首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T. J. Osborn 《Climate Dynamics》2004,22(6-7):605-623
Analysis of simulations with seven coupled climate models demonstrates that the observed variations in the winter North Atlantic Oscillation (NAO), particularly the increase from the 1960s to the 1990s, are not compatible with either the internally generated variability nor the response to increasing greenhouse gas forcing simulated by these models. The observed NAO record can be explained by a combination of internal variability and greenhouse gas forcing, though only by the models that simulate the strongest variability and the strongest response. These models simulate inter-annual variability of the NAO index that is significantly greater than that observed, and can no longer explain the observed record if the simulated NAO indices are scaled so that they have the same high-frequency variance as that observed. It is likely, therefore, that other external forcings also contributed to the observed NAO index increase, unless the climate models are deficient in their simulation of inter-decadal NAO variability or their simulation of the response to greenhouse gas forcing. These conclusions are based on a comprehensive analysis of the control runs and transient greenhouse-gas-forced simulations of the seven climate models. The simulations of mean winter circulation and its pattern of inter-annual variability are very similar to the observations in the Atlantic half of the Northern Hemisphere. The winter atmospheric circulation response to increasing greenhouse gas forcing shows little inter-model similarity at the regional scale, and the NAO response is model-dependent and sensitive to the index used to measure it. At the largest scales, however, sea level pressure decreases over the Arctic Ocean in all models and increases over the Mediterranean Sea in six of the seven models, so that there is an increase of the NAO in all models when measured using a pattern-based index.  相似文献   

2.
瞬变天气涡旋对北大西洋涛动的增强效应   总被引:3,自引:2,他引:1  
使用NCEP/NCAR再分析资料计算了冬季北大西洋瞬变涡旋活动强度与北大西洋涛动(NAO)逐日指数的时间序列,结果发现:当涡旋活动强度出现峰值后会伴随NAO模态增强现象;而随着NAO的增强,涡旋能量同落.为了判断是否涡流相互作用将天气尺度的能量转换为低频尺度的能量,使用瞬变涡度通量来研究涡度与能量的传输.通过分析瞬变涡...  相似文献   

3.
Based on the primitive equations of the atmosphere,we study the effects of external forcing.dissipation and nonlinearity on the solutions of stationary motion and non-stationary motion.Theresults show that the asymptotic behavior of solutions of the forced dissipative nonlinear system isessentially different from that of the adiabatic non-dissipative system,the adiabatic dissipativesystem,the diabatic non-dissipative system and the diabatic dissipative linear system,and that thejoint action of external forcing,dissipation and nonlinearity is the source of multiple equilibria.From this we can conclude that the important actions of diabatic heating and dissipation must beconsidered in the models of the long-term weather and the climate.  相似文献   

4.
Based on the primitive equations of the atmosphere,we study the effects of external forcing.dissipation and nonlinearity on the solutions of stationary motion and non-stationary motion.The results show that the asymptotic behavior of solutions of the forced dissipative nonlinear system is essentially different from that of the adiabatic non-dissipative system,the adiabatic dissipative system,the diabatic non-dissipative system and the diabatic dissipative linear system,and that the joint action of external forcing,dissipation and nonlinearity is the source of multiple equilibria.From this we can conclude that the important actions of diabatic heating and dissipation must be considered in the models of the long-term weather and the climate.  相似文献   

5.
In a weakly nonlinear model how an initial dipole mode develops to the North Atlantic Oscillation (NAO) in a localized shifting jet under the prescribed eddy forcing is examined. It is found that the zonal structure of the eddy-driven NAO anomaly is not only dominated by the longitudinal distribution of the preexisting Atlantic storm track, but also by the initial condition of the NAO anomaly itself associated with the interaction between a localized shifting jet and a topographic standing wave over the Atlantic basin. When both the initial NAO anomaly and the eddy vorticity forcing in the prior Atlantic storm track are more zonally localized, the subsequent eddy-driven NAO anomaly can be more zonally isolated and asymmetric. But, it seems that the shape of the initial NAO anomaly associated with the latitudinal shift of a prior Atlantic jet plays a more important role in producing the zonal asymmetry of subsequent NAO patterns. The zonal asymmetry of the NAO anomaly can be enhanced as the height of topography increases. In addition, it is further found that blocking events occur easily over the Europe continent through the decaying of positive-phase NAO events. However, prior to the positive-phase NAO life cycle the variability in each of three factors: the Atlantic jet, the eddy vorticity forcing in the Atlantic storm track and the initial NAO anomaly can result in a variation in the blocking activity over the Europe sector in strength, duration, position and pattern.  相似文献   

