首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total organic carbon fluxes of the Red River system (Vietnam)   总被引:1,自引:0,他引:1       下载免费PDF全文
Riverine transport of organic carbon from terrestrial ecosystems to the oceans plays an important role in the global carbon cycle. The Red River is located in Southeast Asia where river discharge, sediment loads and fluxes of elements (carbon, nitrogen and phosphorus) associated with suspended solids have been dramatically altered over past decades as a result of reservoir impoundment and land use, population, and climate change. Dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations were measured monthly at four stations of the Red River system from January 2008 to December 2010. The results reveal that POC changed synchronically with total suspended solids (TSS) concentration and with the river discharge, whereas no clear trend was observed for DOC concentration. The mean value of total organic carbon (TOC = DOC + POC) flux in the delta of the Red River was 31.5 × 1013 ± 4.0 × 1013 MgC.yr?1 (range 27.9–35.8 × 1013 MgC.yr?1 which leads to a specific TOC flux of 2012 ± 255 kgC.km?2.yr?1 during this 2008–2010 period. About 80% of the TOC flux was transferred to the estuary during the rainy season as a consequence of the higher river water discharge. The high mean value of the POC:Chl‐a ratio (1585 ± 870 mgC.mgChl‐a?1) and the moderate C:N ratio (7.3 ± 0.1) in the water column system suggest that organic carbon in the Red River system is mainly derived from erosion and soil leaching in the basin. The effect of two new dam impoundments in the Red River was also observable with lower TOC fluxes in 2010 compared with 2008. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
The extensive blanket peatlands of the UK uplands account for almost half of total national terrestrial carbon storage. However, much of the blanket peat is severely eroded so that the contemporary role of the peatland system in carbon sequestration is compromised by losses of organic carbon in dissolved (DOC) and particulate (POC) form in the fluvial system. This paper presents the first detailed assessment of dissolved and organic carbon losses from a severely eroded headwater peatland (River Ashop, South Pennines, UK). Total annual fluvial organic carbon losses range from 29–106 Mg C km,‐2 decreasing from the headwaters to the main catchment outlet. In contrast to less eroded systems fluvial organic carbon flux is dominated by POC. POC:DOC ratios decrease from values of 4 in the headwaters to close to unity at the catchment outlet. These results demonstrate the importance of eroding headwater sites as sources of POC to the fluvial system. Comparison with a range of catchment characteristics reveals that drainage density is the best predictor of POC:DOC but there is scatter in the relation in the headwaters. Steep declines in specific POC yield from headwater catchments are consistent with storage of POC within the fluvial system. Key to the significance of fluvial carbon flux in greenhouse gas budgets is understanding the fate of fluvial carbon. Further work on the fate of POC and the role of floodplains in fluvial carbon cycling is urgently required. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Fluvial organic carbon (OC) transformations are an important component of carbon cycling and greenhouse gas production in inland waters resulting in considerable recent interest in the fate of fluvial OC exported from carbon rich soils such as peatlands. Additionally, peatland catchments are important drinking water collection areas, where high OC concentrations in runoff have water treatment implications. This analysis presents the results from a year‐round intensive study within a water treatment catchment draining an area of peatland, considering carbon transformations along a continuum from headwater river, through a storage reservoir and pipe, to a water treatment works. The study uses a unique combination of methods (colourmetric, ultrafiltration, and 14C radiocarbon dating) to assess catchment wide changes in fluvial carbon composition (colour, size, and age) alongside concentration measures. The results indicate clear patterns of carbon transformations in the river and reservoir and dissolved low molecular weight coloured carbon to be most subject to change, with both loss and replacement within the catchment residence time. Although the evidence suggests dissolved OC (DOC) gains are from particulate OC breakdown, the mechanisms of DOC loss are less certain and may represent greenhouse gas losses or conversions to particulate OC. The transformations presented here appear to have minimal impact on the amount of harder to treat (<10 kDa) dissolved carbon, although they do have implications for total DOC loading to water treatment works. This paper shows that peatland fluvial systems are not passive receptors of particulate and dissolved organic carbon but locations where carbon is actively cycled, with implications for the understanding of carbon cycling and water treatment in peatland catchments.  相似文献   

4.
