flowing into the West Mariana and East Caroline Basins. A deep western boundary current at 2000–3000 m depth above LCPW (10.0 Sv) closes to the coast than the deep circulation. The major part of it (8.5 Sv) turns cyclonic around the upper Solomon Rise from the Melanesian Basin and proceeds along the southern boundary of the East Caroline Basin. Nearly half of it proceeds northward in the western East Caroline Basin, joins the current from the east, then passes the northern channel, and mostly enters the West Caroline Basin (4.6 Sv), while another half enters this basin from the southern side (>3.8 Sv). The remaining western boundary current (1.5 Sv) flows over the middle and lower Solomon Rise, proceeds westward, then is divided by the Caroline Seamounts into southern (0.9 Sv) and northern (0.5 Sv) branches. The southern branch current joins that from the south in the East Caroline Basin, as noted above. The northern branch current proceeds along the Caroline Seamounts and enters the West Mariana Basin.  相似文献   

4.
Direct velocity measurements undertaken using a nine-system mooring array (M1–M9) from 2004 to 2005 and two additional moorings (M7p and M8p) from 2003 to 2004 reveal the spatial and temporal properties of the deep-circulation currents southwest of the Shatsky Rise in the western North Pacific. The western branch of the deep-circulation current flowing northwestward (270–10° T) is detected almost exclusively at M2 (26°15′N), northeast of the Ogasawara Plateau. It has a width less than the 190 km distance between M1 (25°42′N) and M3 (26°48′N). The mean current speed near the bottom at M2 is 3.6±1.3 cm s?1. The eastern branch of the deep-circulation current is located at the southwestern slope of the Shatsky Rise, flowing northwestward mainly at M8 (30°48′N) on the lower part of the slope of the Shatsky Rise with a mean near-bottom speed of 5.3±1.4 cm s?1. The eastern branch often expands to M7 (30°19′N) at the foot of the rise with a mean near-bottom speed of 2.8±0.7 cm s?1 and to M9 (31°13′N) on the middle of the slope of the rise with a speed of 2.5±0.7 cm s?1 (nearly 4000 m depth); it infrequently expands furthermore to M6 (29°33′N). The width of the eastern branch is 201±70 km on average, exceeding that of the western branch. Temporal variations of the volume transports of the western and eastern branches consist of dominant variations with periods of 3 months and 1 month, varying between almost zero and significant amount; the 3-month-period variations are significantly coherent to each other with a phase lag of about 1 month for the western branch. The almost zero volume transport occurs at intervals of 2–4 months. In the eastern branch, volume transport increases with not only cross-sectional average current velocity but also current width. Because the current meters were too widely spaced to enable accurate estimates of volume transport, mean volume transport is overestimated by a factor of nearly two, yielding values of 4.1±1.2 and 9.8±1.8 Sv (1 Sv=106 m3 s?1) for the western and eastern branches, respectively. In addition, a northwestward current near the bottom at M4 (27°55′N) shows a marked variation in speed between 0 and 20 cm s?1 with a period of 45 days. This current may be part of a clockwise eddy around a seamount located immediately east of M4.  相似文献   

5.
We proposed an empirical equation of sea surface dimethylsulfide (DMS, nM) using sea surface temperature (SST, K), sea surface nitrate (SSN, μM) and latitude (L, °N) to reconstruct the sea surface flux of DMS over the North Pacific between 25°N and 55°N: ln DMS = 0.06346 · SST  0.1210 · SSN  14.11 · cos(L)  6.278 (R2 = 0.63, p < 0.0001). Applying our algorithm to climatological hydrographic data in the North Pacific, we reconstructed the climatological distributions of DMS and its flux between 25 °N and 55 °N. DMS generally increased eastward and northward, and DMS in the northeastern region became to 2–5 times as large as that in the southwestern region. DMS in the later half of the year was 2–4 times as large as that in the first half of the year. Moreover, applying our algorithm to hydrographic time series datasets in the western North Pacific from 1971 to 2000, we found that DMS in the last three decades has shown linear increasing trends of 0.03 ± 0.01 nM year− 1 in the subpolar region, and 0.01 ± 0.001 nM year− 1 in the subtropical region, indicating that the annual flux of DMS from sea to air has increased by 1.9–4.8 μmol m− 2 year− 1. The linear increase was consistent with the annual rate of increase of 1% of the climatological averaged flux in the western North Pacific in the last three decades.  相似文献   

