首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Correlation in spectral accelerations for earthquakes in Europe   总被引:1,自引:0,他引:1  
The shape of a uniform hazard spectrum has been criticized to be unrealistic for a site where the spectral ordinates of the uniform hazard spectrum at different periods are governed by different scenario events and conservative for long‐return‐period earthquake shaking. The conditional mean spectrum considering epsilon (CMS‐ε) takes into account the correlation of spectral demands (represented by values of ε) at different periods, to address these issues. This paper proposes new prediction models for the correlation coefficient of ε(T1) and ε(T2), a key component for developing a CMS, using Pan‐European earthquake records from a European ground motion database. Epsilon (ε) for each record is computed using the 2005 Ambraseys ground‐motion prediction equation. The model can be used to develop CMS for European sites, and it can be incorporated in the European seismic standards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Controlled rocking steel braced frames (CRSBFs) have been proposed as a low‐damage seismic force resisting system with reliable self‐centring capabilities. Vertical post‐tensioning tendons are designed to self‐centre the system after rocking, and energy dissipation may be provided to limit the peak displacements. The post‐tensioning and energy dissipation can be designed using simple methods that rely primarily on the first‐mode response. However, the frame member forces are highly influenced by the higher‐mode response, resulting in more complex methods to design the frame members. This paper examines previous proposals and also proposes two new capacity design methods for CRSBFs. The first is a dynamic procedure that requires a truncated response spectrum analysis on a model of the frame with modified boundary conditions to consider the rocking behaviour. The second is an equivalent static method that does not require any modifications to the elastic frame model, instead using theory‐based lateral force distributions to consider the higher modes of the rocking structure. Neither method requires empirical calibration. The dynamic procedure is used to design two sets of CRSBFs with three, six, nine, twelve and eighteen stories, one set using a response modification factor of R = 8 and the other using up to R = 20. Based on the results of 800 nonlinear time history analyses, both methods are generally more accurate than the previous capacity design methods and at least as simple to implement. Finally, the displacement results suggest that taller CRSBFs designed using could still limit interstorey drifts to approximately 2.5% at the maximum considered earthquake level in the cases considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Probabilistic seismic analysis of structures involves the construction of seismic demand models, often stated as probabilistic models of structural response conditioned on a seismic intensity measure. The uncertainty introduced by the model is often a result of the chosen intensity measure. This paper introduces the concept of using fractional order intensity measures (IMs) in probabilistic seismic demand analysis and uses a single frame integral concrete box‐girder bridge class and a seismically designed multispan continuous steel girder bridge class as case studies. The fractional order IMs considered include peak ground response and spectral accelerations at 0.2 and 1.0 s considering a single degree of freedom system with fractional damping, , as well as a linear single degree of freedom system with fractional response, . The study reveals the advantage of fractional order IMs relative to conventional IMs such as peak ground acceleration, peak ground velocity, or spectral acceleration at 0.2 and 1.0 s. Metrics such as efficiency, sufficiency, practicality, and proficiency are measured to assess the optimal nature of fractional order IMs. The results indicate that the proposed fractional order IMs produce significant improvements in efficiency and proficiency, whereas maintaining practicality and sufficiency, and thus providing superior demand models that can be used in probabilistic seismic demand analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A simple relationship is proposed in this paper to construct damage‐based inelastic response spectra including the effect of ground motion duration that it can be used for damage control in seismic design of structures. This relation is established for three groups of ground motions with short‐duration, moderate‐duration, and long‐duration ranges. To develop the model, the duration effect is included in the cyclic ductility of structures by an energy‐based method, and then strength reduction factors are computed based on this modified ductility (named ). The strength reduction factors were calculated for 44 stiffness‐degrading oscillators having vibration periods between 0.05 and 4.0 s, four ultimate ductility capacities, and five damage levels subjected to 296 earthquake records. The results showed that ductility capacity, damage level, and ground motion duration are effective parameters in the energy dissipation of structures, which affect the spectra. The values of short‐period oscillators (e.g., low‐rise structures) under short‐duration records are generally greater than those under moderate‐duration and long‐duration records. Residual analysis has been made in terms of magnitude and distance to examine the validity of the proposed simple expression. Finally, the introduced spectra were compared with three previously published proposals. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Proposals are developed to update Tables 11.4‐1 and 11.4‐2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7‐10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight‐line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30‐m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic‐uncertainty limits implied by the NGA estimates with the exceptions being the mid‐period site coefficient, Fv, for site class D and the short‐period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

