首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   

2.
The degradation of two pesticides: atrazine and metazachlor was investigated in aqueous solution under UV-irradiation with and without H2O2. Rate constants of the photochemical degradation were determined applying a first order kinetics and quantum yields of the processes were calculated. This approach leads to an apparent decrease of the quantum yield with increasing initial pesticide concentration. At low H2O2 initial concentrations, the pesticide degradation was shown to be much more efficient than the degradation under UV-irradiation only. However, at high H2O2 concentrations (>2 mmol L?1), the efficiency of the UV/H2O2 system dropped down and the quantum yields of degradation were lower than for the direct photolysis. In the absence of H2O2, no influence of the pH value on the photodegradation of the pesticides could be noticed in a range between pH 3 and pH 11. At low H2O2 initial concentrations, the photochemical degradation of the pesticides was much faster at pH 3 and pH 7 compared with the degradation at pH 11. The results emphasize the potential of optimized reaction conditions in advanced oxidation.  相似文献   

3.
In this study, the decolorization, dearomatization, and mineralization efficiencies of different advanced oxidation processes (AOPs; namely O3, O3/Fe(II), O3/Fe(II)/UVA, and O3/TiO2/UVA) were investigated for the azo dye C.I. Reactive Red 194 (RR194). The effects of pH (3–11), amount of TiO2 (0.05–1 g/L), and concentration of Fe(II) (0.1–1.6 mM) were investigated for the applied methods. The decolorization and mineralization efficiencies of the photocatalytic ozonation system (O3/TiO2/UVA) were increased by decreasing the pH of the dye solution in contrast to the ozonation system (O3). Decolorization of RR194 was increased in the photocatalytic ozonation system with an increasing amount of catalyst however, a decreasing was occurred for the homogeneous catalytic system (O3/Fe(II)) when increasing the concentration of catalyst. The decolorization efficiency of the homogeneous catalytic system (O3/Fe(II)) was enhanced when combined with UVA light. In our study, the most efficient method for dearomatization and mineralization was the O3/TiO2/UVA among the applied AOPs.  相似文献   

4.
This study investigated the effects of O3 and O3/H2O2/Fe2+ in the advanced oxidation processes (AOPs) on the biodegradable and soluble characteristics of semi‐aerobic stabilized solid waste leachate. The biodegradability (BOD5/chemical oxygen demand, COD) ratio improved from 0.034 to 0.05 and 0.1 following O3 and O3/H2O2/Fe2+, respectively. Fractions of biodegradable COD(bi) (24%), non‐biodegradable COD(ubi) (76%), soluble COD(s) (59%), biodegradable soluble COD(bsi) (38%), non‐biodegradable soluble COD(ubsi) (62%), and particulate COD (PCOD) (41%) in stabilized leachate were also investigated. The fraction of COD(bi) increased to 28 and 36% after applying O3 and O3/AOPs, respectively. COD(S) increased to 59% after O3 and to 72% after O3/AOPs, whereas COD(bsi) increased to 38 and 51% after O3 and O3/AOPs, respectively. The removal efficiency of COD(S) was obtained at 5% after O3 alone and improved to 51% following ozone‐based AOPs, whereas the removal efficiency of PCOD improved from 25% after O3 to 71% after ozone‐based AOPs.  相似文献   

5.
Design of Fenton and photo‐Fenton reactions was partially automated by using sequential injection analysis (SIA) and response surface methodology for the treatment of a wastewater sample from a coatings industry. The extension of both Fenton and photo‐Fenton reactions was evaluated by the percentage of total organic carbon (TOC) remaining in solution after 15 min of reaction. Use of small volumes of sample and reagents, as well as easy solution handling, were the remarkable features of the proposed system. The highest percentage of TOC removal (79%) was obtained by the photo‐Fenton reaction at the following initial mass‐based concentration ratios: H2O2/TOC = 10, H2O2/FeSO4 = 50, and pH 2.5. The best result for Fenton reaction indicated a TOC removal of only 45%, obtained at H2O2/initial TOC = 20, H2O2/FeSO4 = 30, and pH 2.5. The SIA system was designed to dispense reagents to the sample flasks and to drive the sample intended to photo‐Fenton reaction through a homemade photo‐reactor. Modifications in chemical parameters of the reactions were achieved via the software commanding the SI system, without the need for physical reconfiguration of reagents around the selection valve.  相似文献   