To establish the influence of phytoplankton blooms on the dynamics and sources of dissolved organic carbon (DOC) in Lake Taihu, the concentrations and stable carbon isotope values (δ13C) of DOC and particulate organic carbon (POC) were analyzed, along with environmental factors, including water temperature, chlorophyll a (Chl a) concentration, phytoplankton community and total bacterial abundance, from March to August 2013 at five sites in Lake Taihu. Significant differences were observed in the DOC concentrations and δ13CDOC values at the sampling sites. On average, the proportion of DOC in the total organic carbon (TOC) pool ranged from 30% ± 10% to 81% ± 7%. POC was positively associated with both Chl a concentration and cyanobacteria biomass, suggesting that cyanobacteria blooms contribute to the POC pool in Lake Taihu. Depleted 13C in DOC relative to POC was observed in August, indicating that DOC was partially derived from POC in August. However, Chl a explained only 40% of the variation in DOC in the entirety of Lake Taihu, and at two sites far from the estuary, the contribution of allochthonous carbon was less than 50% in August. These results suggested a greater influence of allochthonous sources on the DOC pool. Moreover, the biodegradability of DOC was further determined by the total dissolved carbohydrates to DOC ratio (TCHO/DOC), specific UV absorbance (SUVA254), and the concentrations of bioavailable DOC (BDOC). On average, 17% of the variation in DOC was attributable to the BDOC pool, and the BDOC concentration correlated positively with Chl a, cyanobacteria biomass, and total bacterial abundance, suggesting that cyanobacteria–derived DOC is biodegradable and is preferentially utilized by bacteria.  相似文献   

5.
Here we characterize the nutrient content in the outflow of the Green Lake 5 rock glacier, located in the Green Lakes Valley of the Colorado Front Range. Dissolved organic carbon (DOC) was present in all samples with a mean concentration of 0·85 mg L?1 . A one‐way analysis of variance test shows no statistical difference in DOC amounts among surface waters (p = 0·42). Average nitrate concentrations were 69 µmoles L?1 in the outflow of the rock glacier, compared to 7 µmoles L?1 in snow and 25 µmoles L?1 in rain. Nitrate concentrations from the rock glacier generally increased with time, with maximum concentrations of 135 µmoles L?1 in October, among the highest nitrate concentrations reported for high‐elevation surface waters. These high nitrate concentrations appear to be characteristic of rock glacier outflow in the Rocky Mountains, as a paired‐difference t‐test shows that nitrate concentrations from the outflow of 7 additional rock glaciers were significantly greater compared to their reference streams (p = 0·003). End‐member mixing analysis suggest that snow was the dominant source of nitrate in June, ‘soil’ solution was the dominant nitrate source in July, and base flow was the dominant source in September. Fluoresence index values and PARAFAC analyses of dissolved organic matter (DOM) are also consistent with a switch from terrestrial DOM in the summer time period to an increasing aquatic‐like microbial source during the autumn months. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
There exists a need to advance our understanding of debris-covered glacier surfaces over relatively short timescales due to rapid, climatically induced areal expansion of debris cover at the global scale, and the impact debris has on mass balance. We applied unpiloted aerial vehicle structure-from-motion (UAV-SfM) and digital elevation model (DEM) differencing with debris thickness and debris stability modelling to unravel the evolution of a 0.15 km2 region of the debris-covered Miage Glacier, Italy, between June 2015 and July 2018. DEM differencing revealed widespread surface lowering (mean 4.1 ± 1.0 m a-1; maximum 13.3 m a-1). We combined elevation change data with local meteorological data and a sub-debris melt model, and used these relationships to produce high resolution, spatially distributed maps of debris thickness. These maps were differenced to explore patterns and mechanisms of debris redistribution. Median debris thicknesses ranged from 0.12 to 0.17 m and were spatially variable. We observed localized debris thinning across ice cliff faces, except those which were decaying, where debris thickened. We observed pervasive debris thinning across larger, backwasting slopes, including those bordered by supraglacial streams, as well as ingestion of debris by a newly exposed englacial conduit. Debris stability mapping showed that 18.2–26.4% of the survey area was theoretically subject to debris remobilization. By linking changes in stability to changes in debris thickness, we observed that slopes that remain stable, stabilize, or remain unstable between periods almost exclusively show net debris thickening (mean 0.07 m a-1) whilst those which become newly unstable exhibit both debris thinning and thickening. We observe a systematic downslope increase in the rate at which debris cover thickens which can be described as a function of the topographic position index and slope gradient. Our data provide quantifiable insights into mechanisms of debris remobilization on glacier surfaces over sub-decadal timescales, and open avenues for future research to explore glacier-scale spatiotemporal patterns of debris remobilization. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

7.