6.
The deep-circulation current in the North Pacific carries lower circumpolar deep water (LCDW), which is characterized by high dissolved oxygen and low echo intensity of reflected sound pulses. Using the characteristics of LCDW, we examined a branch current of the deep circulation passing through the Main Gap of the Emperor Seamounts Chain (ESC) by analyzing conductivity temperature depth profiler (CTD) data and data of velocity and echo intensity from a lowered acoustic Doppler current profiler (LADCP), which were obtained along 170°E immediately west of the ESC, along 180°W and 175°W over the northern slope of the Hess Rise, and along 165°W. The velocity and water characteristics showed that the eastern branch current of the deep circulation, which has penetrated into the Northwest Pacific Basin (NWPB) through Wake Island Passage, bifurcates around 30°N, 170°E in the NWPB into the westward main stream and a northward branch current, and that the latter current proceeds along the western side of the ESC and passes through the Main Gap of the ESC, flowing eastward. The current in the Main Gap at 170°E flows southeastward with eastward velocity cores around 4000 dbar and at depths greater than 4800 dbar centered at 5400 dbar. The current in the deeper core is stronger and reaches a maximum velocity of approximately 10 cm s?1. The eastward current in the Main Gap enters the Northeast Pacific Basin (NEPB) and flows eastward along the northern slope of the Hess Rise. As the current flows downstream, the characteristics of LCDW carried by the current are diluted gradually. To the east of the Hess Rise, the branch current joins another branch current of the deep circulation from the south carrying less-modified LCDW. As a result, LCDW carried from the Main Gap is renewed by mixing with the less-modified LCDW coming from the south. Carrying the mixed LCDW, the confluence flows eastward south of 37°N at 165°W toward the northeastern region of the NEPB, where the LCDW overturns and changes to North Pacific Deep Water (NPDW). NPDW is probably carried by the westward current in the upper deep layer north of 37°N at 165°W.  相似文献   

7.
Mass fluxes in the Canary Basin   总被引:1,自引:1,他引:0  
  相似文献   

8.
Natural iron fertilization processes are occurring around the Crozet Islands (46°26′S–52°18′E), thus relieving the water masses from the normally encountered High Nutrients Low Chlorophyll (HNLC) conditions of the Southern Ocean. During austral summers 2004/2005 and 2005/2006, iron and aluminium concentrations were investigated in large particles (> 53 µm) collected from just below the mixed layer at stations under the influence of island inputs, and also in adjacent HNLC waters. These large particles are anticipated to sink out of the mixed layer, and to reflect the net effects of input and cycling of these elements in the overlying mixed layer. Labile and refractory fractions were determined by a two-stage leaching technique. Data showed that water masses downstream of the islands were enriched in total iron and aluminium (0.25–2.68 nmol L− 1 and 0.34–3.28 nmol L− 1 respectively), relative to the southern HNLC control sites (0.15–0.29 nmol L− 1 for Fe and 0.12–0.29 nmol L− 1 for Al), with only a small fraction (typically < 1%) being acid leachable in both environments. Particulate iron predominantly derived from the island system represents a significant fraction of the total water column iron inventory and may complement dissolved Fe inputs that help support the high summer productivity around the Crozet islands.  相似文献   