6.
We use reconstructed data and multi-centennial integrations performed with the Bergen Climate Model Version 2 to investigate the impact of natural external forcing factors on the Indian summer monsoon (ISM) rainfall, the winter North Atlantic Oscillation (NAO), and the potential relationship between the ISM rainfall and the winter NAO on decadal to inter-decadal timescales. The model simulations include a 600-year control integration (CTL600) and a 600-year integration with time-varied natural external forcing factors from 1400 to 1999 (EXT600). Both reconstructed data and the simulation showed increased ISM rainfall 2–3 years after strong volcanic eruptions. Strong volcanic eruptions decrease the Indian Ocean sea surface temperature (SST), which increases the strength of the southwesterly winds over the Arabian Sea. With negative externally-forced radiative anomaly, the lower stratospheric pole-to-equator winter temperature gradient is enhanced, leading to a positive winter NAO anomaly with a time lag of 1 year. There is no significant correlation between the winter NAO and ISM rainfall in CTL600. However, the ISM rainfall is significantly positively correlated with the winter NAO in EXT600, with the NAO leading by 2–4 years, which is consistent with the NAO–ISM rainfall relationship in the reconstructed data. We suggest that natural external forcing factors regulate the inter-decadal variability of both the winter NAO and the ISM rainfall and thus likely lead to an increased statistical but not causal relationship between them on the inter-decadal timescale over the past centuries.  相似文献   

7.
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations.  相似文献   

8.
The response of the North Atlantic subpolar gyre (SPG) to a persistent positive (or negative) phase of the North Atlantic oscillation (NAO) is investigated using an ocean general circulation model forced with idealized atmospheric reanalysis fields. The integrations are analyzed with reference to a base-line integration for which the model is forced with idealized fields representing a neutral state of the NAO. In the positive NAO case, the results suggest that the well-known cooling and strengthening of the SPG are, after about 10 years, replaced by a warming and subsequent weakening of the SPG. The latter changes are caused by the advection of warm water from the subtropical gyre (STG) region, driven by a spin-up of the Atlantic meridional overturning circulation (AMOC) and the effect of an anomalous wind stress curl in the northeastern North Atlantic, which counteracts the local buoyancy forcing of the SPG. In the negative NAO case, however, the SPG response does not involve a sign reversal, but rather shows a gradual weakening throughout the integration. The asymmetric SPG-response to the sign of persistent NAO-like forcing and the different time scales involved demonstrate strong non-linearity in the North Atlantic Ocean circulation response to atmospheric forcing. The latter finding indicates that analysis based on the arithmetic difference between the two NAO-states, e.g. NAO+ minus NAO?, may hide important aspects of the ocean response to atmospheric forcing.  相似文献   

9.
Observations show that at middle and high latitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that of the seasonal cycle and will likely exert a significant influence on the ocean circulation. The focus of this work will be the contribution of the North Atlantic Oscillation (NAO) to the stochastic forcing in the North Atlantic and its influence on the large-scale, wind-driven ocean circulation. To this end, a QG model of the North Atlantic Ocean was forced with the stochastic component of wind stress curl associated with the NAO signal. The ocean response is localized primarily in the western boundary region and can be conveniently understood using generalized stability analysis. Much of the variability is associated with the nonnormal influence of the bathymetry and inhomogeneities in the western boundary flow on the large-scale circulation. A more traditional statistical analysis of the circulation, however, reveals that there are very small and insignificant correlations between the NAO forcing and the ocean response within the western boundary region. This suggests that the dynamics of the ocean response to stochastic forcing may obscure any obvious coherence between the forcing and the response which is equally difficult to identify from observations.  相似文献   

10.
Negative-phase North Atlantic Oscillation(NAO) events are generally stronger than positive-phase ones, i.e., there is a phase-strength asymmetry of the NAO. In this work, we explore this asymmetry of the NAO using the conditional nonlinear optimal perturbation(CNOP) method with a three-level global quasi-geostrophic spectral model. It is shown that, with winter climatological flow forcing, the CNOP method identifies the perturbations triggering the strongest NAO event under a given initial constraint. Meanwhile, the phase-strength asymmetry characteristics of the NAO can be revealed. By comparing with linear results, we find that the process of perturbation self-interaction promotes the onset of negative NAO events, which is much stronger than during positive NAO onset. Results are obtained separately using the climatological and zonal-mean flows in boreal winter(December–February) 1979–2006 as the initial basic state. We conclude, based on the fact that NAO onset is a nonlinear initial-value problem, that phase-strength asymmetry is an intrinsic characteristic of the NAO.  相似文献   

