首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3-D Viscoelastic FEM Modeling of Crustal Deformation in Northeast Japan   总被引:1,自引:0,他引:1  
-- As a first step toward establishing a standard earthquake cycle model in Japan, we simulate the crustal deformation during the past 100 years in northeast Japan, using a 3-D FEM based on the kinematic model. Then, we compare the computed results with the observed long-term leveling data and the recent GPS data. On the whole, although the effect of the subducting PAC is dominant, coseismic deformation of the interplate earthquakes can be clearly seen in the inland. Moreover, the postseismic deformation of the earthquakes due to the viscoelastic upper mantle seriously affects the inland movements, and continues for a few decades. Our modeling, including the effects of the interplate earthquakes and the three-dimensional viscoelastic inhomogeneity, reasonably explains the observed movement. Finally, we stress that the viscoelastic effect should be taken into consideration in the analyses, even if no earthquakes occur in the analyzed period.  相似文献   

2.
A new criterion is introduced to judge if the vicinity of the source region of a great interplate earthquake is in an active period. It is based on the stress change caused by the great earthquake. A region is regarded as being in an active period of seismicity if the occurrence rate of earthquakes on faults in the stress shadow of the great earthquake is significantly higher than in the early stage of the seismic cycle, and if the stressing rate of these faults is sufficiently low. This criterion was applied to the seismicity in the central part of southwest Japan before and after the 1944 Tonankai and 1946 Nankai earthquakes. The results show that before the 1944 Tonankai earthquake, the region was in an active period from at least 1927.The region was in a quiet period for almost50 years after the 1946 Nankai earthquake.Data after 1995 show that the region is once more in an active period of seismicity preceding the next great interplate earthquakes along the Nankai trough,although the total number of earthquakes has not yet significantly increased. Our results indicate that earthquake probability in the central part of southwest Japan will become high in the coming decades until the next great interplate earthquakes along the Nankai trough.  相似文献   

3.
--A 2-D finite-element-method (FEM) numerical experiment of earthquake cycles at a subduction zone is performed to investigate the effect of viscoelasticity of the earth on great interplate earthquake fault slip. We construct a 2-D viscoelastic FEM model of northeast Japan, which consists of an elastic upper crust and a viscoelastic mantle wedge under gravitation overlying the subducting elastic Pacific plate. Instead of the dislocation model prescribing an amount of slip on a plate interface, we define an earthquake cycle, in which the plate interface down to a depth is locked during an interseismic period and unlocked during coseismic and postseismic periods by changing the friction on the boundary with the master-slave method. This earthquake cycle with steady plate subduction is periodically repeated to calculate the resultant earthquake fault slip.¶As simulated in a previous study (Wang, 1995), the amount of fault slip at the first earthquake cycle is smaller than the total relative plate motion. This small amount of fault slip in the viscoelastic medium was considered to be one factor explaining the small seismic coupling observed at several subduction zones. Our simulation, however, shows that the fault slip grows with an increasing number of repeated earthquake cycles and reaches an amount comparable to the total relative plate motion after more than ten earthquake cycles. This new finding indicates that the viscoelasticity of the earth is not the main factor in explaining the observed small seismic coupling. In comparison with a simple one-degree-of-freedom experiment, we demonstrate that the increase of the fault slip occurs in the transient state from the relaxed initial state to the stressed equilibrium state due to the intermittent plate loading in a viscoelastic medium.  相似文献   