6.
7.
Scenario‐based earthquake simulations at regional scales hold the promise in advancing the state‐of‐the‐art in seismic risk assessment studies. In this study, a computational workflow is presented that combines (i) a broadband Green's function‐based fault‐rupture and ground motion simulation—herein carried out using the “UCSB (University of California at Santa Barbara) method”, (ii) a three‐dimensional physics‐based regional‐scale wave propagation simulation that is resolved at  Hz, and (iii) a local soil‐foundation‐structure finite element analysis model. These models are interfaced with each other using the domain reduction method. The innermost local model—implemented in ABAQUS—is additionally enveloped with perfectly matched layer boundaries that absorb outbound waves scattered by the structures contained within it. The intermediate wave propagation simulation is carried out using Hercules , which is an explicit time‐stepping finite element code that is developed and licensed by the CMU‐QUAKE group. The devised workflow is applied to a  km region on the European side of Istanbul, which was modeled using detailed soil stratigraphy data and realistic fault rupture properties, which are available from prior microzonation surveys and earthquake scenario studies. The innermost local model comprises a chevron‐braced steel frame building supported by a shallow foundation slab, which, in turn, rests atop a three‐dimensional soil domain. To demonstrate the utility of the workflow, results obtained using various simplified soil‐structure interaction analysis techniques are compared with those from the detailed direct model. While the aforementioned demonstration has a limited scope, the devised workflow can be used in a multitude of ways, for example, to examine the effects of shallow‐layer soil nonlinearities and surface topography, to devise site‐ and structure‐specific seismic fragilities, and for calibrating regional loss models, to name a few.  相似文献   

8.
This study uses instrumented buildings and models of code‐based designed buildings to validate the results of previous studies that highlighted the need to revise the ASCE 7 Fp equation for designing nonstructural components (NSCs) through utilizing oversimplified linear and nonlinear models. The evaluation of floor response spectra of a large number of instrumented buildings illustrates that, unlike the ASCE 7 approach, the in‐structure and the component amplification factors are a function of the ratio of NSC period to the supporting building modal periods, the ground motion intensity, and the NSC location. It is also shown that the recorded ground motions at the base of instrumented buildings in most cases are significantly lower than design earthquake (DE) ground motions. Because ASCE 7 is meant to provide demands at a DE level, for a more reliable evaluation of the Fp equation, 2 representative archetype buildings are designed based on the ASCE 7‐16 seismic provisions and exposed to various ground motion intensity levels (including those consistent with the ones experienced by instrumented buildings and the DE). Simulation results of the archetype buildings, consistent with previous numerical studies, illustrate the tendency of the ASCE 7 in‐structure amplification factor, [1 + 2(z/h)] , to significantly overestimate demands at all floor levels and the ASCE 7 limit of to in many cases underestimate the calculated NSC amplification factors. Furthermore, the product of these 2 amplification factors (that represents the normalized peak NSC acceleration) in some cases exceeds the ASCE 7 equation by a factor up to 1.50.  相似文献   

9.
While seismic reflection amplitudes are generally determined by real acoustical impedance contrasts, there has been recent interest in reflections due to contrasts in seismic‐Q. Herein we compare theoretical and modelled seismic reflection amplitudes for two different cases of material contrasts. In case A, we examine reflections from material interfaces that have a large contrast in real‐valued impedance () with virtually no contrast in seismic‐Q. In case B, we examine reflections from material interfaces that have virtually no contrast in but that have very large seismic‐Q contrasts. The complex‐valued reflection coefficient formula predicts non‐zero seismic reflection amplitudes for both cases. We choose physical materials that typify the physics of both case A and case B. Physical modelling experiments show significantly large reflections for both cases – with the reflections in the two cases being phase shifted with respect to each other, as predicted theoretically. While these modelling experiments show the existence of reflections that are predicted by theory, there are still intriguing questions regarding the size of the Q‐contrast reflections, the existence of large Q‐contrast reflections in reservoir rocks and the possible application of Q‐reflection analysis to viscosity estimation in heavy oilfields.  相似文献   