11.
Large ensembles of simulations (ensemble size of 500 members) are performed using a simplified atmospheric general circulation model (AGCM) in order to investigate the non-linearities in the response to composite sea surface temperature (SST) anomaly forcings that are constant in time. The SST composite corresponds to the observed anomaly associated with the atmospheric North Atlantic Oscillation (NAO). The integration length is 90 days for each ensemble (covering January, February and March). A non-linearity is found in the mean response to the SST-forcing, with the negative SST-NAO forcing leading to a stronger and more clear atmospheric NAO response. These non-linearities appear to be due to asymmetries in the heating anomalies induced by the SST-forcing and asymmetries in the transient eddy vorticity forcing. Further non-linearities are due to initial period dependences of the response to the same SST-forcing. As a consequence, a pre-existing negative atmospheric NAO is much more persistent due to SST-feedback than a positive NAO.  相似文献   

12.
The extent to which the North Atlantic Oscillation (NAO) is influenced by changes in the ocean state is an issue that has attracted much recent attention. Although there have been counter claims, the weight of evidence clearly suggests that forcing by the ocean of year-to-year changes in the NAO is a weak influence by comparison with atmospheric internal variability. The NAO is thus very different in character to the Southern Oscillation (SO), and its predictability—at least on seasonal-to-interannual timescales—is almost certainly much lower.Although weak, the influence of the ocean on the NAO is not negligible. In a previous study we found that wintertime North Atlantic climate, including the NAO, was significantly influenced by a tripole pattern of North Atlantic SST anomalies. Here we report the results of experiments to further elucidate the nature of this influence. We show that the tripole pattern induces a significant response both in the tropical Atlantic and at mid-to-high latitudes. The low latitude response is forced by the low latitude SST anomalies, but the high latitude response is influenced by the extratropical SST anomalies as well as those in the tropics. Furthermore, we find evidence of nonlinear interaction between the influence of the tropical and extratropical SST anomalies. Lastly, we investigate the feedback from the atmosphere onto the SST tripole. We find that the expected negative feedback is significantly modified at low latitudes by the dynamical response of the atmosphere.  相似文献   

13.
 The realism of the Hadley Centre’s coupled climate model (HadCM2) is evaluated in terms of its simulation of the winter North Atlantic Oscillation (NAO), a major natural mode of the Northern Hemisphere atmosphere that is currently the subject of considerable scientific interest. During 1400 y of a control integration with present-day radiative forcing levels, HadCM2 exhibits a realistic NAO associated with spatial patterns of sea level pressure, synoptic activity, temperature and precipitation anomalies that are very similar to those observed. Spatially, the main model deficiency is that the simulated NAO has a teleconnection with the North Pacific that is stronger than observed. In a temporal sense the simulation is compatible with the observations if the recent observed trend (from low values in the 1960s to high values in the early 1990s) in the winter NAO index (the pressure difference between Gibraltar and Iceland) is ignored. This recent trend is, however, outside the range of variability simulated by the control integration of HadCM2, implying that either the model is deficient or that external forcing is responsible for the variation. It is shown, by analysing two ensembles, each of four HadCM2 integrations that were forced with historic and possible future changes in greenhouse gas and sulphate aerosol concentrations, that a small part of the recent observed variation may be a result of anthropogenic forcing. If so, then the HadCM2 experiments indicate that the anthropogenic effect should reverse early next century, weakening the winter pressure gradient between Gibraltar and Iceland. Even combining this anthropogenic forcing and internal variability cannot explain all of the recent observed variations, indicating either some model deficiency or that some other external forcing is partly responsible. Received: 20 August 1998 / Accepted: 12 May 1999  相似文献   

