首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
陕北黄土区切沟密集,地形支离破碎,地形与植被共同作用下土壤水分状况较为复杂。通过长期定位观测深剖面土壤含水量,分析了流域分水线深层土壤水分时空动态及干层分布特征。研究结果表明:生长季0~3 m土层土壤水分亏缺,生长季后1.2 m以上土层亏缺水分得到补充,但该深度以下土壤水分含量未得到恢复,其中2.6~6.4 m深度范围缺水严重,流域分水线土壤水分含量出现明显的垂直分层现象;各观测点土壤含水量随深度的分布曲线、极值出现深度和干层深度范围不同,剖面干层随各分水线走向表现出不连续分布的特点;分水线干层平均起始深度为2.03 m,厚度为0.4~8 m,干层土壤含水量均值为9.03%,干层厚度与起始深度和干层土壤含水量均呈负相关关系。比较而言,陕北黄土高原干层发育严重程度较突出。相关研究结果可为流域土壤水资源分布及土壤水库功能评价提供理论依据。  相似文献   

2.
为更加有效获取黄土高原沟道地形根区土壤水分信息,基于表层(0~20cm)土壤水分观测值,采用指数滤波法在样带和沟道尺度对根区(20~80cm)土壤水分进行估算。结果表明,指数滤波法能够较准确估算沟道根区土壤水分,但随着土层深度增加估算误差逐渐增大。当有根区土壤水分初始值时,估算精度明显提高,但主要集中在时间序列前期。指数滤波法关键参数特征时长T的最优值(Topt)随土层深度增加而增大,呈现每增加20cm,Topt值较20~40cm增加1倍的变化规律。对于根区某一土层,不同空间位置(样带)和尺度Topt交换使用没有明显降低土壤水分估算精度,表明指数滤波法对Topt的空间敏感性较弱。需注意黄土高原区域尺度土壤性质具有极强空间异质性,指数滤波法在更大尺度上对Topt的敏感性需进一步深入研究。  相似文献   

3.
Drastically disturbed soils caused by opencast mining can result in the severe loss of soil structure and increase in soil compactness. To assess the effects of mining activities on reconstructed soils and to track the changes in reclaimed soil properties, the variability of soil properties (soil particle distribution, penetration resistance (PR), pH, and total dissolved salt (TDS)) in the Shanxi Pingshuo Antaibao opencast coal-mine inner dump after dumping and before reclamation was analyzed using a geostatistics method, and the number of soil monitoring points after mined land reclamation was determined. Soil samples were equally collected at 78 sampling sites in the study area with an area of 0.44 km2. Soil particle distribution had moderate variability, except for silt content at the depth of 0–20 cm with a low variability and sand content at the depth of 20–40 cm with a high variability. The pH showed a low variability, and TDS had moderate variability at all depths. The variability of PR was high at the depth of 0–20 cm and moderate at the depth of 20–40 cm. There was no clear trend in the variance with increasing depth for the soil properties. Interpolation using kriging displayed a high heterogeneity of the reconstructed soil properties, and the spatial structure of the original landform was partially or completely destroyed. The root-mean-square error (RMSE) can be used to determine the number of sampling points for soil properties, and 40 is the ideal sampling number for the study site based on cross-validation.  相似文献   

4.
黄土丘陵小流域地形和土地利用对土壤水分时空格局的影响   总被引:47,自引:0,他引:47  
采用1982~1985年和2002年两个时段的定点观测数据,系统分析了小流域尺度地形和土地利用类型对土壤水分时空格局的影响.结果表明:1)土壤水分变化特征为所有年份农地土壤水分都最大,灌木林地和荒草地较低,林地居中;不同坡向间以阴坡土壤水分最大;而不同坡位间以坡中部土壤水分最大.受降雨和植被耗水的影响,所有土地利用类型中土壤水分在整个生长期表现为降低型.2)在年尺度上表现为干旱年份土地利用类型和坡向对土壤水分的影响较大;而在湿润年份,其影响程度减弱;坡位在干旱和湿润年份对土壤水分的影响都较小.湿润年份,降雨量的增大弱化了地形和土地利用类型对土壤水分时空格局的影响;而干旱年份正好相反.3)在季节尺度上表现为在生长季节的中后期,土壤水分的变异格局主要受坡向影响;而在生长季节的中期,主要受土地利用类型影响;坡位在整个观测时段内影响都较小.4)在不同土壤层次方面特征为土地利用类型对0~20em层次影响较小,而对其他4个深度较大的层次(20~100cm)影响较大,并且5个层次中以40~60cm层次的差异最大;坡向对5个层次土壤水分的变异格局均有明显影响,并呈现随着深度的增加,其影响减弱的趋势;坡位对5个层次的土壤水分变异格局影响均较小.  相似文献   