10.
We present deterministic ground motion simulations that account for the cyclic multiaxial response of sediments in the shallow crust. We use the Garner Valley in Southern California as a test case. The multiaxial constitutive model is based on the bounding surface plasticity theory in terms of total stress and is implemented in a high‐performance computing finite‐element parallel code. A major advantage of this model is the small number of free parameters that need to be calibrated given a shear modulus reduction curve and the ultimate soil strength. This, in turn, makes the model suitable for regional‐scale simulations, where geotechnical data in the shallow crust are scarce. In this paper, we first describe a series of numerical experiments designed to verify the model implementation. This is followed by a series of idealized large‐scale simulations in a 35 26 4.5 km domain that encompasses the Garner Valley downhole array site, which is an instrumented and well‐characterized site in Southern California. Material properties were extracted from the Southern California Earthquake Center Community velocity model, CVM‐S4.26, considering its optional geotechnical layer, while the modulus reduction curves and soil strength were selected empirically to constrain the nonlinear soil model parameters. Our nonlinear simulations suggest that peak ground displacements within the valley increase relative to the linear case, while peak ground accelerations can increase or decrease, depending on the frequency content of the excitation. The comparisons of our simulations against hybrid three‐dimensional–one‐dimensional site response analyses suggest the inadequacy of the latter to capture the complexity of fully three‐dimensional simulations.  相似文献   

11.
We present an approach based on local‐slope estimation for the separation of scattered surface waves from reflected body waves. The direct and scattered surface waves contain a significant amount of seismic energy. They present great challenges in land seismic data acquisition and processing, particularly in arid regions with complex near‐surface heterogeneities (e.g., dry river beds, wadis/large escarpments, and karst features). The near‐surface scattered body‐to‐surface waves, which have comparable amplitudes to reflections, can mask the seismic reflections. These difficulties, added to large amplitude direct and back‐scattered surface (Rayleigh) waves, create a major reduction in signal‐to‐noise ratio and degrade the final sub‐surface image quality. Removal of these waves can be difficult using conventional filtering methods, such as an filter, without distorting the reflected signal. The filtering algorithm we present is based on predicting the spatially varying slope of the noise, using steerable filters, and separating the signal and noise components by applying a directional nonlinear filter oriented toward the noise direction to predict the noise and then subtract it from the data. The slope estimation step using steerable filters is very efficient. It requires only a linear combination of a set of basis filters at fixed orientation to synthesize an image filtered at an arbitrary orientation. We apply our filtering approach to simulated data as well as to seismic data recorded in the field to suppress the scattered surface waves from reflected body waves, and we demonstrate its superiority over conventional techniques in signal preservation and noise suppression.  相似文献   

12.
A method for the development of earthquake intensitydamage relations, given as fragility curves and damage probability matrices is proposed in this paper. The proposed method is applied on reinforced-concrete frame-wall structures. Two sets of fragility curves and damage probability matrices are developed. The first one is for reinforced-concrete frame structures lower than 10 stories. For this purpose, a six-story frame structure is used. The other set is defined for reinforced-concrete frame-wall structures higher than 10 stories. A 16-story frame-wall structure was chosen as a sample. The sample structures were designed according to Macedonian design code. The conditions of the local seismic hazard were the subject of special concern for the development of earthquake intensity–damage relations. Because of the limited number of real time histories from the Skopje region, a set of 240 synthetic time histories were generated. Geological dates from the Skopje region were used. Response of the sample structures under earthquake excitation was defined performing nonlinear dynamic analysis. Modeling of the nonlinear behavior of the structural elements was completed according to state-of-the-art methods in this field. A modified Park and Ang damage model was chosen as a measure of the structure's response to earthquake excitation. Five damage states were defined to express the condition of damage. As a result of the analytical research, the values of the global damage index corresponding to each damage state were determined. Using the dates from the nonlinear dynamic analysis of the sample structures under all 240 synthetic time histories, the two sets of fragility curves and damage probability matrices were defined.  相似文献   