14.
The variability of the climate during the last millennium is partly forced by changes in total solar irradiance (TSI). Nevertheless, the amplitude of these TSI changes is very small so that recent reconstruction data suggest that low frequency variations in the North Atlantic Oscillation (NAO) and in the thermohaline circulation may have amplified, in the North Atlantic sector and mostly in winter, the radiative changes due to TSI variations. In this study we use a state-of-the-art climate model to simulate the last millennium. We find that modelled variations of surface temperature in the Northern Hemisphere are coherent with existing reconstructions. Moreover, in the model, the low frequency variability of this mean hemispheric temperature is found to be correlated at 0.74 with the solar forcing for the period 1001?C1860. Then, we focus on the regional climatic fingerprint of solar forcing in winter and find a significant relationship between the low frequency TSI forcing and the NAO with a time lag of more than 40?years for the response of the NAO. Such a lag is larger than the around 20-year lag suggested in other studies. We argue that this lag is due, in the model, to a northward shift of the tropical atmospheric convection in the Pacific Ocean, which is maximum more than four decades after the solar forcing increase. This shift then forces a positive NAO through an atmospheric wave connection related to the jet-stream wave guide. The shift of the tropical convection is due to the persistence of anomalous warm SST forcing the anomalous precipitation, associated with the advection of warm SST by the North Pacific subtropical gyre in a few decades. Finally, we analyse the response of the Atlantic meridional overturning circulation to solar forcing and find that the former is weakened when the latter increases. Changes in wind stress, notably due to the NAO, modify the barotropic streamfunction in the Atlantic 50?years after solar variations. This implies a wind-driven modification of the oceanic circulation in the Atlantic sector in response to changes in solar forcing, in addition to the variations of the thermohaline circulation.  相似文献   

15.
The roles of anthropogenic climate change and internal climate variability in causing the Mediterranean region’s late 20th Century extended winter drying trend are examined using 19 coupled models from the Intergovernmental Panel on Climate Change Fourth Assessment Report. The observed drying was influenced by the robust positive trend in the North Atlantic Oscillation (NAO) from the 1960s to the 1990s. Model simulations and observations are used to assess the probable relative roles of radiative forcing, and internal variability in explaining the circulation trend that drove much of the precipitation change. Using the multi-model ensemble we assess how well the models can produce multidecadal trends of realistic magnitude, and apply signal-to-noise maximizing EOF analysis to obtain a best estimate of the models’ (mean) sea-level pressure (SLP) and precipitation responses to changes in radiative forcing. The observed SLP and Mediterranean precipitation fields are regressed onto the timeseries associated with the models’ externally forced pattern and the implied linear trends in both fields between 1960 and 1999 are calculated. It is concluded that the radiatively forced trends are a small fraction of the total observed trends. Instead it is argued that the robust trends in the observed NAO and Mediterranean rainfall during this period were largely due to multidecadal internal variability with a small contribution from the external forcing. Differences between the observed and NAO-associated precipitation trends are consistent with those expected as a response to radiative forcing. The radiatively forced trends in circulation and precipitation are expected to strengthen in the current century and this study highlights the importance of their contribution to future precipitation changes in the region.  相似文献   

16.
Based on the viewpoint that the North Atlantic Oscillation(NAO) has an intrinsic timescale of approximate two weeks and can be treated as an initial value problem, targeted observations for improving the prediction of the onset of NAO events are investigated by using the conditional nonlinear optimal perturbation(CNOP) method with a quasigeostrophic model. The results show that flow-dependent sensitive areas for the prediction of NAO onset are mainly located over North Atlantic and its upstream regions. Targeted observations over the main sensitive areas could improve NAO onset prediction in most cases(approximately 75%) due to reduced errors in anomalous eddy vorticity forcing(EVF) projection in the typical NAO mode. Moreover, a flow-independent sensitive area is determined based on the winter climatological flow, which is located over North America and its adjacent ocean. The NAO onset prediction can also be improved by targeted observations over the flow-independent sensitive area, but the skill improvement is somewhat lower than that derived from observations over the flow-dependent sensitive area. The above results indicate that targeted observations over sensitive areas identified by the CNOP method can help to improve the onset prediction of NAO events.  相似文献   

17.
降水量是重要的预报要素之一,长期的降水预测更是能提前预测旱涝分布情况,为国民经济规划提供依据。但目前为止,长期的降水预测仍缺少客观的预报方法。为此,尝试利用非线性预测模型来预测旬降水量,并将该模型应用于福建平潭,分别用与原始数据的差值、与原始数据的相关系数、均方根误差,以及符号显著性检验方法,讨论了包含外强迫因子的平稳性模型与不包含外强迫因子的非线性模型的预测能力,结果表明:包含外强迫因子的模型第一步预测结果与原始观测数据的相关系数为0.73,不包含外强迫因子的模型第一步预测结果与原始观测数据的相关系数则为0.47。无论是从与原始数据的差值及相关系数,还是均方根误差等方面,外强迫模型都是优于平稳性模型,并且通过符号检验方法可看出两种模型存在差异性,这也说明加入外强迫因子可以有效地提高预测技巧,外强迫因子与状态变量在预测中扮演同等重要的角色。  相似文献   