Increased resolution and availability of remote sensing products, and advancements in small‐scale aerial drone systems, allows observations of glacial changes at unprecedented levels of detail. Software developments, such as structure‐from‐motion (SfM), now allow users an easy and efficient method to generate three‐dimensional (3D) models and orthoimages from aerial or terrestrial datasets. While these advancements show promise for current and future glacier monitoring, many regions still suffer a lack of observations from earlier time periods. We report on the use of SfM to extract spatial information from various historic imagery sources. We focus on three geographic regions, the European Alps, high Arctic Norway and the Nepal Himalayas. We used terrestrial field photographs from 1896, high oblique aerial photographs from 1936 and aerial handheld photographs from 1978 to generate digital elevation models (DEMs) and orthophotos of the Rhone glacier, Brøggerhalvøya and the lower Khumbu glacier, respectively. Our analysis shows that applying SfM to historic imagery can generate high quality models using only ground control points. Limited camera/orientation information was largely reproduced using self‐calibrated model data. Using these data, we calculated mean ground sampling distances across each site which demonstrates the high potential resolution of resulting models. Vertical errors for our models are ±5.4 m, ±5.2 m and ±3.3 m. Differencing shows similar patterns of thinning at lower Rhone (European Alps) and Brøggerhalvøya (Norway) glaciers, which have mean thinning rates of 0.31 m a?1 (1896–2010) to 0.86 m a?1 (1936–2010) respectively. On these clean ice glaciers thinning is highest in the terminus region and decreasing up‐glacier. In contrast to these glaciers, uneven topography, exposed ice‐cliffs and debris cover on the Khumbu glacier create a highly variable spatial distribution of thinning. The mean thinning rate for the Khumbu study area was found to be 0.54 ± 0.9 m a?1 (1978–2015). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
This study uses a combination of evidence from ground penetrating radar, borehole, video, and wireless probe data to assess temporal changes in englacial water content associated with Briksdalsbreen, a rapidly retreating Norwegian glacier. Over a 13 day period in 2006, ice radar‐wave velocity varied between 0·135 m/ns (± 0·009) and 0·159 m/ns (± 0·003), and water content from 7·8% (+2·6, ?2·8) to 2·5% (+0·9, ?1·1) [derived from the Looyenga (Physica 31 (3): 401–406, 1965) formula]. It is suggested that during warm precipitation free days, void spaces within the glacier become filled with water, resulting in low radar‐wave velocity. This stored water then drained during cold, high precipitation days, allowing the radar‐wave velocity to rise. These changes in englacial storage were caused by the enhanced crevassing generated by the newly floating ice margin, and were associated with accelerated glacier retreat. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Rivers are dynamic components of the terrestrial carbon cycle and provide important functions in ecosystem processes. Although rivers act as conveyers of carbon to the oceans, rivers also retain carbon within riparian ecosystems along floodplains, with potential for long‐term (> 102 years) storage. Research in ecosystem processing emphasizes the importance of organic carbon (OC) in river systems, and estimates of OC fluxes in terrestrial freshwater systems indicate that a significant portion of terrestrial carbon is stored within river networks. Studies have examined soil OC on floodplains, but research that examines the potential mechanistic controls on OC storage in riparian ecosystems and floodplains is more limited. We emphasize three primary OC reservoirs within fluvial systems: (1) standing riparian biomass; (2) dead biomass as large wood (LW) in the stream and on the floodplain; (3) OC on and beneath the floodplain surface, including litter, humus, and soil organic carbon (SOC). This review focuses on studies that have framed research questions and results in the context of OC retention, accumulation and storage within the three primary pools along riparian ecosystems. In this paper, we (i) discuss the various reservoirs for OC storage in riparian ecosystems, (ii) discuss physical conditions that facilitate carbon retention and storage in riparian ecosystems, (iii) provide a synthesis of published OC storage in riparian ecosystems, (iv) present a conceptual model of the conditions that favor OC storage in riparian ecosystems, (v) briefly discuss human impacts on OC storage in riparian ecosystems, and (vi) highlight current knowledge gaps. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The recording of glacier icequakes has been carried out on the Hans glacier, Spitsbergen. The icequakes have been connected with the formation of open cracks. The energy of the main group of icequakes has ranged from 0.01 J to 6 J, their seismic moment being from 0.5 · 1014 dyne · cm to 26 · 1014 dyne · cm. The nonelastic volume increase corresponding to each crack has ranged from 0.2 · 10−2 m3 to 8.8 · 10−2 m3. The stresses released due to extensional faulting ranged from 25N/m2 to 500 N/m2; these values are so small that they suggest an incomplete release of the medium. The contribution into the glacier flow rate of the deformation in the surface glacier layer due to extensional faulting is lower by 2 to 3 orders of magnitude than the total plastic deformation associated with the ice creeping.  相似文献   

11.