6.
A novel, simple method based on magnetic separation was developed for analytical purposes. In this method, N‐methyl‐D‐glucamine (NMDG) modified magnetic microparticles that were synthesized by using the sol‐gel method were used for the selective extraction and preconcentration of boron from aqueous solutions. This method combines the simplicity and selectivity of solvent extraction with the easy separation of magnetic microparticles from a solution with a magnet without any preliminary filtration step. The structure of the prepared γ‐Fe2O3‐SiO2‐NMDG (magnetic sorbent) composites were characterized by using X‐ray diffraction (XRD), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR). The influence of different parameters on the sorbent capacity, such as the sorption/desorption of boron, magnetic sorbent dosage, pH, equilibrium time, type, and amount of stripping solution, were evaluated by using the magnetic sorbent. Any equilibrium pH greater than 6 can be used for sorption. Desorption from the sorbent was carried out by using 1.0 M HCl. The sorption and desorption efficiency of the γ‐Fe2O3‐SiO2‐NMDG was found as 92.5 ± 0.5% and 99.8 ± 6%, respectively.  相似文献   

7.
The present article describes As(III) sorption behavior of novel calix[4]arene appended TS‐4 resin. The sorption ability of TS‐4 resin has been evaluated at wide range of pH, i.e., pH 2–14. The maximum As(III) sorption efficiency (95%) was achieved at pH 2, which shows that the TS‐4 resin possesses greater affinity for As(III) at this pH. Column sorption mechanism was evaluated through various operating parameters, i.e., change in concentration, flow rate, bed heights, and pH. The experimental data were also tested against bed depth service time model and from the results; it has been observed that the data is in close agreement with the theoretically calculated values. Thus, from the data it has been revealed that TS‐4 resin has maximum column efficiency of 0.13 mmol g?1. Application of TS‐4 to real samples indicates a slight decrease (2–3%) in extraction efficiency of TS‐4 because of high concentration of total dissolved salts. Thermal behavior was tested by differential scanning calorimetry and it has been observed that TS‐4 resin is stable up to 160°C. TS‐4 resin was found to be regenerable and best regeneration was achieved by using 4% solution of NaOH. It can be deduced from the study that the resin will find its applicability in small as well as industrial scale water purification plants.  相似文献   

8.
Chert and other hard monomineralic quartz grains weather mostly by mechanical processes in modern environments. Their clasts are overrepresented in conglomerates and sands relative to their sources regions. Conversely, macroscopic dissolution features, including quartzite karst, are rare but not nonexistent. The similar rarity of quartz dissolution in Archean deposits provides a paleothermometer for climate on the early Earth. For example, chert is overrepresented in conglomerates and sands of the ∼3.2 Ga Moodies Group (South Africa) relative to the source region. Features related to the far-from-equilibrium dissolution rate are particularly diagnostic as it increases an order of magnitude over 25 °C, much more than solubility. Extrapolating from observed dissolution rates in modern environments that weather at ∼25 °C, we expect obvious dissolution features in ancient climates above ∼50 °C. Polycrystalline quartz and chert would readily disaggregate by solution along grain boundaries, yielding silt and clay. Quartz grains within slowly weathering granite would become friable, yielding silt and clay, rather than sand. At still higher temperatures, Al2O3-rich clays from weathered granite would stand above solution-weathered chert on low-relief surfaces. The observed lack of these features is evidence that the Archean climate was not especially hot.  相似文献   