4.
Abstract Bathymetric data from south of Hokkaido obtained during a cruise of R/V Hakuho-Maru are summarized, and their correlation with earthquake occurrence is discussed. There are structural lineations on the seaward slope of the Kuril Trench, oblique to the Kuril Trench axis and parallel to the magnetic lineations in the Pacific plate. The structural lineations comprise horst-grabens generated by normal faulting. This suggests that Cretaceous tectonic structures originating at the spreading centre affect present seismotectonics around the trench axis. The structural-magnetic relation is compared to the case of the Japan Trench. North-east of the surveyed area, there are two major fracture zones (Nosappu Fracture Zone and Iturup Fracture Zone) that divide the oceanic plate into three segments. If the fracture zones (FZ) and the zone of paleo-mechanical weakness, represented by magnetic lineations, can control the direction of normal faults at a trench, the extent of the resulting topographic roughness on the seaward slope of the trench would be different across an FZ because of the differences in ages. By studying recent large earthquakes occurring in the south Kuril region, it is shown that several main-aftershock distributions for large earthquakes in this region are bounded by the Nosappu FZ and the Iturup FZ. Two models (Barrier model and Rebound model) are presented to interpret earthquake occurrence near the south Kuril Islands. The Barrier model explains seismic boundaries seen in several examples for earthquake occurrence in the south Kuril regions. The fracture zone forming the boundary of two segments with different magnetic lineations is also the boundary of two different normal fault systems on their ocean bottom, and the difference in sea-bottom roughness between two normal fault systems should affect the seismic coupling at a plate interface. Due to the difference of seismic coupling, earthquake occurrence is controlled by an FZ and then the FZ acts as a seismic boundary (Barrier model). Existing normal faults created by plate bending of subducting oceanic plate should rebound after its subduction (Rebound model). This rebound of normal faults may cause intraplate earthquakes with a high-angle reverse-fault mechanism such as the 1994 Shikotan Earthquake. The energy released by an intraplate earthquake generated by normal-fault rebounding is not directly related to that of interplate earthquakes such as low-angle thrust earthquakes. It is a reason why large earthquakes occurred in the same region during a relatively short period.  相似文献   

5.
Influence of fluids and magma on earthquakes: seismological evidence   总被引:3,自引:0,他引:3  
In this paper, we present seismological evidence for the influence of fluids and magma on the generation of large earthquakes in the crust and the subducting oceanic slabs under the Japan Islands. The relationship between seismic tomography and large crustal earthquakes (M=5.7-8.0) in Japan during a period of 116 years from 1885 to 2000 is investigated and it is found that most of the large crustal earthquakes occurred in or around the areas of low seismic velocity. The low-velocity zones represent weak sections of the seismogenic crust. The crustal weakening is closely related to the subduction process in this region. Along the volcanic front and in back-arc areas, the crustal weakening is caused by active volcanoes and arc magma resulting from the convective circulation process in the mantle wedge and dehydration reactions in the subducting slab. In the forearc region of southwest Japan, fluids are suggested in the 1995 Kobe earthquake source zone, which have contributed to the rupture nucleation. The fluids originate from the dehydration of the subducting Philippine Sea slab. The recent 2001 Geiyo earthquake (M=6.8) occurred at 50 km depth within the subducting Philippine Sea slab, and it was also related to the slab dehydration process. A detailed 3D velocity structure is determined for the northeast Japan forearc region using data from 598 earthquakes that occurred under the Pacific Ocean with hypocenters well located with SP depth phases. The results show that strong lateral heterogeneities exist along the slab boundary, which represent asperities and results of slab dehydration and affect the degree and extent of the interplate seismic coupling. These results indicate that large earthquakes do not strike anywhere, but only anomalous areas which can be detected with geophysical methods. The generation of a large earthquake is not a pure mechanical process, but is closely related to physical and chemical properties of materials in the crust and upper mantle, such as magma, fluids, etc.  相似文献   

6.
2013年4月22日在赤峰—开原断裂中段发生了内蒙古通辽5.3级地震,对我国华北和东北地区的地震形势产生双重影响。基于K值、G-R关系、能量释放比例RE和M-T等指标判定通辽5.3级地震为主震-余震型。根据1900年以来东北地区中强地震时空演化规律分析认为,大兴安岭和松辽盆地5级以上地震具有基于时间相依的空间对跳现象,通辽5.3地震是继2008年6月10日阿荣旗与鄂伦春交界5.2级地震之后,对跳发生于松辽盆地东南边缘的一次中强地震;对比东北地区以往震例分析认为,通辽5.3级地震既具有符合历史统计规律的普遍性,又具有不同于历史统计规律的特殊性。根据2011年3月11日日本东海岸9.0级强震前后东北地区中等以上地震的时空演化特征分析认为,海拉尔盆地及大兴安岭过渡带、环渤海地区至开鲁盆地的"菱形"区域是日本9.0级地震之后我国东部地区响应最为强烈的地区。由于同时受到日本9.0级地震和鄂霍次克海8.2级深震前所未有的双重影响,2013年东北地区的松辽盆地史无前例的发生了8次5级以上中强地震,未来东北地区很可能将重启新的地震活动格局。  相似文献   