5.
Permafrost degradation has the potential to significantly change soil moisture. The objective of this study was to assess the variability of soil moisture in a permafrost region using geostatistical techniques. The experiment was conducted in August 2008 in alpine steppe and meadow located in the Qinghai-Tibetan Plateau permafrost region. Four soil depths (0–10, 10–20, 20–30 and 30–40 cm) were analyzed using frequency domain reflectometry, and sampling made of 80 points in a 10 m × 10 m grid were sampled. Soil moisture was analyzed using classical statistics to appropriately describe central tendency and dispersion, and then using geostatistics to describe spatial variability. Classical statistical method indicated that soil moisture in the permafrost region had a normal distribution pattern. Mean surface soil moisture in alpine meadow was higher than that in alpine steppe. The semivariograms showed that soil moisture variability in alpine cold steppe was larger than that in alpine meadow, which decreased with depths. Nugget values in alpine steppe were low (0.1–4.5), in contrast to alpine cold meadow. Soil moisture in alpine steppe had highly structured spatial variability with more than 93.4% spatial heterogeneity, and the range decreased with depth. Soil moisture content in alpine cold meadow had a moderate spatial dependence with a range of 51.3–169.2 m, increasing with depth.  相似文献   

6.
黄土高原丘陵沟壑区包气带土壤水运移过程   总被引:1,自引:0,他引:1       下载免费PDF全文
包气带土壤水运移过程是黄土高原生态修复中亟需回答的关键科学问题。环境同位素方法可获取其他方法难以获取的水文过程信息。通过对黄土高原丘陵沟壑区羊圈沟小流域降水、包气带0~150 cm土壤水和绣线菊(Spiraea salicifolia)木质部水等样品的同位素δD和δ18O进行测定。结果表明:羊圈沟小流域降水同位素组成受蒸发作用影响较大,呈现明显分馏效应。包气带土壤水、降水与木质部水同位素组成存在明显月份变化特征。降水是土壤水的主要补给来源,灌丛的水分利用来源主要为降水和土壤水,符合降水-土壤水-植被水的运移特征。灌丛木质部水和20~40 cm土壤水δD和δ18O最为接近,20~40 cm土壤水是灌丛水分利用的主要来源。研究揭示了包气带土壤水运移过程及植物水分利用来源,为土壤水运移过程、模型结构与参数识别等提供科学依据。  相似文献   

7.
以黄土高原渭河流域西部黄土丘陵沟壑区为研究区域,建立了野外观测场地,对该区域浅层非饱和土体冻融过程及水热运移规律对气候作用的响应过程进行了研究与分析。结果表明:气温对地温及地温变幅的影响随深度增加而迅速衰减,地温振幅随深度增加按指数规律衰减且温度波的相位随深度的增加而滞后,地表下200 cm深度以内地温振幅受气温影响较大。该区域裸露地表土壤的最大冻结深度在20~50 cm之间。在土壤冻结过程中,深层土壤未冻水逐渐向冻结层运移,导致深层含水量逐渐减少。不同深度土壤冻结系数随土壤深度的增加而减小,融化系数则相反。地表下50 cm深度以内的土体含水量受降水影响波动显著。土壤含水量与温度呈相似变化,地温峰值出现的时间总滞后于土壤水分,其变异程度均随土壤深度的增加而减小。  相似文献   

8.
Information on soil water storage (SWS) within soil profiles is essential in order to characterize hydrological and biological processes. One of the challenges is to develop low cost and efficient sampling strategies for area estimation of profile SWS. To test the existence of certain sample locations which consistently represent mean behavior irrespective of soil profile wetness, temporal stability of SWS in ten soil layers from 0 to 400 cm was analyzed in two land uses (grassland and shrub land), on the Chinese Loess Plateau. Temporal stability analyses were conducted using two methods viz. Spearman rank correlation coefficient (r s) and mean relative differences. The results showed that both spatial variability and time stability of SWS increased with increasing soil depth, and this trend was mainly observed at above 200 cm depth. High r s (p?<?0.01) indicated a strong temporal stability of spatial patterns for all soil layers. Temporal stability increased with increasing soil depth, based on either r s or standard deviation of relative difference index. The boundary between the temporal unstable and stable layer of SWS for shrub land and grassland uses was 280 and 160 cm depth, respectively. No single location could represent the mean SWS for all ten soil layers. For temporal stable layers, however, some sampling locations could represent the mean SWS at different layers. With increasing soil depth, more locations were able to estimate the mean SWS of the area, and the accuracy of prediction for the representative locations also increased.  相似文献   