9.
The traditional image of ocean circulation between Australia and Antarctica is of a dominant belt of eastward flow, the Antarctic Circumpolar Current, with comparatively weak adjacent westward flows that provide anticyclonic circulation north and cyclonic circulation south of the Antarctic Circumpolar Current. This image mostly follows from geostrophic estimates from hydrography using a bottom level of no motion for the eastward flow regime which typically yield transports near 170 Sv. Net eastward transport of about 145 Sv for this region results from subtracting those westward flows. This estimate is compatible with the canonical 134 Sv through Drake Passage with augmentation from Indonesian Throughflow (around 10 Sv).A new image is developed from World Ocean Circulation Hydrographic Program sections I8S and I9S. These provide two quasi-meridional crossings of the South Australian Basin and the Australian–Antarctic Basin, with full hydrography and two independent direct-velocity measurements (shipboard and lowered acoustic Doppler current profilers). These velocity measurements indicate that the belt of eastward flow is much stronger, 271 ± 49 Sv, than previously estimated because of the presence of eastward barotropic flow. Substantial recirculations exist adjacent to the Antarctic Circumpolar Current: to the north a 38 ± 30 Sv anticyclonic gyre and to the south a 76 ± 26 Sv cyclonic gyre. The net flow between Australia and Antarctica is estimated as 157 ± 58 Sv, which falls within the expected net transport of 145 Sv.The 38 Sv anticyclonic gyre in the South Australian Basin involves the westward Flinders Current along southern Australia and a substantial 33 Sv Subantarctic Zone recirculation to its south. The cyclonic gyre in the Australian–Antarctic Basin has a substantial 76 Sv westward flow over the continental slope of Antarctica, and 48 ± 6 Sv northward-flowing western boundary current along the Kerguelen Plateau near 57°S. The cyclonic gyre only partially closes within the Australian–Antarctic Basin. It is estimated that 45 Sv bridges westward to the Weddell Gyre through the southern Princess Elizabeth Trough and returns through the northern Princess Elizabeth Trough and the Fawn Trough – where a substantial eastward 38 Sv current is hypothesized. There is evidence that the cyclonic gyre also projects eastward past the Balleny Islands to the Ross Gyre in the South Pacific.The western boundary current along Kerguelen Plateau collides with the Antarctic Circumpolar Current that enters the Australian–Antarctic Basin through the Kerguelen–St. Paul Island Passage, forming an energetic Crozet–Kerguelen Confluence. Strongest filaments in the meandering Crozet-Kerguelen Confluence reach 100 Sv. Dense water in the western boundary current intrudes beneath the densest water of the Antarctic Circumpolar Current; they intensely mix diapycnally to produce a high potential vorticity signal that extends eastward along the southern flank of the Southeast Indian Ridge. Dense water penetrates through the Ridge into the South Australian Basin. Two escape pathways are indicated, the Australian–Antarctic Discordance Zone near 125°E and the Geelvinck Fracture Zone near 85°E. Ultimately, the bottom water delivered to the South Australian Basin passes north to the Perth Basin west of Australia and east to the Tasman Basin.  相似文献   

10.
The dynamics of dissolved inorganic carbon (DIC) and processes controlling net community production (NCP) were investigated within a mature cyclonic eddy, Cyclone Opal, which formed in the lee of the main Hawaiian Islands in the subtropical North Pacific Gyre. Within the eddy core, physical and biogeochemical properties suggested that nutrient- and DIC-rich deep waters were uplifted by 80 m relative to surrounding waters, enhancing biological production. A salt budget indicates that the eddy core was a mixture of deep water (68%) and surface water (32%). NCP was estimated from mass balances of DIC, nitrate+nitrite, total organic carbon, and dissolved organic nitrogen, making rational inferences about the unobserved initial conditions at the time of eddy formation. Results consistently suggest that NCP in the center of the eddy was substantially enhanced relative to the surrounding waters, ranging from 14.1±10.6 (0–110 m: within the euphotic zone) to 14.2±9.2 (0–50 m: within the mixed layer) to 18.5±10.7 (0–75 m: within the deep chlorophyll-maximum layer) mmol C m−2 d−1 depending on the depth of integration. NCP in the ambient waters outside the eddy averaged about 2.37±4.24 mmol C m−2 d−1 in the mixed layer (0–95 m). Most of the enhanced NCP inside the eddy appears to have accumulated as dissolved organic carbon (DOC) rather than exported as particulate organic carbon (POC) to the mesopelagic. Our results also suggest that the upper euphotic zone (0–75 m) above the deep chlorophyll maximum is characterized by positive NCP, while NCP in the lower layer (>75 m) is close to zero or negative.  相似文献   