7.
An interpretation of the parameters of earthquake sources is proposed for the two large earthquakes in the Rat Islands of February 4, 1965 (M W = 8.7), and November 17, 2003 (M W = 7.7–7.8), based on the analysis of focal mechanisms, the manifestation of aftershocks, and the specific features of the geological structure of the island slope of the Rat Islands. The source of the earthquake of 1965 is a reverse fault of longitudinal strike, with a length of ~350 km. It is located in the lower part of the Aleutian Terrace and probably is genetically connected with the development of the Rat submarine ridge. The westward boundary of the earthquake source is determined by the Heck Canyon structures, and the eastward boundary is determined by the end of Rat Ridge in the region of λ ~ 179°E–179.5°E. The source of the earthquake of 2003 is a steep E-W reverse fault extending for about 100 km. It is located in the eastern part of the Rat Islands, higher on the slope than the source of the earthquake of 1965. The westward end of the earthquake source is determined by Rat Canyon structures, and the eastward end is an abrupt change in isobaths in the region of λ ~ 179°E. According to the aftershock hypocenters, the depth of occurrence of the reverse fault could reach ~60 km. According to our interpretation, on the southern slope of the Rat and Near islands, there is a complex system of seismogenic faults that is caused by tectonic development of different structural elements. The dominant types of faults here are reverse faults, as in other island arcs. During earthquakes, reverse faults oriented along the island arc and also faults that intersect it exhibit themselves. The reverse faults of northeastern strike that intersect the arc characterize the type of tectonic motions in a series of canyons of the western part of the Aleutian Islands.  相似文献   

8.
Recent results from Global Positioning System (GPS) measurements show deformation along the coast of Ecuador and Colombia that can be linked to the rupture zone of the earthquake in 1979. A 3D elastic boundary element model is used to simulate crustal deformation observed by GPS campaigns in 1991, 1994, 1996, and 1998. Deformation in Ecuador can be explained best by 50% apparent locking on the subduction interface. Although there have not been any historic large earthquakes (Mw>7) south of the 1906 earthquake rupture zone, 50% apparent elastic locking is necessary to model the deformation observed there. In Colombia, only 30% apparent elastic locking is occurring along the subduction interface in the 1979 earthquake rupture zone (Mw 8.2), and no elastic locking is necessary to explain the crustal deformation observed at two GPS sites north of there. There is no evidence from seismicity or plate geometry that plate coupling on the subduction zone is reduced in Colombia. However, simple viscoelastic models suggest that the apparent reduction in elastic locking can be explained entirely by the response of a viscous upper mantle to the 1979 earthquake. These results suggest that elastic strain accumulation is occurring evenly throughout the study area, but postseismic relaxation masks the true total strain rate.  相似文献   

9.
We performed a tectonophysical analysis of earthquake frequency–size relationship types for large Central Asian earthquakes in the regions of dynamical influence due to major earthquake-generating faults based on data for the last 100 years. We identified four types of frequency–size curves, depending on the presence/absence of characteristic earthquakes and the presence or absence of a downward bend in the tail of the curve. This classification by the shape of the tail in frequency–size relationships correlates well with the values of the maximum observed magnitude. Thus, faults of the first type (there are characteristic earthquakes, but no downward bend) with Mmax ≥ 8.0 are classified as posing the highest seismic hazard; faults with characteristic earthquakes and a bend, and with Mmax = 7.5–7.9, are treated as rather hazardous; faults of the third type with Mmax = 7.1–7.5 are treated as posing potential hazard; and lastly, faults with a bend, without characteristic earthquakes, and with a typical magnitude Mmax ≤ 7.0, are classified as involving little hazard. The tail types in frequency–size curves are interpreted using the model of a nonlinear multiplicative cascade. The model can be used to treat different tail types as corresponding to the occurrence/nonoccurrence of nonlinear positive and negative feedback in earthquake rupture zones, with this feedback being responsible for the occurrence of earthquakes with different magnitudes. This interpretation and clustering of earthquake-generating faults by the behavior the tail of the relevant frequency–size plot shows raises the question about the physical mechanisms that underlie this behavior. We think that the occurrence of great earthquakes is related to a decrease in effective strength (viscosity) in the interblock space of faults at a scale appropriate to the rupture zone size.  相似文献   