13.
Linear prediction filters are an effective tool for reducing random noise from seismic records. Unfortunately, the ability of prediction filters to enhance seismic records deteriorates when the data are contaminated by erratic noise. Erratic noise in this article designates non‐Gaussian noise that consists of large isolated events with known or unknown distribution. We propose a robust fx projection filtering scheme for simultaneous erratic noise and Gaussian random noise attenuation. Instead of adopting the ?2‐norm, as commonly used in the conventional design of fx filters, we utilize the hybrid ‐norm to penalize the energy of the additive noise. The estimation of the prediction error filter and the additive noise sequence are performed in an alternating fashion. First, the additive noise sequence is fixed, and the prediction error filter is estimated via the least‐squares solution of a system of linear equations. Then, the prediction error filter is fixed, and the additive noise sequence is estimated through a cost function containing a hybrid ‐norm that prevents erratic noise to influence the final solution. In other words, we proposed and designed a robust M‐estimate of a special autoregressive moving‐average model in the fx domain. Synthetic and field data examples are used to evaluate the performance of the proposed algorithm.  相似文献   

14.
An active aftershock sequence, triggered by a large mainshock, can cause major destruction to urban cities. It is important to quantify the aftershock effects in terms of nonlinear responses of realistic structural models. For this purpose, this study investigates the aftershock effects on seismic fragility of conventional wood-frame houses in south-western British Columbia, Canada, using an extensive set of real mainshock-aftershock earthquake records. For inelastic seismic demand estimation, cloud analysis and incremental dynamic analysis are considered. A series of nonlinear dynamic analyses are carried out by considering different seismic input cases and different analysis approaches. The analysis results indicate that consideration of aftershocks leads to 5–20 % increase of the median inelastic seismic demand curves when a moderate degree of structural response is induced. The findings of this investigation facilitate the extension of the existing approaches for inelastic seismic demand estimation to incorporate the aftershock effects.  相似文献   

15.
Under certain circumstances, seismic propagation within porous media may be associated to the conversion of mechanical energy to electromagnetic energy, which is known as a seismo‐electromagnetic phenomenon. The propagation of fast compressional P‐waves is more specifically associated to the manifestations of a seismoelectric field linked to the fluid flows within the pores. The analysis of seismoelectric phenomena, which requires the combination of the theory of electrokinetics and Biot's theory of poroelasticity, provides us with transfer function that links the coseismic seismoelectric field E to the seismic acceleration . To measure the transfer function, we have developed an experimental setup enabling seismoelectric laboratory observation in unconsolidated quartz sand within the kilohertz range. The investigation focused on the impact of fluid conductivity and water saturation over the coseismic seismoelectric field. During the experiment, special attention was given to the accuracy of electric field measurements. We concluded that, to obtain a reliable estimate of the electric field amplitude, the dipole from which the potential differences are measured should be of much smaller length than the wavelength of the propagating seismic field. Time‐lapse monitoring of the seismic velocities and seismoelectric transfer functions were performed during imbibition and drainage experiments. In all cases, the quantitative analysis of the seismoelectric transfer function was in good agreement with theoretical predictions. While investigating saturation variations from full to residual water saturation, we showed that the ratio undergoes a switch in polarity at a particular saturation , which also implies a sign change of the filtration, traducing a reversal of the relative fluid displacement with respect to the frame. This sign change at critical saturation stresses a particular behaviour of the poroelastic medium: the dropping of the coseismic electric field to zero traduces the absence of relative pore/fluid displacements representative of a Biot dynamically compatible medium. We concluded from our experimental study in loose sand that the measurements of the coseismic seismoelectric coupling may provide information on fluid distribution within the pores and that the reversal of the seismoelectric field may be used as an indicator of the dynamically compatible state of the medium.  相似文献   

16.
The conventional velocity scan can be computationally expensive for large‐scale seismic data sets, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transforms. To compute semblance in a two‐parameter residual moveout domain, the numerical complexity of our algorithm is roughly as opposed to of the straightforward velocity scan, with N being the representative of the number of points in a particular dimension of either data space or parameter space. Synthetic and field data examples demonstrate the superior efficiency of the proposed algorithm.  相似文献   