9.
The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L−1, [H2O2] ≈ 10 mg L−1 and [Fe] ≈ 10 mg L−1; [H2O2] ≈ 20 mg L−1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L−1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose–response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L−1; [H2O2] ≈ 20 mg L−1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.  相似文献   

10.
In this study, the oxidative decolorization of C.I. reactive yellow 145 (RY 145) from synthetic textile wastewater including RY 145 and polyvinyl alcohol by Fenton and sono‐Fenton processes which are the combination of Fenton process with ultrasound has been carried out. The effects of some operating parameters which are the initial pH of the solution, the initial concentration of Fe2+, H2O2, and the dye, temperature, and agitation speed on the color and chemical oxygen demand (COD) removals have been investigated. The optimum conditions have been found as [Fe2+] = 20 mg/L, [H2O2] = 20 mg/L, pH 3 for Fenton process and [Fe2+] = 20 mg/L, [H2O2] = 15 mg/L, pH 3 for sono‐Fenton process by indirectly sonication at 35 kHz ultrasonic frequency and 80 W ultrasonic power. The color and COD removal efficiencies have been obtained as 91 and 47% by Fenton process, and 95 and 51% by sono‐Fenton processes, respectively. Kinetic studies have been performed for the decolorization of RY 145 under optimum conditions at room temperature. It has been determined that the decolorization has occurred rapidly by sono‐Fenton process, compared to Fenton process.  相似文献   

11.
In this work, the treatment of actual agro‐industrial wastewaters (IWW) by a UV/H2O2 process has been investigated. The aqueous wastes were received from industrial olive oil mills and then treated by laboratory scale physicochemical methods, i. e., coagulation using ferrous and aluminum sulfate, decantation, filtration and adsorption on activated carbon. These wastes are brown colored effluents and have a residual chemical oxygen demand (COD) in the range of 1800 to 3500 mgO2 L–1, which cannot be further eliminated with physicochemical processes. The UV/H2O2 treatments were carried out under monochromatic irradiation at 254 nm using a thermostated reactor equipped with a mercury vapor lamp located in an axial position. The effects of initial H2O2 concentration, initial COD, pH and temperature have been studied in order to determine the optimum conditions for maximum color and COD removals. The experimental results reveal the suitability of the UV/H2O2 process for both removal of high levels of COD and effectively decolorizing the solution. In particular, 95% of color removal and 90% of COD removal were obtained under conditions of pH = 5 and 32°C using 2.75 g H2O2 g–1 COD L–1 during 6 h of UV‐irradiation. The treatment is unaffected by pH over the range 2 to 9. In addition, the COD removal is improved by increasing the temperature, whereas the color removal has not been affected by this parameter. The results show that the hydroxyl radicals generated from the catalytic decomposition of H2O2 by UV‐irradiation of the solution could be successfully used to mineralize the organics contained in IWW. The mineralization of the organics seems to occur in three main sequential steps: the first is the rapid decomposition of tannins leading to aromatic compounds, which are confirmed by the decolorization of the IWW; the second step corresponds to the oxidation of aromatics leading to aliphatic intermediates, which occurs by the cleavage of an aromatic ring, and is established by the removal of aromatics, and the final step is the slow oxidation of the aliphatic intermediates, which is measured by the COD removal.  相似文献   

12.
The territory of Karelia (Baltic Shield) is virtually not represented in the global paleomagnetic database for the Lower Riphean time interval (1650—1350 Ma). As regards the paleointensity H an, the huge interval 1–2 Ga in length is represented in the global paleointensity database by only eight determinations concentrated in the interval 1–1.35 Ga. The paper presents results of paleomagnetic studies of volcanic and subvolcanic rocks composing the Early Riphean Salmi Formation, which outcrops in the valley of the lower Tulemaioki River in the northern coast area of Lake Ladoga. Results of the study indicate that, in the Early Riphean time, the East European craton was located in the tropical region of the Southern Hemisphere between 15° S and 40° S. The inferred value of H an is close to the lower boundary of the interval (1.36–11.56) × 1022 A m2, encompassing previously published intensity values of the paleofield 1–1.35 Ga; this supports the hypothesis on the existence of long intervals of a lower field in the period in question [Maquoin et al., 2003].  相似文献   