10.
为了清晰认识发生于青藏高原西北部2008年与2014年的两次于田MS7.3地震发震构造环境与构造地貌特征,本文利用DEM(数字高程模型)数据分析"喀喇昆仑—西昆仑—康西瓦地区"的地形地貌特征,结合区域活动断裂研究资料、相对于塔里木盆地的两期GPS速度场资料和区域运动学特征等讨论两次MS7.3地震所处的青藏高原西北部区域构造环境和地壳运动学特征,分析喀喇昆仑断裂、阿尔金断裂康西瓦段、龙木错-邦达错断裂及贡嘎错断裂所围限的西昆仑地块的地质构造背景、阿尔金断裂西南端发震断裂活动性及孕震环境等发震构造基本条件;进而利用"地形剖面"方法及断裂分布特征分析震源区的地形地貌特征,给出晚第四纪以来的地貌形态与发震构造的关系,从区域构造地貌学和GPS地壳运动学的角度探讨中上地壳变形特征及孕震过程;最后讨论区域孕震构造、克尔牙张性裂谷演化过程和地球动力学背景等。通过地形剖面及区域地貌综合分析新疆于田2008年MS7.3拉张型发震构造和2014年MS7.3走滑拉张型地震的发震构造特点的区别,认为2014年发生的地震可能与2008年MS7.3地震同震库伦应力变化、触发过程及震后变形过程密切相关,并且青藏高原西北部地区存在明显的东西向拉张性构造单元,可能与青藏高原10~15 Ma以来的地壳减薄过程有关。  相似文献   

11.
On August 8, 2017, a M7.0 earthquake occurred in Jiuzhaigou County, Sichuan Province, China, resulting in significant casualties and property damage. Therefore, it is critical to identify the areas of potential aftershocks before reconstruction and re-settling people to avoid future disasters. Based on the elastic dislocation theory and a multi-layered lithospheric model, we calculate the Coulomb failure stress changes caused by the Wenchuan and Jiuzhaigou earthquakes, discuss the relationship between the Mw7.9 Wenchuan and M7.0 Jiuzhaigou earthquakes, and analyze the influence of the aftershock distribution and stress changes on the major faults in this region caused by the Jiuzhaigou earthquake. The co- and post-seismic stress changes caused by the Wenchuan earthquake significantly increased the stress accumulation at the hypocenter of the Jiuzhaigou earthquake. Therefore, the occurrence of the Jiuzhaigou earthquake was probably stimulated by the Wenchuan earthquake. The aftershock distribution is well explained by the co-seismic stress changes of the Jiuzhaigou earthquake. The stress accumulation and corresponding seismic hazard on the Maqu-Heye segment of the East Kunlun fault and the northern extremity of the Huya fault has been further increased by the Jiuzhaigou earthquake.  相似文献   

12.
The Xiluodu (XLD) reservoir is the second largest reservoir in China and the largest in the Jinsha River basin. The occurrence of two M > 5 earthquakes after reservoir impoundment has aroused great interest among seismologists and plant operators. We comprehensively analyzed the seismicity of the XLD reservoir area using precise earthquake relocation results and focal mechanism solutions and found that the seismicity of this area was weak before impoundment. Following impoundment, earthquake activity increased significantly. The occurrence of M ≥ 3.5 earthquakes within five years of impoundment also appear to be closely related to rapid rises and falls in water level, though this correlation weakened after five years because earthquake activity was far from the reservoir area. Earthquakes in the XLD reservoir area are clustered; near the dam (Area A), small faults are intermittently distributed along the river, while Area B is composed of multiple NW-trending left-lateral strike-slip faults and a thrust fault and Area C is composed of a NW-trending left-lateral strike-slip main fault and a nearly EW-trending right-lateral strike-slip minor fault. The geometries of the deep and the shallow parts of the NW-trending fault differ. Under the action of the NW-trending background stress field, a series of NW-trending left-lateral strike-slip faults and NE-trending thrust faults in critical stress states were dislocated due to the stress caused by reservoir impoundment. The two largest earthquakes in the XLD reservoir area were tectonic earthquakes that were directly triggered by impoundment.  相似文献   