17.
Compressed Sensing has recently proved itself as a successful tool to help address the challenges of acquisition and processing seismic data sets. Compressed sensing shows that the information contained in sparse signals can be recovered accurately from a small number of linear measurements using a sparsity‐promoting regularization. This paper investigates two aspects of compressed sensing in seismic exploration: (i) using a general non‐convex regularizer instead of the conventional one‐norm minimization for sparsity promotion and (ii) using a frequency mask to additionally subsample the acquired traces in the frequency‐space () domain. The proposed non‐convex regularizer has better sparse recovery performance compared with one‐norm minimization and the additional frequency mask allows us to incorporate a priori information about the events contained in the wavefields into the reconstruction. For example, (i) seismic data are band‐limited; therefore one can use only a partial set of frequency coefficients in the range of reflections band, where the signal‐to‐noise ratio is high and spatial aliasing is low, to reconstruct the original wavefield, and (ii) low‐frequency characteristics of the coherent ground rolls allow direct elimination of them during reconstruction by disregarding the corresponding frequency coefficients (usually bellow 10 Hz) via a frequency mask. The results of this paper show that some challenges of reconstruction and denoising in seismic exploration can be addressed under a unified formulation. It is illustrated numerically that the compressed sensing performance for seismic data interpolation is improved significantly when an additional coherent subsampling is performed in the domain compared with the domain case. Numerical experiments from both simulated and real field data are included to illustrate the effectiveness of the presented method.  相似文献   

18.
This study proposes a procedure for identifying spectral response curves for earthquake‐damaged areas in developing countries without seismic records. An earthquake‐damaged reinforced concrete building located in Padang, Indonesia was selected to illustrate the identification of the maximum seismic response during the 2009 West Sumatra earthquake. This paper summarizes the damage incurred by the building; the majority of the damage was observed in the third story in the span direction. The damage was quantitatively evaluated using the damage index R according to the Japanese guidelines for post‐earthquake damage evaluation. The damage index was also applied to the proposed spectral response identification method. The seismic performance of the building was evaluated by a nonlinear static analysis. The analytical results reproduced a drift concentration in the third story. The R‐index decreased with an increase in the story drift, which provided an estimation of the maximum response of the building during the earthquake. The estimation was verified via an earthquake response analysis of the building using ground acceleration data, which were simulated based on acceleration records of engineering bedrock that considered site amplification. The maximum response estimated by the R‐index was consistent with the maximum response obtained from the earthquake response analysis. Therefore, the proposed method enables the construction of spectral response curves by integrating the identification results for the maximum responses in a number of earthquake‐damaged buildings despite a lack of seismic records. Copyright © 2016 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

19.
Our objective was to discover the effect of variations in fluid properties and fracture geometry on the velocity of seismic wave propagation in fluid‐saturated media with parallel planar fractures. We used numerical models calculated by analytical solutions to examine the behaviour of P‐wave phase velocity dispersion in the normal direction to layering, in non‐porous and porous media with planar fractures. We also examined the anisotropy of low frequency phase and group velocities of fast and slow P‐waves and angular‐dependent reflection coefficients in media with planar fractures, under conditions of saturation by fluids with varying bulk moduli, densities, and fracture apertures. We defined several parametre , , and characterising dispersion, characterising anisotropy, characterising the difference between fast and slow modes, and R0 and characterising reflection. Our results show that the behaviour of dispersion shows wider stopbands in the case of gas saturation. Concavity indicator of dispersion for gas saturation was greater than that for liquid saturation and is usually greater than one. Anisotropy is more sensitive to bulk modulus contrast than to density contrast between the solid and the fluid, and is more sensitive to density contrast than to bulk modulus contrast. The case of gas saturation usually had a greater negative R0 and a greater value of compared with those of brine and heavy and light oil saturations. Our results are helpful in distinguishing fluid types saturating geophysical fractures and estimating the aperture and spacing of planar fractures. In seismic exploration, bulk modulus and fluid density can provide useful information in distinguishing among brine, oil, and gas; fracture geometry is important to estimate the permeability of reservoirs.  相似文献   

20.
利用钢筋混凝土柱的试验结果,验证OpenSees程序用于钢筋混凝土结构非线性分析的可行性。以此为基础,对钢筋混凝土框架结构在远场地震、近场非脉冲地震与近场脉冲地震作用的性能进行非线性时程分析,研究框架结构在三类地震作用下的反应以及二阶效应对结构反应的影响。针对近场脉冲地震对结构进行增量动力分析(IDA)和易损性分析,分别得到结构的IDA曲线、易损性曲线和近场脉冲地震作用下二阶效应对结构抗震性能的影响。分析结果表明,在三类地震作用下,近场脉冲地震导致的二阶效应对结构抗震性能的影响最为显著,结构抗震设计中宜考虑二阶效应的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号