11.
CTD, vessel-mounted ADCP and LADCP measurements in the Caribbean passages south of Guadeloupe (three repeats) and along 16°N (five repeats) were carried out between December 2000 and July 2004. The CTD data were used to calculate the contribution of South Atlantic water (SAW) in the upper 1200 m between the isopycnals σθ=24.5 and 27.6. Northern and southern source water masses are defined and an isopycnal mixing approach is applied. The SAW fractions are then combined with the ADCP flow field to calculate the transport of SAW into the Caribbean and across 16°N. The SAW inflow into the Caribbean through the passages south of Guadeloupe ranges from 7.6 to 11.6 Sv, which is 50–75% of the total inflow. The mean (9.1±2.2 Sv) is in the range of previous estimates. Ambiguities in the northern and southern source water masses of the salinity maximum water permitted us only to calculate the contribution of SAW from the eastern source in this water mass. We estimated the additional SAW transport by the western source to be of the order of 1.9±0.7 Sv. The calculation of the SAW transport across 16°N was hampered by the presence of several anticyclonic rings from the North Brazil Current (NBC) retroflection region, some of the rings were subsurface intensified. Provided that the rings observed at 16°N are typical rings and that all rings which are annually produced in the NBC retroflection area (6.5–8.5 per year) reach 16°N, the SAW ring transport across 16°N is calculated to 5.3±0.7 Sv. From the 5 repeats at 16°N, only two showed a net northward flow, suggesting that the mean northward SAW transport is dominated by ring advection. The joint SAW transports of the Caribbean inflow (9.1 Sv) and the flow across 16°N (5.3 Sv) sum up to 14.4 Sv. The transport increases to 16.3 Sv if the additional SAW transport from the western source of SMW (1.9±0.7 Sv) is included. These transport estimates and the following implications depend strongly on the assumption that the surface water in the Caribbean inflow is of South Atlantic origin. The transport estimates are, however, in the range of the inverse model calculations for the net cross-hemispheric flow. About 30–40% of this transport is intermediate water from the South Atlantic, presumably supporting studies which found the contributions of intermediate and upper warm water to be of a comparable magnitude. For the upper warm water (σθ<27.1), the Caribbean inflow seems to be the major path (7.9±1.6 Sv), the ring induced transport across 16°N is about 30% of that value. The intermediate water transport across 16°N was calculated to be 2.3–3.6 Sv, the inflow into the Caribbean is slightly smaller (1.5–2.4 Sv).  相似文献   

12.
Wind-driven cyclonic eddies are hypothesized to relieve nutrient stress and enhance primary production by the upward displacement of nutrient-rich deep waters into the euphotic zone. In this study, we measured nitrate (NO3), particulate carbon (PC), particulate nitrogen (PN), their stable isotope compositions (δ15N-NO3, δ13C-PC and δ15N-PN, respectively), and dissolved organic nitrogen (DON) within Cyclone Opal, a mature wind-driven eddy generated in the lee of the Hawaiian Islands. Sampling occurred in March 2005 as part of the multi-disciplinary E-Flux study, approximately 4–6 weeks after eddy formation. Integrated NO3 concentrations above 110 m were 4.8 times greater inside the eddy (85.8±6.4 mmol N m−2) compared to the surrounding water column (17.8±7.8 mmol N m−2). Using N-isotope derived estimates of NO3 assimilation, we estimated that 213±59 mmol m−2 of NO3 was initially injected into the upper 110 m Cyclone Opal formation, implying that NO3 was assimilated at a rate of 3.75±0.5 mmol N m−2 d−1. This injected NO3 supported 68±19% and 66±9% of the phytoplankton N demand and export production, respectively. N isotope data suggest that 32±6% of the initial NO3 remained unassimilated. Self-shading, inefficiency in the transfer of N from dissolved to particulate export, or depletion of a specific nutrient other than N may have led to a lack of complete NO3 assimilation. Using a salt budget approach, we estimate that dissolved organic nitrogen (DON) concentrations increased from eddy formation (3.8±0.4 mmol N m−2) to the time of sampling (4.0±0.09 mmol N m−2), implying that DON accumulated at rate of 0.83±1.3 mmol N m−2 d−1, and accounted for 22±15% of the injected NO3. Interestingly, no significant increase in suspended PN and PC, or export production was observed inside Cyclone Opal relative to the surrounding water column. A simple N budget shows that if 22±15% of the injected NO3 was shunted into the DON pool, and 32±6% is unassimilated, then 46±16% of the injected NO3 remains undocumented. Alternative loss processes within the eddy include lateral exchange of injected NO3 along isopycnal surfaces, remineralization of PN at depth, as well as microzooplankton grazing. A 9-day time series within Cyclone Opal revealed a temporal depletion in δ15N-PN, implying a rapid change in the N source. A change in NO3 assimilation, or a shift from NO3 fueled growth to assimilation of a 15N-deplete N source, may be responsible for such observations.  相似文献   