13.
自1920年海原发生M8.5地震以来,青藏高原东北缘接连发生了1927年古浪M8.0地震、1932年昌马M7.6地震等一系列大地震,使其进入了强震活动的丛集期。为了探究青藏高原东北缘这一系列地震间的相互作用及区域地震危险性,建立青藏高原东北缘的三维Maxwell黏弹性有限元模型,模拟了区域自1920年以来17次M6.7以上地震的同震及震后库仑应力演化。结果显示:研究区自1920年海原M8.5大地震之后,后续的16次地震中,有13次地震发生在库仑应力变化为正的区域,说明了地震间的相互作用可能是导致区域地震丛集的主要原因之一。系列地震发生后,阿尔金断裂、柴达木盆地断裂西段、东昆仑断裂中段、鄂拉山断裂北段、共和盆地断裂南段、日月山断裂南段、庄浪河断裂、礼县—罗家堡断裂、成县盆地断裂西段、文县断裂西段、龙首山断裂南段、六盘山断裂东段、西秦岭北缘断裂东段、海原断裂西段和祁连断裂东段位于库仑应力变化为正的区域,且大部分断裂或断裂段的累积库仑应力变化超过了0.01 MPa,它们未来的地震危险性较高。  相似文献   

14.
The generation of interplate earthquakes can be regarded as a process of tectonic stress accumulation and release, driven by relative plate motion. We completed a physics-based simulation system for earthquake generation cycles at plate interfaces in the Japan region, where the Pacific plate is descending beneath the North American and Philippine Sea plates, and the Philippine Sea plate is descending beneath the North American and Eurasian plates. The system is composed of a quasi-static tectonic loading model and a dynamic rupture propagation model, developed on a realistic 3-D plate interface model. The driving force of the system is relative plate motion. In the quasi-static tectonic loading model, mechanical interaction at plate interfaces is rationally represented by the increase of tangential displacement discontinuity (fault slip) across them on the basis of dislocation theory for an elastic surface layer overlying Maxwell-type viscoelastic half-space. In the dynamic rupture propagation model, stress changes due to fault slip motion on non-planar plate interfaces are evaluated with the boundary integral equation method. The progress of seismic (dynamic) or aseismic (quasi-static) fault slip on plate interfaces is governed by a slip- and time-dependent fault constitutive law. As an example, we numerically simulated earthquake generation cycles at the source region of the 1968 Tokachi-oki earthquake on the North American-Pacific plate interface. From the numerical simulation, we can see that postseismic stress relaxation in the asthenosphere accelerates stress accumulation in the source region. When the stress state of the source region is close to a critical level, dynamic rupture is rapidly accelerated and develops over the whole source region. When the stress state is much lower than the critical level, the rupture is not accelerated. This means that the stress state realized by interseismic tectonic loading essentially controls the subsequent dynamic rupture process.  相似文献   

15.
Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones   总被引:1,自引:0,他引:1  
—We classified tsunamigenic earthquakes in subduction zones into three types earth quakes at the plate interface (typical interplate events), earthquakes at the outer rise, within the subducting slab or overlying crust (intraplate events), and "tsunami earthquakes" that generate considerably larger tsunamis than expected from seismic waves. The depth range of a typical interplate earthquake source is 10–40km, controlled by temperature and other geological parameters. The slip distribution varies both with depth and along-strike. Recent examples show very different temporal change of slip distribution in the Aleutians and the Japan trench. The tsunamigenic coseismic slip of the 1957 Aleutian earthquake was concentrated on an asperity located in the western half of an aftershock zone 1200km long. This asperity ruptured again in the 1986 Andreanof Islands and 1996 Delarof Islands earthquakes. By contrast, the source of the 1994 Sanriku-oki earthquake corresponds to the low slip region of the previous interplate event, the 1968 Tokachi-oki earthquake. Tsunamis from intraplate earthquakes within the subducting slab can be at least as large as those from interplate earthquakes; tsunami hazard assessments must include such events. Similarity in macroseismic data from two southern Kuril earthquakes illustrates difficulty in distinguishing interplate and slab events on the basis of historical data such as felt reports and tsunami heights. Most moment release of tsunami earthquakes occurs in a narrow region near the trench, and the concentrated slip is responsible for the large tsunami. Numerical modeling of the 1996 Peru earthquake confirms this model, which has been proposed for other tsunami earthquakes, including 1896 Sanriku, 1946 Aleutian and 1992 Nicaragua.  相似文献   