The optical properties and spatial distribution of chromophoric dissolved organic matter (CDOM) in Meiliang Bay of Lake Taihu were evaluated and compared to the results in literature. Concentrations of dissolved organic carbon (DOC) ranged from 8.75 to 20.19 mg L?1 with an average of (13.10 ± 3.51) mg L?1. CDOM absorption coefficients a(λ) at 280 nm, 355 nm, and 440 nm were in the range 11.28...33.46 m?1 (average (20.95 ± 5.52) m?1), 2.42...7.90 m?1 (average (4.92 ± 1.29) m?1), and 0.65...2.44 m?1 (average (1.46 ± 0.44) m?1), respectively. In general, CDOM absorption coefficient and DOC concentration were found to decrease away from the river inflow to Meiliang Bay towards the lake center. The values of the DOC‐specific absorption coefficients a*(λ), given as absorption coefficient related to mass concentration of organic carbon (C) ranged from 0.28 to 0.47 L mg?1 m?1 at 355 nm. The determination coefficients between CDOM absorption and DOC concentration decreased with the increase of wavelength from 280 to 550 nm. The linear regression relationship between CDOM absorption at 280 nm and DOC concentration was following: a(280 nm) = 1.507 L mg?1 m?1 · DOC + 1.215 m?1. The spectral slope S values were dependent on the wavelength range used in the regression. The estimated S values decreased with increasing wavelength range used. A significant negative linear relationship was found between CDOM absorption coefficients, DOC‐specific absorption coefficients and estimated S values especially in longer wavelength range. The linear regression relationship between DOC‐specific absorption coefficients at 440 nm and estimated S values during the wavelength range from 280 to 500 nm was following: a*(440 nm) = (–0.021 μm · S + 0.424) L mg?1 m?1.  相似文献   

12.
During a 3-year period, several aspects of the glacier-rock interface were studied in a cavity beneath 5–8 m of ice near the terminus of Grinnell Glacier, Montana, U.S.A. Continuous week-long records of the summer sliding rate revealed a very uniform speed of about 12 m a?1 during the summer, a value about 20 per cent higher than the average annual sliding rate. Several decimetre-sized rock fragments were broken from the glacier bed near the lee sides of bedrock ledges and transported down-glacier. In the course of a two-week long experiment, the glacier abraded its bed significantly and non-uniformly. It is of interest that significant quarrying and abrasion occurred under thin ice with relatively little entrained debris.  相似文献   

13.
This study provides the first detailed estimate of riverine organic carbon fluxes in British rivers, as well as highlighting major gaps in organic carbon data in national archives. Existing data on organic carbon and suspended solids concentrations collected between 1989 and 1993, during routine monitoring by the River Purification Boards (RPBs) in Scotland and the National River Authorities (NRAs) in England and Wales, were used with annual mean flows to estimate fluxes of dissolved and particulate organic carbon (DOC and POC) in British rivers. Riverine DOC exports during 1993 varied from 7·7–103·5 kg ha−1 year−1, with a median flux of 31·9 kg ha−1 year−1 in the 85 rivers for which data were available. There was a trend for DOC fluxes to increase from the south and east to the north and west. A predictive model based on mean soil carbon storage in 17 catchments, together with regional precipitation totals, explained 94% of the variation in the riverine DOC exports in 1993. This model was used to predict riverine DOC fluxes in regions where no organic carbon data were available. Calculated and predicted fluxes were combined to produce an estimate for exports of DOC to tidal waters in British rivers during 1993 of 0·68±0·07 Mt. Of this total, rivers in Scotland accounted for 53%, England 38% and Wales 9%. Scottish blanket peats would appear to be the largest single source of DOC exports in British rivers. An additional 0·20 Mt of organic carbon were estimated to have been exported in particulate form in 1993, approximately two–thirds of which was contributed by English rivers. It is suggested that riverine losses of organic carbon have the potential to affect the long-term dynamics of terrestrial organic carbon pools in Britain and that rivers may regulate increases in soil carbon pools brought about by climate change. © 1997 by John Wiley & Sons, Ltd.  相似文献   

14.
