首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
By now, it is well known that long‐period surface waves can induce resonant response in high‐rise buildings, in particular those located in sedimentary basins. Rayleigh wave passage has been reported to induce rocking motion at the base of the buildings which can increase displacement demands significantly. However, the building behavior to base rocking has not been extensively studied because commercially available instruments do not record rotational components of ground motion, and thus, rocking time histories have not been available to the analysts. In a recent study, we proposed an effective method for estimating the rocking associated with Rayleigh waves, which takes into account their frequency‐dependent phase velocities. In the present work, we select a number of recorded seismic motions which include surface waves on sedimentary basins from recent well‐recorded earthquake events. Then, we proceed to identify and extract the recorded surface waves by using the technique mentioned above. Using realistic soil‐structure analytical models that have been proposed in the published literature for high‐rise buildings, we study their response to Rayleigh waves as they respond to both translational and rocking motions. Of particular interest is to compare the response of such structures with and without the presence of rotational motions due to surface waves. Using the roof displacement and the building interstory drift as response quantities, our results indicate that demands are controlled by rotational (rocking) motions associated with Rayleigh waves.  相似文献   

2.
Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base‐plate‐yielding rocking systems with columns allowed to uplift with that of fixed‐base systems. The study is performed using half‐scale three‐storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/√2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed‐base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self‐limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
A two-dimensional soil-structure interaction analysis is carried out for transient Rayleigh surface waves that are incident on a structure. The structure is modelled by a three-degree of freedom rigid basemat to which is attached a flexible superstructure, modelled by a single mass-spring system. The structural responses to a given Rayleigh wave train are compared with those that would have been obtained if the free-field acceleration-time history had been applied as a normally incident body wave. The results clearly exhibit the [frequency filtering] effects of the rigid basemat on the incident Rayleigh waves. It is shown that, if seismic excitation of a structure is, in fact, due to Rayleigh surface waves, then an analysis assuming normally incident body waves can considerably over-estimate structural response, both at basemat level for horizontal and vertical motions and for vertical oscillations of the superstructure. However, in the examples considered here, relatively large rocking effects were induced by the Rayleigh waves, thus giving maximum horizontal accelerations in the superstructure that were of comparable magnitude for Rayleigh and normally incident body waves.  相似文献   

4.
Presented is a plane-strain method for soil-structure interaction analysis consisting of the superposition of the free field motions and the interaction motions in a generalized seismic environment. The free field is modelled as a horizontally layered viscoelastic medium and the seismic environment may consist of a combination of S, P and Rayleigh waves. The soil-structure system is modelled with viscoelastic finite elements, transmitting boundaries, viscous boundaries and a three-dimensional simulation. Comparative analyses of the same structure are conducted for an input of R waves and for vertically propagating S and P waves in a rock site and sand site. In the rock site the R waves produce higher peak horizontal spectral acceleration up to 25 per cent, and a significant rocking effect at points away from the centre of gravity of the structure. However, the S and P waves show higher peak vertical spectral acceleration by up to 15 per cent at the centre of the structure. Very similar horizontal response, but higher vertical response only at the centre of the structure for S and P waves, is obtained for the sand site.  相似文献   

5.
The modeling methodologies and calculation of dynamic response of underground structure under Rayleigh waves is investigated in this paper. First the free field responses under Rayleigh waves are analyzed and the numerical results agree well with the theoretical results. Then, the approximate Rayleigh waves are put forward based on the preliminary re-search, and Rayleigh wave field is obtained through fast Fourier transform technique. Taking a utility tunnel as an example, its dynamic responses under Rayleigh waves is calculated by ABAQUS. The results demonstrate that bending deformation is the main component of structural deformation and the deformation at the top of the structure is about twice as much as that at bottom of the structure. The effect of soil-structure interface and the buried depth of underground structure are also investi-gated via parameter analysis. For the shallow buried underground structures, Rayleigh waves can be the key factor to control the responses and damage of the structure.  相似文献   