13.
The southwestern tropical Atlantic (05°S–25°S/20°W–47°W), where part of the South Equatorial Current (SEC) enters at its eastern border, is of particular interest as it is fed by many western boundary currents along the eastern Brazilian continental shelf. However, the long-term variability of the dynamics in this region, which are also important as they contribute to the climate over northeastern Brazil, is largely unknown. We use the Regional Ocean Model System (ROMS) here for the first time in this area to simulate the ocean circulation with an isotropic horizontal grid resolution of 1/12° and 40 terrain-following layers. As a primary evaluation of the ROMS configuration, we explore surface and vertical thermal structures, the surface mixed layer, and mass transports within the upper levels. Interannual variability results are compared with the first two-year series of observed thermal profiles derived from the three PIRATA-SWE moorings. The simulated thermal structure in the upper ocean layers agrees well with in-situ data. ROMS simulations point out a broad and relatively weak SEC flow composed of a sequence of more or less defined near-surface cores. The westward SEC transport for the upper 400 m along the PIRATA-SWE section, calculated from the ROMS simulation for 2005–2007, shows an average volume transport of 14.9 Sv, with a maximum observed in JFM (15.7 Sv), and a minimum during MJJ (13.8 Sv). ROMS results indicate that the 2005–2007 seasonal near-surface westward SEC transport is modulated by the zonal wind variability. Three zonal sections extending from the American continent to the PIRATA buoy sites confirm that stronger northward NBUC transport and decreasing BC transport were achieved during May 2006 and May 2007, i.e. at the time the sSEC bifurcation reaches its southernmost position. On the other hand, the maximum southward BC flow was verified during January 2006, January 2007 and March 2007, with a minimum northward NBUC flow in December 2005 and October/December 2006, corresponding to the period when the sSEC bifurcation reaches its lowest latitude (OND). Sea Surface Height (SSH) and the surface Eddy Kinetic Energy (EKE) derived from simulations and AVISO Rio05 product point out the highest surface meso-scale activity (EKE  50 cm2 s−2) along the cSEC and NBUC/BC patches. Preliminary results provide additional ingredients in the complexity of the SEC divergence region and encourage us to conduct a more detailed exploration of the dynamics of this region using the ROMS. This also shows the need to continue, extend, and vertically upgrade the observational PIRATA-SWE array system, especially with more levels of salinity measurements and the installation of current measurements.  相似文献   

14.
A comprehensive analysis of velocity data from subsurface floats in the northwestern tropical Atlantic at two depth layers is presented: one representing the Antarctic Intermediate Water (AAIW, pressure range 600–1050 dbar), the other the upper North Atlantic Deep Water (uNADW, pressure range 1200–2050 dbar). New data from three independent research programs are combined with previously available data to achieve blanket coverage in space for the AAIW layer, while coverage in the uNADW remains more intermittent. Results from the AAIW mainly confirm previous studies on the mean flow, namely the equatorial zonal and the boundary currents, but clarify details on pathways, mostly by virtue of the spatial data coverage that sets float observations apart from e.g. shipborne or mooring observations. Mean transports in each of five zonal equatorial current bands is found to be between 2.7 and 4.5 Sv. Pathways carrying AAIW northward beyond the North Brazil Undercurrent are clearly visible in the mean velocity field, in particular a northward transport of 3.7 Sv across 16°N between the Antilles islands and the Mid-Atlantic Ridge. New maps of Lagrangian eddy kinetic energy and integral time scales are presented to quantify mesoscale activity. For the uNADW, mean flow and mesoscale properties are discussed as data availability allows. Trajectories in the uNADW east of the Lesser Antilles reveal interactions between the Deep Western Boundary Current (DWBC) and the basin interior, which can explain recent hydrographic observations of changes in composition of DWBC water along its southward flow.  相似文献   