We examined air trapped in ancient ice from three shallow cores (<35 m deep) recovered from stagnant portions of the Mullins glacier, an 8 km long debris-covered alpine glacier in the McMurdo Dry Valleys that is overlain by several in-situ volcanic ash-fall deposits. Previously reported 40Ar/39Ar dates on ash-fall in the vicinity of the core sites average 4.0 Ma, and underlying ice is presumably as old in some areas. We analyzed the elemental and isotopic composition of O2, N2, and Ar and total air content of the glacial ice. We also dated the trapped air directly to an uncertainty of ±220 kyr (1σ) by measuring its 40Ar/36Ar and 38Ar/36Ar ratios. Our results suggest that the air analyzed is likely a mixture of ancient atmosphere trapped at the time of ice formation and more recent air introduced via cracks in the ice that penetrate to at least 33 m. The isotopic signatures of gases have been complicated by gas loss, as well as a mixture of thermal and gravitational fractionation. The oldest age estimated for the trapped air dates to 1.6 Ma, indicating that the original air is at least as old as 1.6 ± 0.2 Ma. A convergence to older ice ages with increasing depth in the deepest core analyzed (33 m) hints at the possibility that pristine air might be recovered at greater depths. Minor interstitial debris present in the glacial ice (<1%), along with geochemical evidence for in-situ microbial respiration, prohibit direct analysis of CO2. We measured the triple isotopic composition of O2 as a proxy for CO2 and infer that, in the air represented in our ice samples, CO2 concentrations are within the range observed over the last 800 ka.  相似文献   

15.
The glacier mass balance, area change, and glacier runoff in the Yarkant River Basin (YRB) and the Beida River Basin (BRB) were estimated from 1961 to 2006 by employing a modified monthly degree‐day model. Comparisons between the simulated and observed mass balance, equilibrium line altitude, and glacier runoff suggest that the model can be used to analyze the long‐term changes of glacier mass balance and runoff in the YRB and the BRB. The glacier mass balances of the YRB and the BYB both have a significantly decreasing trend with ?4.39 mm a‐1 and ?8.15 mm a‐1 from 1961 to 2006 because of a significant increase in ablation caused by increasing summer air temperatures, especially since 1996. The total runoff in glacier areas has a significant increasing trend with 0.23 × 108 m3 a‐1 and 0.02 × 108 m3 a‐1 in the YRB and the BRB, respectively. By comparing the mean mass balance during the period 1961 to 1986 with that of the 1987 to 2006, the BRB glacier mass balance's sensitivity to temperature is at 0.33 m a‐1 °C, nearly twice as much as that of the YRB at 0.16 m a‐1 °C. The difference between the glacier temperature sensitivity in the YRB and the BRB is primarily because the glacier elevation band area weighted altitude of the YRB is about 700 m higher than that of BRB. The glacier elevation band area weighted summer air temperature in the YRB is around 2 °C lower than that of the BRB. Therefore, the annual positive degree‐day of the YRB and the BRB increases by about 21.0 °C and 77.3 °C respectively when the summer air temperature increases by 1 °C, resulting into more glacier ablation and runoff in the BRB than in the YRB. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Bulk runoff and meteorological data suggest the occurrence of two meltwater outburst events at Finsterwalderbreen, Svalbard, during the 1995 and 1999 melt seasons. Increased bulk meltwater concentrations of Cl? during the outbursts indicate the release of snowmelt from storage. Bulk meltwater hydrochemical data and suspended sediment concentrations suggest that this snowmelt accessed a chemical weathering environment characterized by high rock:water ratios and long rock–water contact times. This is consistent with a subglacial origin. The trigger for both the 1995 and 1999 outbursts is believed to be high rates of surface meltwater production and the oversupply of meltwater to areas of the glacier bed that were at the pressure melting point, but which were unconnected to the main subglacial drainage network. An increase in subglacial water pressure to above the overburden pressure lead to the forcing of a hydrological connection between the expanding subglacial reservoir and the ice‐marginal channelized system. The purging of ice blocks from the glacier during the outbursts may indicate the breach of an ice dam during connection. Although