6.
Forced vibration tests designed to isolate the effects of soil-structure interaction are described and the results obtained for the nine-storey reinforced concrete Millikan Library Building are analysed. It is shown that it is possible to determine experimentally the fixed-base natural frequencies and modal damping ratios of the superstructure. These values may be significantly different from the resonant frequencies and damping ratios of the complete structure-foundation-soil system. It is also shown that forced vibration tests can be used to obtain estimates of the foundation impedance functions. In the case of the Millikan Library it is found that during forced vibration tests the rigid-body motion associated with translation and rocking of the base accounts for more than 30 per cent of the total response on the roof and that the deformation of the superstructure at the fundamental frequencies of the system is almost entirely due to the inertial forces generated by translation and rocking of the base.  相似文献   

7.
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings.The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades.However,no investigation has yet been carried out for the case of soil-structure systems.In the present study,through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns,including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils,the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated.The results of this study show that depending on the level of inelasticity,soil flexibility and number of degrees-of-freedoms(DOFs),structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems.It is also found that at high levels of inelasticity,the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.  相似文献   

8.
By exploiting the capability of identifying and extracting surface waves existing in a seismic signal, we can proceed to estimate the angular displacement (rotation about the horizontal axis normal to the direction of propagation of the wave; rocking) associated with Rayleigh waves as well as the angular displacement (rotation about the vertical axis; torsion) associated with Love waves.For a harmonic Rayleigh (Love) wave, rocking (torsion) would be proportional to the harmonic vertical (transverse horizontal) velocity component and inversely proportional to the phase velocity corresponding to the particular frequency of the harmonic wave (a fact that was originally exploited by Newmark (1969) [15] to estimate torsional excitation). Evidently, a reliable estimate of the phase velocity (as a function of frequency) is necessary. As pointed out by Stockwell (2007) [17], because of its absolutely referenced phase information, the S-Transform can be employed in a cross-spectrum analysis in a local manner. Following this suggestion a very reliable estimate of the phase velocity may be obtained from the recordings at two nearby stations, after the dispersed waves have been identified and extracted. Synthesis of the abovementioned harmonic components can provide a reliable estimate of the rocking (torsional) motion induced by an (extracted) Rayleigh (Love) wave.We apply the proposed angular displacement estimation procedure for two well recorded data sets: (1) the strong motion data generated by an aftershock of the 1999 Chi-Chi, Taiwan earthquake and recorded over the Western Coastal Plain (WCP) of Taiwan, and (2) the strong motion data generated by the 2010 Darfield, New Zealand earthquake and recorded over the Canterbury basin. The former data set is dominated by basin-induced Rayleigh waves while the latter contains primarily Love waves.  相似文献   

9.
The system damping, the system frequency, the relative building response and the base rocking response peak amplitudes are studied, as those depend on the building mass and height, the flexibility of the soil, the structural damping, the type of incident waves and their angle of incidence. A linear two-dimensional model is used, which assumes the soil to be a homogeneous isotropic half-space, the foundation supporting the building to be a rigid embedded cylinder, and in which the building model is an equivalent single-degree-of-freedom oscillator. The system frequency and the system damping ratio are determined by measuring the width and the frequency of the peak in the transfer function of the oscillator relative response, using the analogy with the half-power method for a single-degree-of-freedom fixed-base oscillator. Previous similar studies are for dynamic soil-structure interaction only, and for simplified models in which the stiffness of the soil and the damping due to radiation are represented by springs and dashpots. The study in this paper differs from the previous studies in that the wave passage effects (or the kinematic interaction) are also included, and that no additional simplifications of the model are made. Results are shown for excitation by plane P- and SV-waves.  相似文献   