16.
An interpretation of the type, size, and interrelations of sources is proposed for the three large Aleutian earthquakes of March 9, 1957, May 7, 1986, and June 10, 1996, which occurred in structures of the Andreanof Islands. According to our interpretation, the earthquakes were caused by steep reverse faults confined to different structural units of the southern slope of the Andreanof Islands and oriented along the strike of these structures. An E-W reverse fault that generated the largest earthquake of 1957 is located within the Aleutian Terrace and genetically appears to be associated with the development of the submarine Hawley Ridge. The western and eastern boundaries of this source are structurally well expressed by the Adak Canyon in the west (~177°W) and an abrupt change in isobaths in the east (~173°W). The character of the boundaries is reflected in the focal mechanisms. The source of the earthquake of 1957 extends for about 300 km, which agrees well with modern estimates of its magnitude (M w = 8.6). Because the earthquake of 1957 caused, due to its high strength, seismic activation of adjacent areas of the Aleutian island arc, its aftershock zone appreciably exceeded in size the earthquake source. Reverse faults that activated the seismic sources of the earthquakes of 1986 and 1996 were located within the southern slope of the Andreanof Islands, higher than the Aleutian Terrace, outside the seismic source of the 1957 earthquake. The boundaries of these sources are also well expressed in structures and focal mechanisms. According to our estimate, the length of the 1986 earthquake source does not exceed 130–140 km, which does not contradict its magnitude (M w = 8). The length of the 1996 earthquake source is ~100 km, which also agrees with the magnitude of the earthquake (M w = 7.8).  相似文献   

17.
青藏高原东北缘地震时空迁移的有限元数值模拟   总被引:6,自引:2,他引:4       下载免费PDF全文
孙云强  罗纲 《地球物理学报》2018,61(6):2246-2264
地震在大陆内部断层系统中的时空迁移和丛集的基本力学机制一直是地球科学家关注的重要问题.青藏高原东北缘地震活动频繁,其地震时空迁移和地震丛集现象显著,是研究这个问题的重要区域.我们建立了一个三维黏弹塑性有限元模型,模拟了青藏高原东北缘主要活动断层系统的地震循环和地震时空迁移;计算了断层系统的应力演化;并探讨了断层之间的相互作用及地震时空迁移和地震丛集的原因.模拟结果显示断层之间的相互作用通过增加或降低断层上的库仑应力,加速或延缓了地震发生,使得区域地震可以在短时间内集中发生,从而形成地震丛集;另外,区域经过多个地震循环的长期演化,一些孕震断层上的应力状态恰好都达到屈服的临界状态附近,从而也可以导致这些断层上的地震在短期内集中发生,因此产生地震丛集和地震迁移.我们发现当区域经历地震丛集之后,该区域的应力大大释放,区域进入地震平静期;随着构造加载的持续,区域应力逐渐恢复,为下一次地震丛集或地震序列累积应力和能量;上述过程可以重复发生.因此地震丛集期与平静期交替出现.我们还统计了各个断层的大地震相互迁移的模拟结果,结果显示青藏高原东北缘下一次大地震有很大的概率会发生在海原断层上.  相似文献   

18.
鲜水河断裂带库仑应力演化与强震间关系   总被引:14,自引:5,他引:9       下载免费PDF全文
以鲜水河断裂带为研究区,首先验证了该断裂带上1893年以来M6.7以上地震的相互触发作用,然后采用更符合实际的分层黏弹介质模型研究强震震后黏滞松弛引起的库仑应力变化对后续地震的影响,并基于负位错理论计算鲜水河断裂带10个断层段的震间长期构造加载作用引起的断层上的应力积累.在此基础上,讨论同震、震后、震间效应引起的累积库仑应力变化与区域强震活动的关系,给出断层上库仑应力随时间的演化.结果表明,鲜水河断裂带上1893年以来发生的7次强震均在其前面一系列强震及构造应力加载的驱使下发生,同震、震后、震间三方面效应均引起了鲜水河断裂带不可忽略的库仑应力变化.对断层上的库仑应力状态的研究,可进一步为揭示地震的发生规律、找寻危险断层段提供线索.  相似文献   