subglacial meltwater issued continually from the glacier terminus via a subglacial upwelling during both melt seasons, field observations showed outburst meltwaters were released solely via an ice‐marginal channel. It is possible that outburst events are a seasonal phenomenon at this glacier and reflect the periodic drainage of meltwaters from the same subglacial reservoir from year to year. However, the location of this reservoir is uncertain. A 100 m high bedrock ridge traverses the glacier 6·5 km from its terminus. The overdeepened area up‐glacier from this is the most probable site for subglacial meltwater accumulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Water levels in cryoconite holes were monitored at high resolution over a 3‐week period on Austre Brøggerbreen (Svalbard). These data were combined with melt and energy balance modelling, providing insights into the evolution of the glacier's near‐surface hydrology and confirming that the hydrology of the near‐surface, porous ice known as the ‘weathering crust’ is dynamic and analogous to a shallow‐perched aquifer. A positive correlation between radiative forcing of melt and drainage efficiency was found within the weathering crust. This likely resulted from diurnal contraction and dilation of interstitial pore spaces driven by variations in radiative and turbulent fluxes in the surface energy balance, occasionally causing ‘sudden drainage events’. A linear decrease in water levels in cryoconite holes was also observed and attributed to cumulative increases in near‐surface ice porosity over the measurement period. The transport of particulate matter and microbes between cryoconite holes through the porous weathering crust is shown to be dependent upon weathering crust hydraulics and particle size. Cryoconite holes therefore yield an indication of the hydrological dynamics of the weathering crust and provide long‐term storage loci for cryoconite at the glacier surface. This study highlights the importance of the weathering crust as a crucial component of the hydrology, ecology and biogeochemistry of the glacier ecosystem and glacierized regions and demonstrates the utility of cryoconite holes as natural piezometers on glacier surfaces. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Stable isotope variability and fractionation associated with transformation of precipitation/accumulation to firn to glacial river water is critical in a variety of climatic, hydrological and paleoenvironmental studies. This paper documents the modification of stable isotopes in water from precipitation to glacier runoff in an alpine catchment located in the central Tibetan Plateau. Isotopic changes are observed by sampling firnpack profiles, glacier surface snow/ice, meltwater on the glacier surface and catchment river water at different times during a melt season. Results show the isotopic fractionation effects associated with glacier melt processes. The slope of the δD‐δ18O regression line and the deuterium excess values decreased from the initial precipitation to the melt‐impacted firnpack (slope from 9.3 to 8.5 and average d‐excess from 13.4‰ to 7.4‰). The slope of the δD‐δ18O line further decreased to 7.6 for the glacier runoff water. The glacier surface snow/ice from different locations, which produces the main runoff, had the same δD‐δ18O line slope but lower deuterium excess (by 3.9‰) compared to values observed in the firnpack profile during the melt season. The δD‐δ18O regression line for the river water exhibited a lower slope compared to the surface snow/ice samples, although they were closely located on the δD‐δ18O plot. Isotope values for the river and glacier surface meltwater showed little scatter around the δD‐δ18O regression line, although the samples were from different glaciers and were collected on different days. Results indicate a high consistency of isotopic fractionation in the δD‐δ18O relationships, as well as a general consistency and temporal covariation of meltwater isotope values at the catchment scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The sinks/sources of carbon in the Yellow Sea(YS) and East China Sea(ECS), which are important continental shelf seas in China, could exert a great influence on coastal ecosystem dynamics and the regional climate change process. The CO_2 exchange process across the seawater-air interface, dissolved and particulate carbon in seawater, and carbon burial in sediments were studied to understand the sinks/sources