10.
Allowing structures to uplift modifies their seismic response; uplifting works as a mechanical fuse and limits the forces transmitted to the superstructure. However, engineers are generally reluctant to construct an unanchored structure because the system could overturn due to lacking redundancy. Using a safety factor for the design of a flat rocking foundation, ie, designing it wider, goes against the main idea of this seismic modification method as the force demand for the structure increases. We propose to extend the flat base of a rocking block with curved extensions to better protect the block from overturning, yet not prevent its uplifting. After investigating the seismic response of such rocking blocks, we extend the study to investigate the seismic response of rolling and rocking frames comprising columns with curved base extensions. The equations of motion are derived, time history analyses are performed, and rocking spectra are constructed. We draw two important conclusions: (a) the response of a class of rocking oscillators with curved base extensions is equivalent to the response of a flat-base rocking oscillators of the same slenderness, yet larger size; (b) the rotation demand on two negative stiffness rocking and rolling oscillators with the same uplifting acceleration and the same size is roughly the same as long as the rocking oscillators are not close to overturning. The above findings can serve as a basis for the rational seismic design of structures supported on rocking columns with curved bases, a system that has been used since the 1960s.  相似文献   

11.
Controlled rocking steel braced frames (CRSBFs) are low‐damage self‐centring lateral force resisting systems. Previous studies have shown that designing the energy dissipation (ED) and post‐tensioning (PT) in CRSBFs using a response modification factor of R=8 can prevent collapse of structures during earthquakes beyond the design level. However, designers have unique control over the hysteretic behaviour of the system, even after the response modification factor is selected. Additionally, recent studies have suggested that CRSBFs could also be designed using R>8 while still satisfying performance limits. This paper examines how the response modification factor and the design of the ED and PT influence the collapse performance of CRSBFs with three and six storeys where collapse occurs because of over‐rotation of the base rocking joint. In addition, the influence of using an additional rocking joint above the base to mitigate higher‐mode forces is evaluated for a 12‐storey frame. A total of 18 different designs are considered for the three buildings using different ED and PT design parameters, including different response modification factors. A suite of 44 ground motions is scaled until at least 50% of the records cause collapse, and fragility curves are generated using the truncated incremental dynamic analysis curves. The results from two different assessment methodologies show that the parameters selected have a marked influence on the collapse performance of a CRSBF. Nevertheless, even CRSBFs designed using R>8 or without supplemental ED can have acceptably low probabilities of collapse, provided that the frame members are designed to remain elastic. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
The wall–frame systems have many known advantages, namely increase of the system's lateral strength and stiffness thereby allowing for a good tangential inter‐storey drift control, and the retention of a satisfactory energy dissipation capacity. However, rocking of the wall could occur as a result of uplifting wall base or concentrated plastic hinge deformations. Problems arising from this phenomenon have significant impact on the system behaviour and hence require extended study. This paper focuses on the wall‐rocking phenomenon due to the concentrated plastic hinge rotation at the wall base. To facilitate a comprehensive evaluation, a six‐storey three‐bay RC wall–frame structure is investigated with comparison to a bare ductile frame by means of earthquake simulation tests. The results revealed that, despite a superior performance over the ductile frame under low to moderate seismic actions, the wall–frame structure deteriorated more rapidly than the bare frame during advanced inelastic response. The increasingly significant rocking of the wall resulted in severe material damage at localized critical regions. Mitigating the wall rocking is seen to be a key to the further improvement of the system performance, and the extent to which this may be achieved by incorporating the three‐dimensional effects is explicitly illustrated by an analytical evaluation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Rocking isolation has been increasingly studied as a promising design concept to limit the earthquake damage of civil structures. Despite the difficulties and uncertainties of predicting the rocking response under individual earthquake excitations (due to negative rotational stiffness and complex impact energy loss), in a statistical sense, the seismic performance of rocking structures has been shown to be generally consistent with the experimental outcomes. To this end, this study assesses, in a probabilistic manner, the effectiveness of using rocking isolation as a retrofit strategy for single-column concrete box-girder highway bridges in California. Under earthquake excitation, the rocking bridge could experience multi-class responses (eg, full contacted or uplifting foundation) and multi-mode damage (eg, overturning, uplift impact, and column nonlinearity). A multi-step machine learning framework is developed to estimate the damage probability associated with each damage scenario. The framework consists of the dimensionally consistent generalized linear model for regression of seismic demand, the logistic regression for classification of distinct response classes, and the stepwise regression for feature selection of significant ground motion and structural parameters. Fragility curves are derived to predict the response class probabilities of rocking uplift and overturning, and the conditional damage probabilities such as column vibrational damage and rocking uplift impact damage. The fragility estimates of rocking bridges are compared with those for as-built bridges, indicating that rocking isolation is capable of reducing column damage potential. Additionally, there exists an optimal slenderness angle range that enables the studied bridges to experience much lower overturning tendencies and significantly reduced column damage probabilities at the same time.  相似文献   