13.
The removal of chemical oxygen demand (COD) and phenol from olive oil mill wastewaters (OOMW) was investigated experimentally by using conventional Fenton (CFP) and Fenton type processes (FTP) with zero valent iron (ZVI). Different operational parameters such as initial pH, Fe2+, Fe0, and H2O2 concentrations were examined. Kinetic studies in terms of COD and phenol removals for both CFP and FTP were performed. The original pH value (4.6) of OOMW for CFP was found as the optimum pH. The determined optimum conditions are [Fe2+] = 1500 mg L?1, [H2O2] = 1750 mg L?1, and pH = 4.6 for CFP; [Fe0] = 2000 mg L?1, [H2O2] = 2000 mg L?1, and pH = 3 for FTP. 82.4% COD and 62% phenol removals were performed under the optimum conditions by CFP, while 82% COD and 63.4% phenol were removed by FTP. According to the results of kinetic studies, it was observed that COD and phenol were removed by FTP more rapidly, compared to CFP. Consequently, it was determined that both CFP and FTP were effective processes for the pretreatment of OOMW.  相似文献   

14.
Bezafibrate (BZF), a widely used lipid regulator, is a potential threat to ecosystems and human health in water, and the recent research showed that advanced oxidation processes (AOPs) are much more effective for BZF degradation. In this study, we investigated the photochemical decomposition of BZF in surface water and effluent from waste water treatment plants (WWTP) by UV/H2O2 process. The results showed that the UV/H2O2 process was a promising method to remove BZF at low concentration, generally at µg L?1 level. When initial concentrations reach 100 µg L?1 in the deionized water, >99.8% of BZF could be removed in 16 min under UV intensity of 61.4 µm cm?2, at the H2O2 concentration of 0.1 mg L?1, and neutral pH condition. Moreover, BZF degradation was inhibited in this process when humic acid (HA) and inorganic solution anions were added to the deionized water solutions, including chloride, nitrate, bicarbonate, and sulfate, significantly. In the surface water and effluent of WWTP, however, the removal efficiency of BZF was lower than that in the deionized water because of the interference of complex constituents in the surface water and effluent. Some main intermediates at the m/z range of 100–400 were observed by high performance LC‐MS (HPLC/MS) and a simple pathway of BZF degradation by UV/H2O2 was proposed.  相似文献   

15.
A chemical-physical method for treatment of aniline containing waste water was developed. At the chemical stage aniline is polymerized by Fenton's reagent. Thus insoluble polyaniline precipitates. The best reaction conditions are: pH-value of 2–3, stepwise dosing of 60 mL H2O2 (30%) and 12 mL saturated FeSO4-solution per litre waste water. The molar ratio Fe(II): H2O2 amounts to 0.3:10. The concentration of aniline is reduced by this chemical treatment from about 20 g/L to 30–40 mg/L. By adsorption at activated charcoal the concentration of aniline can be reduced further to 0.2 mg/L. The resulting sludge can easily be dewatered in a chamber filter press.  相似文献   

16.
The present work focuses on the performance of Fenton, sono‐Fenton, and sono‐photo‐Fenton processes for the oxidation of phenol present in aqueous solution. The effects of H2O2 concentration, Fe2+ concentration, pH, and initial phenol concentration on the oxidation of phenol were studied. The optimum Fe2+ and H2O2 concentrations for the Fenton process were 45 and 800 mg/L, respectively. For the sono‐Fenton process, the optimum Fe2+ and H2O2 concentrations were 30 and 800 mg/L, respectively. The optimal conditions for the sono‐photo‐Fenton process were found to be 20 mg/L of Fe2+ and 700 mg/L of H2O2. The optimum pH was found to be 3 for the processes investigated in the present study. The analysis of results showed that the sono‐photo‐Fenton method reduced the Fe2+ concentration by 30–50% and the H2O2 concentration by 12.5%. It was found that the sono‐photo‐Fenton technique showed better performance than the Fenton and sono‐Fenton processes for the oxidation of phenol. A lumped kinetic model was used to predict the chemical oxygen demand reduction and the model was found to fit the data.  相似文献   