18.
The Atlantic meridional overturning circulation (AMOC) in the last 250?years of the 700-year-long present-day control integration of the Community Climate System Model version 3 with T85 atmospheric resolution exhibits a red noise-like irregular multi-decadal variability with a persistence longer than 10?years, which markedly contrasts with the preceding ~300 years of very regular and stronger AMOC variability with ~20?year periodicity. The red noise-like multi-decadal AMOC variability is primarily forced by the surface fluxes associated with stochastic changes in the North Atlantic Oscillation (NAO) that intensify and shift northward the deep convection in the Labrador Sea. However, the persistence of the AMOC and the associated oceanic anomalies that are directly forced by the NAO forcing does not exceed about 5?years. The additional persistence originates from anomalous horizontal advection and vertical mixing, which generate density anomalies on the continental shelf along the eastern boundary of the subpolar gyre. These anomalies are subsequently advected by the mean boundary current into the northern part of the Labrador Sea convection region, reinforcing the density changes directly forced by the NAO. As no evidence was found of a clear two-way coupling with the atmosphere, the multi-decadal AMOC variability in the last 250?years of the integration is an ocean-only response to stochastic NAO forcing with a delayed positive feedback caused by the changes in the horizontal ocean circulation.  相似文献   

19.
The influence of sea surface temperature anomalies (SSTA) on multi-year persistence of the North Atlantic Oscillation (NAO) during the second half of the twentieth century is investigated using the Center for Ocean-Land-Atmosphere Studies (COLA) Atmospheric GCM (AGCM) with an emphasis on isolating the geographic location of the SSTA that produce this influence. The present study focuses on calculating the atmospheric response to the SSTA averaged over 1988–1995 (1961–1968) corresponding to the observed period of strong persistence of the positive (negative) phase of the decadal NAO. The model response to the global 1988–1995 average SSTA shows a statistically significant large-scale pattern characteristic of the positive phase of the NAO. Forcing with the global 1961–1968 average SSTA generates a NAO of the opposite polarity compared to observations. However, all large-scale features both in the model and observations during this period are weaker in magnitude and less significant compared to 1988–1995. Additional idealized experiments show that over the northern center of the NAO the non-linear component of the forced response appears to be quite important and acts to enhance the positive NAO signal. On the other hand, over the southern center where the model response is the strongest, it is also essentially linear. The 1988–1995 average SSTA restricted to the western tropical Pacific region produce a positive NAO remarkably similar in structure but stronger in magnitude than the model response to the global and tropical Indo-Pacific 1988–1995 forcing. A 200-hPa geopotential height response in these experiments shows a positive anomaly over the southern center of the NAO embedded in the Rossby wave trains propagating from the western tropical Pacific. Indian Ocean SSTA lead to much weaker positive NAO primarily through the effect on its northern center. SST forcing confined to the North Atlantic north of equator does not produce a response statistically different from the control simulation, suggesting that it is not strong enough to significantly affect the phase of the decadal NAO. Inclusion of the South Atlantic north of 45° south does not change this result.
Julia V. ManganelloEmail:
  相似文献   

20.
应用非线性振荡理论研究云南局地气温的演变规律   总被引:4,自引:3,他引:1  
曹杰  陶云 《高原气象》2004,23(1):62-67
将描述局地气温变化的非线性振荡方程应用到云南省17个测站局地气温演变研究中,根据各测站1958年1月—2000年12月逐旬气温距平资料和反演理论获得具体描述各测站局地气温变化的非线性振荡方程。以经典非线性振荡理论为依据,研究了云南省17个测站的局地气温演变规律。结果表明,云南局地气温系统是弱的非线性系统;其演变的固有周期大致在6~10旬之间;在无外源强迫的条件下,云南局地气温振幅随时间增加总是衰减;考虑外源强迫的作用后,云南局地气温系统在其演变过程中只随外源强迫的振荡而振荡。应用反演获得的描述各测站局地气温变化的有外源强迫非线性振荡方程做出未来云南局地气温演变趋势预报,其平均预报准确率约为78.9%。说明该模型具有良好的预报能力和预报稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号