14.
The frequency-independent foundation impedances, commonly used in soil-structure dynamic interaction problems, are developed for a circular footing resting on a homogeneous halfspace. As they ignore the structure attached to the foundation, the error introduced in the structural response may be 50 per cent or more in the neighbourhood of the fundamental frequency of the soil-structure system. The present study proposes a new method developed for most dynamic soil-structure interaction problems. The key idea is to retain for the frequency-independent impedances values computed for the fundamental frequency of the soil-structure system; thus these values include the dynamic characteristics of the whole soil-structure system and lead to a satisfactory approximation of the exact solution over a wide frequency range. The method is developed here for the horizontal and rocking modes of a structure with a circular base resting on a homogeneous halfspace. Numerical applications are given for a simple linear oscillator in order to make possible a thorough parametric study. The response of some idealized building-foundation systems to harmonic excitation or to a seismic input is next examined in order to illustrate the efficiency of the proposed model.  相似文献   

15.
High-rise buildings are an efficient solution to meet the housing challenges of global urbanization that is happening at an incredible pace. Code-based seismic design philosophies are aimed at achieving collapse-prevention under major earthquakes, implying extensive structural damage associated with important losses. A number of high-performance systems have been investigated for enhancing the resilience of high-rise buildings whose design is especially challenging due to higher-mode effects even when a flexural mechanism is formed at the base of the structure. To this end, this paper proposes a new concept consisting of a three-dimensional uncoupled rocking and shear mechanism system for high-rise buildings where reinforced concrete (RC) core walls are used as the lateral-force-resisting system. The proposed system provides a dual-mechanism at the base that independently limits both overturning moments (OTMs) and shear forces and thus more effectively mitigates higher-mode effects. The characteristic mechanics of the proposed system are first studied through an idealized model. A physical embodiment is then designed, detailed, and validated through advanced models and extensive nonlinear dynamic analyses. A 42-story RC core-wall building that is located in Los Angeles and was studied as part of the PEER Tall Buildings Initiative is used as a reference structure in this study. Results confirmed that the proposed system eliminates damage at the base of the walls and minimizes the inelastic demands over the height of the building. In a general sense, the proposed concept provides a framework in which the intended dual mechanism can be implemented to a wider range of high-rise structures.  相似文献   

16.
A comprehensive study is made of the effects of soil-structure interaction on the response of liquid containing, upright, circular cylindrical tanks subjected to a horizontal component of ground shaking. A simple, physically motivated method of analysis is employed which elucidates the effects and relative importance of the principal actions involved. Both the impulsive and convective actions of the liquid are examined. The interrelationship of the tank responses to horizontal and rocking actions of the foundation is established, and the well known mechanical model for laterally excited, rigid tanks supported on a non-deformable medium is generalized to permit consideration of the effects of tank and ground flexibilities and base rocking. Critical responses are evaluated for harmonic and seismic excitations over wide ranges of tank proportions and soil stiffnesses, and the results are presented in a form convenient for use in practical applications. In addition to a precise method of analysis, an approximate, hand-computation method is presented with which the effects of the primary parameters may be evaluated readily. The soil-structure interaction effects in the latter approach are provided for by modifying the natural frequency and damping of the tank-liquid system and evaluating its response to the prescribed free-field ground motion considering the tank to be rigidly supported at the base. The requisite modifications may be determined from information presented herein. It is shown that soil-structure interaction may reduce significantly the impulsive components of response but that it has a negligible effect on the convective components.  相似文献   

