首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of kaolinite‐based clay minerals as a low‐cost natural adsorbent for the removal of Cu(II) from electroplating waste leachate was studied. Batch experiments were conducted to determine the effects of varying adsorbent loading, initial pH, adsorbent dosage, and contact time. Box–Behnken design with three variables like initial pH, adsorbent dosage, and contact time at three different levels was studied to identify a significant correlation between the effects of these variables to the amount of Cu(II) adsorbed. The methodology identifies the principal experimental variables, which have the greatest effect on the adsorption process. After optimizing the input variables by using Simplex algorithm, the adsorption of Cu(II) was maximal (99.9% with a maximum (positive) standard deviation of 9.4) at pH 6.24, adsorbent dosage of 0.83 g L?1, and contact time of 97 min, respectively. Furthermore, the experimental values are in good agreement with predicted values, the correlation coefficient and adjusted correlation coefficients were found to be 0.96 and 0.87, respectively.  相似文献   

2.
The possible use of activated alumina powder (AAP) as adsorbent for Cr(III), Ni(II), and Cu(II) from synthetic solutions was investigated. The effect of various parameters on batch adsorption process such as pH, contact time, adsorbent dosage, particle size, temperature, and initial metal ions concentration were studied to optimize the conditions for maximum metal ion removal. Both higher (molar) and lower (ppm) initial metal ion concentration sets were subjected to adsorption on AAP. Adsorption process revealed that equilibrium was established in 50 min for Cr(III) at pH 4.70, 80 min for Ni(II) at pH 7.00, and 40 min for Cu(II) at pH 3.02. Percentage removal was found to be highest at 55°C for Cr(III) and Ni(II) with 420 µm and 45°C for Cu(II) with 250‐µm particle size AAP. A dosage of 2 g for Cr(III), 8 g for Ni(II), and 10 g Cu(II) gave promising data in the metal ion removal. The adsorption process followed Langmuir as well as Freundlich models. The thermodynamics of adsorption of these metal ions on activated aluminum indicated that the adsorption was spontaneous and endothermic in nature. Present study indicates that AAP can act as a promising adsorbent for industrial wastewater treatment.  相似文献   

3.
The adsorption of Cu(II) ions from aqueous solutions by soda lignin as an absorbent using a batch adsorption system is presented in this paper. The soda lignin used in this study was extracted from black liquor derived from oil palm empty fruit bunches (EFB) using 20% v/v sulfuric acid. The effects of varying experimental parameters such as pH value, adsorbent dosage, different concentrations of Cu(II) ions, and agitation period were investigated. The results revealed that the optimum adsorption of Cu(II) onto soda lignin was recorded at a pH of 5.0 at an adsorbent dosage of 0.5 g soda lignin and an agitation period of 40 min. The adsorption capacities and rates of Cu(II) ions onto soda lignin was evaluated. The Langmuir and Freundlich adsorption models were applied to calculate the isotherm constants. It was found that the adsorption isothermal data could be well interpreted by the Freundlich model. The kinetic experimental data properly correlated with the pseudo‐second‐order kinetic model, which implies that chemical sorption is the rate‐limiting step.  相似文献   

4.
Removal of copper, nickel, and zinc ions from synthetic electroplating rinse water was investigated using cationic exchange resin (Ceralite IR 120). Batch ion exchange studies were carried out to optimize the various experimental parameters (such as contact time, pH, and dosage). Influence of co‐existing cations, chelating agent EDTA on the removal of metal ion of interest was also studied. Sorption isotherm data obtained at different experimental conditions were fitted with Langmuir, Freundlich, Redlich–Peterson, and Toth models. A maximum adsorption capacity of 164 mg g?1 for Cu(II), 109 mg g?1 for Ni(II), and 105 mg g?1 for Zn(II) was observed at optimum experimental conditions according to Langmuir model. The kinetic data for metal ions adsorption process follows pseudo second‐order. Presence of EDTA and co‐ions markedly alters the metal ion removal. Continuous column ion exchange experiments were also conducted. The breakeven point of the column was obtained after recovering effectively several liters of rinse water. The treated rinse water could be recycled in rinsing operations. The Thomas and Adams–Bohart models were applied to column studies and the constants were evaluated. Desorption of the adsorbed metal ions from the resin column was studied by conducting a model experiments with Cu(II) ions loaded ion exchange resin column using sulfuric acid as eluant. A novel lead oxide coated Ti substrate dimensionally stable (DSA) anode was prepared for recovery of copper ions as metal foil from regenerated liquor by electro winning at different current densities (50–300 A cm?2).  相似文献   

5.
This study investigates the potential use of activated carbon prepared from the peel of Cucumis sativa fruit for the removal of malachite green (MG) dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH, and contact time were investigated and optimal experimental conditions were ascertained. The results showed that when the amount of the adsorbent increased, the percentage of dye removal increased accordingly. Optimum pH value for dye adsorption was 6.0. Maximum dye was sequestered within 50 min of the start of every experiment. The adsorption of MG followed the pseudo‐second‐order rate equation and fits the Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Tempkin equations well. The maximum removal of MG was obtained at pH 6 as 99.86% for adsorbent dose of 1 g/50 mL and 25 mg L?1 initial dye concentration at room temperature. Activated carbon developed from the peel of C. sativa fruit can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG.  相似文献   