9.
黄土高原区域尺度土壤水分空间变异性   总被引:24,自引:0,他引:24       下载免费PDF全文
土壤水分是黄土高原植物生长发育和生态环境重建的主要限制因子。为揭示黄土高原区域尺度深层土壤水分的空间变异性,在黄土高原共布点234个,采集深剖面土壤水分样品12198个。采用经典统计和地统计学相结合的方法系统分析了土壤水分的分布规律、变异特征及影响因素。结果表明:①黄土高原地区土壤水分在水平方向上表现出由东南向西北递减,在垂直方向上(0~500cm)表现出先减小后增加的分布特征;②土地利用对区域尺度土壤水分的数量及垂直分布规律具有显著影响;③土壤水分在不同土层深度(0~500cm)的变异系数、空间异质比等参数的垂直分布均呈先减小后增加趋势,这些参数在表达土壤水分变异的效果上具有一致性。相关结果对黄土高原区域尺度水土过程调控、生态水文过程研究具有一定参考价值。  相似文献   

10.
The spatial heterogeneity of soil nutrients influences crop yield and the environment. Previous research has focused mainly on the surface layer, with little research being carried out on the deep soil layers, where high root density is highly related to crop growth. In the study, 610 soil samples were collected from 122 soil profiles (0–60 cm) in a random-sample method. Both geostatistics and traditional statistics were used to describe the spatial variability of soil organic matter (SOM) and total nitrogen (TN) deeper in the soil profile (0–60 cm) with high root density from a typical Mollisol watershed of Northeast China. Also, the SOM and TN in farmland and forest (field returned to forest over 10 years) areas was compared. The spatial autocorrelations of SOM at 0–50 cm depth and TN at 30–60 cm depth were strong, and were mainly influenced by structural factors. Compared to farmland, SOM and TN were typically lower in the 0–30 cm depth of the forest areas, while they were higher in the 30–60 cm depth. As well, both SOM and TN decreased from the 0–20 cm layer to the 30–40 cm layer, and then discontinues, while they continuously decreased with increasing soil depth in the farmland. SOM and TN were typically higher at the gently sloped summit of the watershed and part of the bottom of the slope than at mid-slope positions at the 0–30 cm depth. SOM and TN were lower on the back slope at the 30–60 cm depth, but were higher at the bottom of the slope. Also, the spatial distribution of the carbon storage and nitrogen storage were all highest at the bottom of the slope and part of the summit, while they were lowest in most of back slope in depth of 0–60 cm, and mainly caused by soil loss and deposition. SOM at 0–60 cm and TN at 0–40 cm greater than the sufficiency level for crop growth (3.7–79.2 and 0.09–3.09 g kg?1, respectively) covered 99 % of the total area, yet for TN, over 35 % of the total area was less than the insufficiency level at the 40–60 cm depth. Generally, accurately predicting SOM and TN is nearly impossible when based only on soil loss by water, although the fact that variability is influenced by elevation, soil loss, deposition and steepness, was shown in this research. Nitrogen fertilizer and manure application were needed, especially in conjunction with conservation tillage in special conditions and specific areas such as the back slope, where soil loss was severe and the deep soil that lacked TN was exposed at the surface.  相似文献   