19.
In recent years, the Coulomb stress change induced by large earthquakes has attracted extensive attention in seismology. Many scientists at home and abroad have made remarkable achievements in the research on it. It is well known that North China is densely populated and industrially developed. More importantly, the Chinese capital city, Beijing, lies in the hinterland of North China. At the same time, there are abundant active faults and earthquakes in North China. The capital Beijing is China's political, economic, cultural, and transportation center. It is the center of all social activities and economic activities in the country, and is also a region where population, wealth, and information are highly concentrated. With the integration of Beijing-Tianjin-Hebei and the construction of Xiong'an New District, the consequences of big earthquake in Beijing and surrounding areas are unimaginable. Due to its special geographical location, frequent seismic activities in North China capture much attention. From the physical principle, the occurrence of earthquakes releases the accumulated stress, but the stress does not completely disappear. Some of the stresses are transmitted and transferred to other areas, resulting in stress concentration in some areas, which in turn affects the occurrence of earthquakes in the area. This is the idea of stress triggering of earthquakes. According to this hypothesis, the enhancement of Coulomb stress corresponds to the additional loading of the fault and promotes the occurrence of earthquakes; conversely, the weakening of the Coulomb stress in the stress shadow zone corresponds to partial unloading of the fault, which will delay the occurrence of the earthquake. In order to study the future seismic activity of North China, this paper estimates risks of future strong earthquakes in the region. To this end, we calculate the coseismic Coulomb stress changes and postseismic viscoelastic relaxation stresses of the events with MS ≥ 6.0 that occurred in the North China region since 1820, using elastic dislocation theory and hierarchical lithosphere model, respectively, in order to examine whether the cumulative Coulomb stress change can explain the spatiotemporal pattern of large earthquakes. Also we project the Coulomb stress change onto the specific active faults in North China and assign the present and future Coulomb stress change state to the faults to provide a dynamics reference for analyzing whether the areas will be hit by strong earthquakes in the future. The simulated results show that the effect caused by the effective friction coefficient changes is not significant on the spatial distribution of Coulomb stress changes induced by coseismic and postseismic viscoelastic relaxation effect of the medium of earthquakes in the North China region. Although the variation of the effective friction coefficient has an impact on the Coulomb stresses for some sections of faults, the general pattern of the spatial distribution of the Coulomb stress changes keeps unchanged. Consequently, 19 of the 24 earthquakes since the 1888 Bohai Bay earthquake have fallen in the positive region of Coulomb stress changes, with a triggering rate of 79%. In particular, considering the seismogeological data and the Coulomb stress calculation results, we assume that Luanxian-Yueting Fault, Panzhuangxi Fault, Dongming-Chengwu Fault, Yuncheng Fault, Longyao Fault of Ninghe-Xinxiang seismic belt, the Yingkou-Weifang Fault of Tanlu seismic belt, the Xiadian Fault, and the Huangzhuang-Gaoliying Fault in the Capital area have higher seismic risk and deserve in-depth study.  相似文献   

20.
东昆仑活动断裂带大地震之间的黏弹性应力触发研究   总被引:36,自引:30,他引:36       下载免费PDF全文
对青藏高原北部东昆仑破裂带大地震之间的应力转移和断层相互作用进行研究. 考虑1937年以来沿此破裂带发生的5个M≥7的地震:1937年M7.5花石峡地震,1963年MS7.1都兰地震,1973年MS7.3玛尼地震,1997年MW7.5玛尼地震和2001年MW7.8可可西里地震,模拟了黏弹性成层介质中地震断层错动产生的应力演化过程,并计算了在后续地震破裂面上产生的库仑破裂应力变化. 结果表明,前面4个地震均造成2001年可可西里地震断层面上库仑破裂应力的增加,并且中地壳和下地壳的黏弹性松弛效应使得库仑破裂应力场随着时间的推移而逐渐加强. 在计算过程中定量估计了可可西里地震发生时前面4个地震同震形变和黏弹性松弛导致可可西里地震破裂面上库仑破裂应力变化之间的比值,发现前3个地震由黏弹性松弛造成的变化远远大于同震形变所造成的变化. 可可西里地震之后应力场的模拟表明东昆仑断层中段的东大滩-西大滩断层段(位于可可西里地震破裂以东及都兰地震以西)的库仑破裂应力显著增加,变化值达0.05~0.1 MPa,预示这一地区地震危险性的增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号