of carbon in the continental shelf seas of China. The YS and the ECS generally have different patterns of seasonal air-sea CO_2 exchange. In the YS, regions west of 124°E can absorb CO_2 from the atmosphere during spring and winter, and release CO_2 to the atmosphere during summer and autumn. The entire YS is considered as a CO_2 source throughout the year with respect to the atmosphere, but there are still uncertainties regarding the exact air-sea CO_2 exchange flux. Surface temperature and phytoplankton production were the key controlling factors of the air-sea CO_2 exchange flux in the offshore region and nearshore region of the YS, respectively. The ECS can absorb CO_2 during spring, summer, and winter and release CO_2 to the atmosphere during autumn. The annual average exchange rate in the ECS was-4.2±3.2 mmol m~(-2) d~(-1) and it served as an obvious sink for atmospheric CO_2 with an air-sea exchange flux of 13.7×10~6 t. The controlling factors of the air-sea CO_2 exchange in the ECS varied significantly seasonally. Storage of dissolved inorganic carbon(DIC) and dissolved organic carbon(DOC) in the YS and the ECS were 425×10~6 t and 1364×10~6 t, and 28.2×10~6 t and 54.1×10~6 t,respectively. Long-term observation showed that the DOC content in the YS had a decreasing trend, indicating that the "practical carbon sink" in the YS was decreasing. The total amount of particulate organic carbon(POC) stored in the YS and ECS was10.6×10~6 t, which was comparable to the air-sea CO_2 flux in these two continental shelf seas. The amounts of carbon sequestered by phytoplankton in the YS and the ECS were 60.42×10~6 t and 153.41×10~6 t, respectively. Artificial breeding of macroalgae could effectively enhance blue carbon sequestration, which could fix 0.36×10~6–0.45×10~6 t of carbon annually. Organic carbon(OC) buried in the sediments of the YS was estimated to be 4.75×10~6 t, and OC of marine origin was 3.03×10~6 t, accounting for5.0% of the TOC fixed by phytoplankton primary production. In the ECS, the corresponding depositional flux of OC in the sediment was estimated to be 7.4×10~6 t yr~(-1), and the marine-origin OC was 5.5×10~6 t, accounting for 5.4% of the phytoplankton primary production. Due to the relatively high average depositional flux of OC in the sediment, the YS and ECS have considerable potential to store a vast amount of "blue carbon."  相似文献   

20.
We measured spatial and temporal variations in carbon concentrations, isotopic compositions and exports during a complete hydrological cycle in nine watercourses draining a lowland forested podzolized catchment, flowing into the Arcachon lagoon (France). In addition, integrated fluxes of CO2 across the water-atmosphere interface were estimated to assess the relative importance of CO2 evasion versus lateral carbon transport at the catchment scale. Watercourse similarities and specificities linked to the local catchment characteristics are discussed and compared with other riverine systems. Low concentrations of suspended particulate matter and particulate organic carbon (POC) were generally measured in all the watercourses (8.4 ± 3.4 and 1.6 ± 0.6 mg L?1, respectively), reflecting limited mechanical soil erosion. The generally high POC content in the suspended matter (20 %), low Chl a concentrations (1.3 ± 1.4 μg L?1) and the relatively constant δ13C-POC value (near ?28 ‰) throughout the year reveal this POC originates from terrestrial C3 plant and soil detritus. The presence of podzols leads to high levels of dissolved organic carbon (DOC; 6.6 ± 2.2 mg L?1). Similarly, high dissolved inorganic carbon (DIC) concentrations were measured in the Arcachon lagoon catchment (5.9 ± 2.2 mg L?1). The δ13C-DIC value around ?20 ‰ throughout the year in many small watercourses reveals the predominance of terrestrial carbon mineralisation and silicate rock weathering in soils as the major DIC source. With pCO2 between 1,000 and 10,000 ppmv, all watercourses were a source of CO2 to the atmosphere, particularly during the low river stage. Organic carbon parameters remained relatively stable throughout the year, whereas DIC parameters showed strong seasonal contrasts closely linked to the hydrological regime and hyporheic flows. In total, the carbon export from the Arcachon watershed was estimated at 15,870 t C year?1 or 6 t C km?2 year?1, mostly exported to the lagoon as DOC (35 %), DIC (24 %) and lost as CO2 degassing to the atmosphere (34 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号