11.
This study was carried out to determine the effects of different land-use types on the properties of an Alfisol on the Jos Plateau, Nigeria. Areas being used for nature conservation (forest), grazing and maize cultivation were chosen, and the three are contiguous within a nearly level, moderately well-drained site. Within each of the three land-use areas, a plot of 30 x 20 m was chosen. Each plot was divided into 6 grids of 100 m2 size. Within each of these grids, four sampling sites were chosen by throwing up a coin four times. The four surface soil (0–5 cm depth) samples taken at the points where the coin landed, were mixed to form the composite sample, out of which sizeable portion was taken. This means that six soil samples were taken for each land use area (forest, grass, and cultivated). Same procedure was repeated for each of the following soil depths 5–15, 15–30 and 30–50 cm. Laboratory soil analyses were carried out while analysis of variance was used to test the significance of mean difference. The results show that forest clearing for grazing and maize cultivation has lead to significant decreases in most soil fertility variables. Organic matter levels of the grassland and cultivated soils are just about 28% and 13%, respectively, of that of the forest soil in the 0–5 cm depth, while they are 36% and 19%, respectively, in the 5–15 cm depth. Exchangeable cations and effective cation exchange capacity are also significantly higher in the forest soils. The effects are attributable to soil organic matter decomposition and nutrient removal resulting from forest clearance, maize cultivation and grazing. Hence, for sustained agricultural productivity, the soils require adequate inorganic and organic fertilizer additions together with appropriate cultural practices such as agroforestry, crop rotation and mixed cropping involving legumes.  相似文献   

12.
Large-scale vegetation restoration in China’s Loess Plateau has been initiated by the central government to control soil and water losses since 1999. Knowledge of the spatio-temporal distribution of soil water storage (SWS) is critical to fully understand hydrological and ecological processes. This study analysed the temporal stability of the SWS pattern during the rainy season on a hillslope covered with Chinese pine (Pinus tabulaeformis Carr.). The soil water content in eight soil layers was obtained at 21 locations during the rainy season in 2014 and 2015. The results showed that the SWS at the 21 locations followed a normal distribution, which indicated moderate variability with the coefficients of variation ranging from 14 to 33%. The mean SWS was lowest in the middle slope. The spatial pattern of SWS displayed strong temporal stability, and the Spearman correlation coefficient ranged from 0.42 to 0.99 (p < 0.05). There were significant differences in the temporal stability of SWS among different soil layers (p < 0.01). The spatial patterns of SWS distribution showed small differences in different periods. The best representative locations of SWS were found at different soil depths. The maximum RMSE and MAE at 0–1.6 m soil depth for the rainy season were 4.27 and 3.54 mm, respectively. The best representative locations determined during a short period (13 days) can be used to estimate the mean SWS well for the same rainy season, but not for the next rainy season. Samples of SWS collected over a fortnight during the rainy season were able to capture the spatial patterns of soil moisture. Roots were the main factor affecting the temporal stability of SWS. Rainfall increased the temporal stability of the soil water distribution pattern. In conclusion, the SWS during the rainy season had a strong temporal stability on the forestland hillslope.  相似文献   

13.
黄土高原退耕坡地土壤水分空间变异性研究   总被引:32,自引:1,他引:32       下载免费PDF全文
以神木生态观测站为例,利用经典统计学方法对黄土高原退耕坡地土壤水分在空间三维不同方向和不同位置的空间变异性进行了研究,并对空间变异的尺度和时间依赖性等问题进行了探讨,以便为坡地水分管理和植被恢复提供参考。研究结果表明土壤水分在垂直方向和水平方向(垂直于坡长方向)的平均变异程度为弱变异;而在东西方向(坡长方向)、二维平面和三维空间上为中等变异性;土壤水分沿坡长方向从坡顶到坡脚表现出先减小后增大的趋势,且在各坡位变异程度不一,呈现出变异程度为坡上>坡中>坡下的趋势;土壤水分沿南北方向表现为阴坡>山脊>阳坡的明显趋势,其变异程度为阳坡>阴坡;在40~200 cm土层深度内,土壤水分在垂直方向表现出先减小后增大的趋势,且在各土层的变异程度与各层平均土壤水分成明显的正相关。  相似文献   

14.
With few available soil organic carbon (SOC) profiles and the heterogeneity of those that do exist, the estimation of SOC pools in karst areas is highly uncertain. Based on the spatial heterogeneity of SOC content of 23,536 samples in a karst watershed, a modified estimation method was determined for SOC storage that exclusively applies to karst areas. The method is a “soil-type method” based on revised calculation indexes for SOC storage. In the present study, the organic carbon contents of different soil types varied greatly, but generally decreased with increasing soil depth. The organic carbon content decreased nearly linearly to a depth of 0–50 cm and then varied at depths of 50–100 cm. Because of the large spatial variability in the karst area, we were able to determine that influences of the different indexes on the estimation of SOC storage decreased as follows: soil thickness > boulder content > rock fragment content > SOC content > bulk density. Using the modified formula, the SOC content in the Houzhai watershed in Puding was estimated to range from 3.53 to 5.44 kg m?2, with an average value of 1.24 kg m?2 to a depth of 20 cm, and from 4.44 to 14.50 kg m?2, with an average value of 12.12 kg m?2 to a depth of 100 cm. The total SOC content was estimated at 5.39 × 105 t.  相似文献   