15.
Mesoscale eddies may enhance primary production (PP) in the open ocean by bringing nutrient-rich deep waters into the euphotic zone, potentially leading to increased transport of particles to depth. This hypothesis remains controversial, however, due to a paucity of direct particle export measurements. In this study, we investigated particle dynamics using 234Th–238U disequilibria within a mesoscale cold-core eddy, Cyclone Opal, which formed in the lee of the Hawaiian Islands. 234Th samples were collected along two transects across Cyclone Opal as well as during a time-series within the eddy core during a decaying diatom bloom. Particulate carbon (PC), particulate nitrogen (PN) and biogenic silica (bSiO2) fluxes at 150 m varied spatially and temporally within the eddy and strongly depended on the 234Th model formulation used (e.g., steady state versus non-steady state, inclusion of upwelling, etc.). Particle fluxes estimated from a steady state model assuming an upwelling rate of 2 m day−1 yielded the best fit to sediment-trap data. These 234Th-derived particle fluxes ranged from 332±14 to 1719±53 μmol C m−2 day−1, 27±3 to 114±12 μmol N m−2 day−1, and 33±20 to 309±73 μmol Si m−2 day−1. Although PP rates within Cyclone Opal were elevated by a factor of 2–3, PC and PN fluxes were the same, within error, inside and outside of Cyclone Opal. The ratio of PC export to PP remained surprisingly low at <0.03 and similar to those measured in surrounding waters. In contrast, bSiO2 fluxes within the eddy core were three times higher. Detailed analyses of 234Th depth profiles consistently showed excess 234Th at 100–175 m, associated with the remineralization and possible accumulation of suspended and dissolved organic matter from the surface. We suggest that strong microzooplankton grazing facilitated particulate organic matter recycling and resulted in the export of empty diatom frustules. Thus, while eddies may increase PP, they do not necessarily increase PC and PN export to deep waters. This may be a general characteristic of wind-driven cyclonic eddies of the North Pacific Subtropical Gyre and suggests that eddies may preferentially act as a silica pump, thereby playing an important role in promoting silicic-acid limitation in the region.  相似文献   

16.
Brood sizes of 1259 adult female Euphausia pacifica and Thysanoessa spinifera were measured during 48 h incubations (10 °C, ±0.5 °C) on 27 oceanographic cruises between July 1999 and September 2004. The data set includes measurements from several stations off Newport, Oregon (Newport Hydrographic line, 44°39′N) made over a 5-year period and measurements from 14 more extensive cruises at stations representative of continental shelf, slope, and oceanic waters off Oregon and California, USA. E. pacifica had similar brood sizes at inshore (<200 m) and offshore (>200 m) stations with an average of 151 and 139 eggs brood−1 fem−1, respectively. T. spinifera brood sizes were considerably higher at inshore stations—particularly at Heceta Bank (44°N) and south of Cape Blanco (42°50′N)—than at offshore stations, 155 and 107 eggs brood−1 fem−1, respectively. Average brood sizes of E. pacifica increased during the study period, from 125 (in 2000) to 171 eggs brood−1 fem−1 (in 2003). Average percentage of carbon weight invested in spawning (reproductive effort) was higher in E. pacifica (14%) than in T. spinifera (6%), because both species have similar brood size but T. spinifera females are larger than E. pacifica females and produce smaller eggs. Reproductive effort for both species was higher during summer 2002, probably associated with anomalous cool subarctic waters and high chl-a concentration observed during that summer. Brood sizes and chl-a values remained relatively high in 2003–2004 compared to the 1999–2001 period. Geographical and temporal variability in brood sizes for both species were significantly correlated with in situ measurements of chl-a concentration but not with sea surface temperature. No gravid females were collected during late autumn and winter cruises, thus the spawning season along the Oregon coast appears to extend from March through September for both species. However, T. spinifera usually starts reproductive activity earlier in the spring (March) than E. pacifica. Both species had their highest brood sizes in summer during the period of most intense upwelling, which is associated with an increase in regional phytoplankton standing stock.  相似文献   