17.
This paper is an experimental investigation into the removal of arsenic species from simulated groundwater by adsorption onto Ca2+ impregnated granular activated carbon (GAC‐Ca) in the presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH and temperature on the percentage removal of total arsenic (As(T)), As(III) and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration of GAC‐Ca was found to be 8 g/L with an agitation time of 24 h, which reduced As(T) concentration from 188 to 10 μg/L. Maximum removal of As(V) and As(III) was observed in a pH range of 7–11 and 9–11, respectively. Removal of all the above arsenic species decreased slightly with increasing temperature. The presence of Fe and Mn increased the adsorption of arsenic species. Under the experimental conditions at 30°C, the maximum percentage removals of As(T), As(III), As(V), Fe, and Mn were found to be ca. 94.3, 90.6, 98.0, 100 and 63%, respectively. It was also observed that amongst the various regenerating liquids used, a 5 N H2SO4 solution exhibited maximum regeneration (ca. 91%) of the spent GAC‐Ca.  相似文献   

18.
A study of the removal of As(V) from aqueous solution by Fe2(SO4)3 has been carried out to establish optimum parameters for the process. Optimum arsenic removal is obtained at pH = 5, and mole ratio Fe(III)/As(V) = 7. Minimum arsenate solubility is obtained from sediments precipitated at pH = 5 and Fe/As = 7…8.  相似文献   

19.
The Queershan composite granitic pluton is located in the north of the late Paleozoic Yidun arc collision-orogenic belt, eastern Tibetan Plateau. The main rock types are coarse-grained porphyritic alkalic-monzonite granite with minor fine-grained porphyritic monzogranite and granodiorite distributed in the eastern and southwestern regions. Here we report their zircon U-Pb ages and geo- chemical data. The intrusive contact relations indicate that granodiorite was formed earlier than the alkalic-monzonite granite(105.9±1.3 Ma) and monzogranite(102.6±1.1 Ma). These suggest that the Queershan composite granitic pluton was formed through three-stage magmatic events. The alkalic-monzonite granite(105.9±1.3 Ma) and monzogranite(102.6±1.1 Ma) are characterized by high SiO2(73.5%–77.7%), K2O+Na2O(6.9%–8.5%), Ga/Al ratios(2.6–3.4) and low Al2O3(11.8%–14.5%), CaO(0.25%–1.5%), MgO(0.18%–0.69%), negative Ba, Sr and Eu anomalies, showing A-type granite affinities. The granodiorite exhibits lower SiO2, P2O5 and K2O+Na2O contents, but higher Al2O3, CaO and MgO contents than alkalic-monzonite granite and monzogranite, showing I-type granite affinity. 176Hf/177 Hf ratios of the alkalic-monzonite granite and the monzogranite are 0.282692–0.282749 and 0.282685–0.282765, respectively, and with similar ?Hf(t) values(?0.56 to 1.43 and ?0.87 to 1.90 respectively). They also present similar TDM2 model ages(1.04–1.22 and 1.07–1.2 Ga respectively), indicating they may be sourced from a similar rock source, mostly like Kangding Complex. The homogeneity of the Hf isotopic compositions and the absence of the MMEs demonstrate that little depleted mantle materials have contributed to the source. We propose that the Mesoproterozoic crust materials of the Yangtze Craton exist beneath the Yidun arc terrane and support it was a dismembered part of the Yangtze Craton. The A-type granites of Queershan composite granitic pluton are most probably related to the closure of the Bangong-Nujiang Tethys ocean.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号