15.
Biological soil crusts (BSCs) are an important cover in arid desert landscapes, and have a profound effect on the CO2 exchange in the desert system. Although a large number of studies have focused on the CO2 flux at the soil–air interface, relatively few studies have examined the soil CO2 concentration in individual layers of the soil profile. In this study, the spatiotemporal dynamics of CO2 concentration throughout the soil profile under two typical BSCs (algae crusts and moss crusts) and its driving factors were examined in a revegetated sandy area of the Tengger Desert from Mar 2010 to Oct 2012. Our results showed that the mean values of the vertical soil CO2 concentrations under algal crusts and moss crusts were 600–1,200 μmol/mol at the 0–40 cm soil profiles and increased linearly with soil depth. Daily CO2 concentrations showed a single-peak curve and often had a 1–2 h time delay after the maximum soil temperature. During the rainy season, the mean soil CO2 concentration profile was 1,200–2,000 μmol/mol, which was 2–5 times higher as compared to the dry season (400–800 μmol/mol). Annually, soil moisture content was the key limiting factor of the soil CO2 concentration, but at the daily time scale, soil temperature was the main limiting factor. Combined with infiltration depth of crusted soils, we predicted that precipitation of 10–15 mm was the most effective driving factor in arid desert regions.  相似文献   

16.
The combination of ecological fragility and agricultural activity in the loess hilly–gully regions of western China has received broad environmental concerns. In this region, rainfall and soil moisture can fatally influence crop production under dry land farming. In this study, field experiments were conducted, from March 2001 to September 2005, to demonstrate the variation of soil moisture and fertilizer contents at different depths in slope and terraced lands, and to evaluate the ecological impacts and economic benefits in the terraced land of Loess Plateau. The results of both field test and Grey model (GM) calculation show that the terraced land, as compared to the sloping land, in the agricultural area of the Loess Plateau tends to store and retain much water, promoting more favorable interactions between water and fertilizer. During the months from March to June of the year with less rainfall, the water supply for crop growth is mainly derived from the deep storage of soil moisture accumulated from July to September of the previous year. The field experiments indicate that the crop yield of the 3-year-old terraced lands was 27% higher than that of the sloping lands with slopes greater than 10°, and that the crop yield can increase by 27.07 to 52.78% in the following cultivation years. In particular, potato was found to be more drought-resistant than winter wheat, thus it is more suitable for the arid and semi-arid Loess Plateau regions.  相似文献   

17.
To improve the ecological environment in China, the Chinese government implemented a country-wide ecological protection and reforestation project (namely the “Grain for Green Project”) in 1999 to return cultivated land with slopes of 25° or more to perennial vegetation. Vegetation restoration reduces soil erosion mainly by changing the soil physical properties. Different vegetation restoration methods might produce different impacts on soil physical properties. In this study, two vegetation restoration methods (i.e., natural restoration and artificial restoration) were compared on abandoned farmland in the typically hilly and gullied areas of the Loess Plateau of Northwest China. In the natural restoration method, the farmland was abandoned to natural vegetation succession without irrigation, fertilization or other artificial disturbances. In the artificial restoration method, the farmland was planted with black locust (Robinia pseudoacacia L.) and watered and cultivated for the first two years. Three soil physical properties (i.e., soil moisture, bulk density and aggregation) were investigated under the two vegetation restoration methods. The results showed that the soil moisture and soil bulk density were higher under artificial restoration than under natural restoration within the first three years of vegetation restoration. By the fourth year, the soil moisture and soil bulk density were higher under natural restoration than under artificial restoration. For the stability of soil aggregates?>?0.25 mm, the soil aggregates in the 0-20 cm soil layer were more stable under artificial restoration than under natural restoration, while the results were the opposite for the 40-60 cm soil layer. Overall, the soil physical properties were continuously improved during the restoration of vegetation on abandoned farmland. In choosing between vegetation restoration methods, natural restoration is preferable to artificial restoration, but artificial intervention is needed during the first three years.  相似文献   