17.
A plane strain model for dynamic soil-structure interaction problems under harmonic state is presented. The boundary element method is used to study the response of a homogeneous isotropic linear elastic soil. The far field displacement at the free surface is approximated by an outgoing Rayleigh wave. The finite element method is used to describe the response of the building, of the foundation and possibly of a finite part of the inhomogeneous non-linear soil. Two coupling procedures are described. The model is applied to a problem previously studied in the antiplane case. Incident P, SV and Rayleigh waves are considered. The results show an amplification and an attenuation of the structure motion with frequency when incident Rayleigh waves and P, SV body waves are respectively considered.  相似文献   

18.
There is no consensus at the present time regarding an appropriate approach to model viscous damping in nonlinear time‐history analysis of base‐isolated buildings because of uncertainties associated with quantification of energy dissipation. Therefore, in this study, the effects of modeling viscous damping on the response of base‐isolated reinforced concrete buildings subjected to earthquake ground motions are investigated. The test results of a reduced‐scale three‐story building previously tested on a shaking table are compared with three‐dimensional finite element simulation results. The study is primarily focused on nonlinear direct‐integration time‐history analysis, where many different approaches of modeling viscous damping, developed within the framework of Rayleigh damping are considered. Nonlinear direct‐integration time‐history analysis results reveal that the damping ratio as well as the approach used to model damping has significant effects on the response, and quite importantly, a damping ratio of 1% is more appropriate in simulating the response than a damping ratio of 5%. It is shown that stiffness‐proportional damping, where the coefficient multiplying the stiffness matrix is calculated from the frequency of the base‐isolated building with the post‐elastic stiffness of the isolation system, provides reasonable estimates of the peak response indicators, in addition to being able to capture the frequency content of the response very well. Furthermore, nonlinear modal time‐history analyses using constant as well as frequency‐dependent modal damping are also performed for comparison purposes. It was found that for nonlinear modal time‐history analysis, frequency‐dependent damping, where zero damping is assigned to the frequencies below the fundamental frequency of the superstructure for a fixed‐base condition and 5% damping is assigned to all other frequencies, is more appropriate, than 5% constant damping. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A study is carefully conducted for the rocking response of a rigid circular foundation resting on a poroelastic half-space when subjected to seismic waves under the framework of Biot’s theory. The free-field waves, rigid-body scattering field waves and radiation scattering field waves are introduced to consider the complex behavior of the soil owing to the scattering phenomena caused by the existence of the foundation. The contact surface between the soil and the foundation is supposed to be perfectly bonded and fully permeable. Combining with the divided wave fields, two sets of dual integral equations elaborating the mixed boundary-value conditions are established, and then reduced to Fredholm integral equations. Therefore, with a semi-analytical method, the expressions of the rocking displacements are obtained. The numerical results of the rocking vibration of the foundation for incident P, SV and Rayleigh waves are presented. The influences of certain parameters, such as the permeability of the soil, the incident angle, Poisson’s ratio and the mass of the foundation, on the rocking vibration of the foundation are explored and studied. Different reactions are found when the foundation is excited by different waves.  相似文献   

20.
Previous research has demonstrated that uplifting-column or rocking building systems may exhibit improved seismic performance, including reductions in total base shear and decreased residual drift, when compared with systems rigidly connected to the foundation. These beneficial effects may be due to lengthened periods, activation of rocking modes, and energy dissipation of base fuse elements. In the current work, several configurations of a miniature steel building with different combinations of base connection and traditional superstructure fuse strength and stiffness were subjected to identical earthquake motions to evaluate differences in demands and performance. The uplifting base connections incorporate highly ductile concrete anchors with long stretch lengths, allowing robust connection performance and easy replacement of damaged connection elements following the seismic event, an advantage over previously tested systems. Testing and dynamic numerical analysis indicates that ductile anchor uplifting systems may reduce total base shear by over 20%, as well as reducing residual structural drift by more than 80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号