17.
Although much of the deep sea is physically tranquil, some regions experience near-bottom flows that rework the surficial sediment. During periods of physical reworking, animals in the reworked layer risk being suspended, which can have both positive and negative effects. Reworking can also change the sediment in ecologically important ways, so the fauna of reworked sites should differ from that of quiescent locations. We combined data from two reworked, bathyal sites on the summit of Fieberling Guyot (32°27.631′N, 127°49.489′W; 32°27.581′N, 127°47.839′W) and compared the results with those of more tranquil sites. We tested for differences in the following parameters, which seemed likely to be sensitive to the direct or indirect effects of reworking: (1) the vertical distribution of the meiofauna in the sea bed, (2) the relative abundance of surface-living harpacticoids, (3) the proportion of the fauna consisting of interstitial harpacticoids, (4) the ratio of harpacticoids to nematodes. We found that the vertical distributions of harpacticoid copepods, ostracods, and kinorhynchs were deeper on Fieberling. In addition, the relative abundance of surface-living harpacticoids was less, the proportion of interstitial harpacticoids was greater, and the ratio of harpacticoids to nematodes was greater on Fieberling. These differences between Fieberling and the comparison sites suggest that physical reworking affects deep-sea meiofauna and indicate the nature of some of the effects.  相似文献   

18.
The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000–2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn–winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77–79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7–2.4 g m−2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003–2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50′N 50°22′E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s–1960s almost to complete disappearing in 1970–1990s. The peak of this species’ occurrence (18–26%) took place in the beginning of warm period (1999–2000) after a succession of cold years. The subsequent reduction of the relative abundance of M. norvegica to 7% might have been mostly caused by fish predation during a period of low population densities of capelin. This high predation pressure may therefore have been mediated both by other pelagic fishes (i.e. herring, blue whiting, polar cod) but also by demersal fishes such as cod and haddock. Similar sharp fluctuations in the capelin stock (the major consumer of euphausiids) created marked perturbations in the food web in the Barents Sea in the middle 1980s and the early 1990s.  相似文献   

19.
This study extends the 1991-1995 records of marine dissolved organic carbon (DOC) concentrations and Δ14C values at hydrographic Station M (34°50′N, 123°00′W) with new measurements from a frozen (-20 °C) archive of samples collected between April 1998 and October 2004. The magnitudes and synchronicity of major Δ14C anomalies throughout the time-series imply transport of DOC from the surface ocean to depths of at least 450 m on the timescale of months. Keeling plots of all measurements at Station M predict a continuum of possible background DOC compositions containing at least 21 μM of -1000‰ (i.e., ≥57,000 14C years) DOC, but are more consistent with mean deep DOC (38 μM, -549‰; i.e., 6,400 14C years). These results and coral records of surface dissolved inorganic carbon (DIC) Δ14C were used to estimate pre-bomb DOC Δ14C depth profiles. The combined results indicate that bomb-14C has penetrated the DOC pool to depths of ≥450 m, though the signal at that depth is obscured by short-term variability.  相似文献   

20.
We analysed the alkenone unsaturation ratio (UK′37) in 87 surface sediment samples from the western South Atlantic (5°N–50°S) in order to evaluate its applicability as a paleotemperature tool for this part of the ocean. The measured UK′37 ratios were converted into temperature using the global core-top calibration of Müller et al. (1998) and compared with annual mean atlas sea-surface temperatures (SSTs) of overlying surface waters. The results reveal a close correspondence (<1.5°C) between atlas and alkenone temperatures for the Western Tropical Atlantic and the Brazil Current region north of 32°S, but deviating low alkenone temperatures by −2° to −6°C are found in the regions of the Brazil–Malvinas Confluence (35–39°S) and the Malvinas Current (41–48°S). From the oceanographic evidence these low UK′37 values cannot be explained by preferential alkenone production below the mixed layer or during the cold season. Higher nutrient availability and algal growth rates are also unlikely causes. Instead, our results imply that lateral displacement of suspended particles and sediments, caused by strong surface and bottom currents, benthic storms, and downslope processes is responsible for the deviating UK′37 temperatures. In this way, particles and sediments carrying a cold water UK′37 signal of coastal or southern origin are transported northward and offshore into areas with warmer surface waters. In the northern Argentine Basin the depth between displaced and unaffected sediments appears to coincide with the boundary between the northward flowing Lower Circumpolar Deep Water (LCDW) and the southward flowing North Atlantic Deep Water (NADW) at about 4000 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号