18.
冻结层的存在使得寒区有着与非寒区差别明显的水文循环过程,土壤冻融规律、水热盐运移、融雪水入渗等已成为众多学者的研究对象. 寒区低温条件下冻融土壤持水性质与非冻融土壤不同,其包气带冻结层往往具有弱透水性、蓄水保墒和隔热减渗的作用,使得寒区春季冻结层土壤的墒情较高. 以冻融土壤和非冻融土壤墒情对比监测为基础,选取地表以下100 cm的土壤为研究对象,在黑龙江大学呼兰校区设置冻融和非冻融对比监测试验场,同时段、同频率、同埋深(间隔 20 cm土层)进行土壤结构、水热及环境参数监测. 通过对比分析了不同埋深不同冻融阶段的墒情参数,量化了低温冻融条件下土壤墒情较非冻融土壤的高出部分,最后对冻土保墒的机理进行探讨与分析. 结果表明:冻结条件下土壤水分重新分布,在土水势的作用下由非冻结区向冻结区迁移. 初冻期地表土壤墒情达到最大,冻结期土壤最大墒情值随冻结锋面迁移分别在20、40、60 cm处达到最大,稳定冻结期和融化初期在80 cm处达到最大;土壤最大墒情值一般在冻结锋面前沿的10~20 cm处,较好地保持了土壤水分. 无论是从空间(不同埋深)还是时间(不同冻融阶段)角度分析,冻融土壤含水率均大于非冻融土壤,二者含水率的差值随埋深和冻融阶段的推移而加大,在稳定冻结期80 cm处达到最大,差值量可达6.4%~7.8%.  相似文献   

19.
Understanding the sediment source is very significant for erosion control in small watersheds. On the Loess Plateau of China, over 110 thousands of check dams were constructed in the past 60 years, which played an important role in controlling soil loss and also kept much information of erosion and sediment yield in the past. The objective of this investigation is to identify the sediment source by the 137Cs tracing method in a small watershed in the Loess Hilly Region of China. Fifty-five sampling sites were selected from the watershed (44 from the inter-gully area, 7 from the gully sides and 4 from the reference sites), and a total of 114 soil samples were collected from three sediment profile cores at the Sidizui watershed check dam constructed in 1959. Based on the erosion rate from the inter-gully area by the 137Cs models, and the total erosion amount deposited in the check dam since 1963, the relative contributions of sediment from the inter-gully area and gully area were estimated during 1963–2013. By comparing the difference of 137Cs activities of surface soils from the check dam (deposited in the 2011–2013 flood events), the inter-gully and gully areas, the relative contributions of sediment derived from the two source areas to the flood sediment during recent years (2011–2013) were estimated by a simple mixing model. Results showed that the erosion rate from the inter-gully area was about 3054 t/km2 a during 1963–2013, and the relative contributions of sediment from the inter-gully area and gully area were estimated to be 27 and 73%, respectively. The sediment from the inter-gully area was about 20% of the total sediment yield amount to the 2011–2013 floods, and from the gully area it was about 80%. The relative contribution of sediment from the inter-gully or gully area was not a fixed value in the watershed. Both of the inter-gully erosion and gully erosion should be simultaneously controlled, and more erosion control measures on the gully area should be taken in the subsequent watershed management in order to reduce the erosion amount in this region.  相似文献   

20.
Understanding the spatial distribution, stocks, and influencing factors of soil organic carbon (SOC) is important for understanding the current situation of SOC in alpine meadow ecosystems on the Qinghai–Tibetan Plateau (QTP). We sampled 23 soil profiles to a depth of 50 cm in a 33.5 hm\(^{2}\) plot in a typical meadow on the central QTP. The distribution, stock and influencing factors of SOC was then analyzed. The mean density of soil carbon content (SOCD) was 2.28 kg m\(^{-2}\) with a range of 5.99 kg  m\(^{-2}\). SOCD in the 0–10 cm layer was 3.94 kg m\(^{-2}\) and decreased quadratically with depth. The total stock of SOC to a depth of 50 cm was ca. 2950 t, the 0–10 and 0–30 cm layers accounting for 38 and 80%, respectively. SOCD varied moderately spatially and was distributed more homogeneously in the 0–10 and 40–50 cm layers but was more variable in the middle three layers. SOCD was significantly correlated positively with soil-water content, total porosity, and silt content and negatively with soil pH, bulk density, stone content and sand content. This study provides an important contribution to understanding the role of alpine meadows in the global carbon cycle. It also provides field data for model simulation and the management of alpine meadow ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号