6.
The adsorption of Cu(II) onto HCl treated rubber leaf powder (HHBL) was investigated in batch and column studies. The adsorbent was characterized by spectroscopic and quantitative analyses in order to understand the mechanism of copper adsorption. HHBL is mesoporous in nature as indicated by Bruneuer, Emmett and Teller (BET) analysis, and has various kinds of functional groups such as Si‐OH, ROH, RCOOH, RCOO, RNH2, C‐O‐C and aromatic rings as detected by Fourier transform infrared (FTIR) spectroscopy. Copper adsorption was confirmed by scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy (EDS). The equilibrium process was described well by the Langmuir isotherm model, and a maximum adsorption capacity of 8.39 mg/g was recorded for the smallest adsorbent size (<180 μm). The two main adsorption mechanisms involved were ion exchange and complexation. The fixed bed column study demonstrated satisfactory applicability of HHBL in removing Cu(II) from aqueous solutions.  相似文献   

7.
Activated carbons prepared from sunflower seed hull have been used as adsorbents for the removal of acid blue 15 (AB‐15) from aqueous solution. Batch adsorption techniques were performed to evaluate the influences of various experimental parameters, e. g., temperature, adsorbent dosage, pH, initial dye concentration and contact time on the adsorption process. The optimum conditions for AB‐15 removal were found to be pH = 3, adsorbent dosage = 3 g/L and equilibrium time = 4 h at 30°C. The adsorption of AB‐15 onto the adsorbent was found to increase with increasing dosage. It was found from experimental results that the Langmuir isotherm fits the data better than the Freundlich and Temkin isotherms. The maximum adsorption capacity, Qm (at 30°C) was calculated for SF1, SF2, and SF3 as 75, 125 and 110 mg g–1 of adsorbent, respectively. It was found that the adsorption follows pseudo‐second order kinetics. The thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were also evaluated. The activated carbons prepared were characterized by FT‐IR, SEM and BET analysis.  相似文献   

8.
This study investigates structural and adsorption properties of the powdered waste shells of Rapana gastropod and their use as a new cheap adsorbent to remove reactive dye Brilliant Red HE‐3B from aqueous solutions under batch conditions. For the powder shells characterization, solubility tests in acidic solutions and X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform IR spectroscopy (FT‐IR) and thermogravimetric analyses were performed. The results revealed that the adsorbent surface is heterogeneous consisting mainly from calcium carbonate layers (either calcite or aragonite) and a small amount of organic macromolecules (proteins and polysaccharides). The dye adsorptive potential of gastropod shells powder was evaluated as function of initial solution pH (1–5), adsorbent dose (6–40 g L?1), dye concentration (50–300 mg L?1), temperature (5–60°C), and contact time (0–24 h). It was observed that the maximum values of dye percentage removal were obtained at the initial pH of solution 1.2, shells dose of 40 g L?1, dye initial concentration of 50–50 mg L?1 and higher temperatures; the equilibrium time decreases with increasing of dye concentration. It is proved that the waste seashell powder can be used as low cost bioinorganic adsorbent for dyes removal from textile wastewaters.  相似文献   

9.
Sulfur removal using adsorption requires a proper process parametric study to determine its optimal performance characteristics. In this study, response surface methodology was employed for sulfur removal from model oil (dibenzothiophene; DBT dissolved in iso‐octane) using commercial activated carbon (CAC) as an adsorbent. Experiments were carried out as per central composite design with four input parameters such as initial concentration (C0: 100–900 mg/L), adsorbent dosage (m: 2–22 g/L), time of adsorption (t: 15–735 min), and temperature (T: 10–50°C). Regression analysis showed good fit of the experimental data to the second‐order polynomial model with coefficient of determination R2‐value of 0.9390 and Fisher F‐value of 16.5. The highest removal of sulfur by CAC was obtained with m = 20 g/L, t = 6 h, and T = 30°C.  相似文献   

10.
In this study, Nostoc commune (cyanobacterium) was used as an inexpensive and efficient biosorbent for Cd(II) and Zn(II) removal from aqueous solutions. The effect of various physicochemical factors on Cd(II) and Zn(II) biosorption such as pH 2.0–7.0, initial metal concentration 0.0–300 mg/L and contact time 0–120 min were studied. Optimum pH for removal of Cd(II) and Zn(II) was 6.0, while the contact time was 30 min at room temperature. The nature of biosorbent and metal ion interaction was evaluated by infrared (IR) technique. IR analysis of bacterial biomass revealed the presence of amino, carboxyl, hydroxyl, and carbonyl groups, which are responsible for biosorption of Cd(II) and Zn (II). The maximum biosorption capacities for Cd(II) and Zn(II) biosorption by N. commune calculated from Langmuir biosorption isotherm were 126.32 and 115.41 mg/g, respectively. The biosorption isotherm for two biosorbents fitted well with Freundlich isotherm than Langmuir model with correlation coefficient (r2 < 0.99). The biosorption kinetic data were fitted well with the pseudo‐second‐order kinetic model. Thus, this study indicated that the N. commune is an efficient biosorbent for the removal of Cd(II) and Zn(II) from aqueous solutions.  相似文献   

11.
In this study, a new sorbent is synthesized using surface imprinting technique. Cu(II)‐imprinted multiwalled carbon nanotube sorbent (Cu(II)‐IMWCNT) is used as the solid phase in the solid‐phase extraction method. After the preconcentration procedure, Cu(II) ions are determined by high‐resolution continuum source atomic absorption spectrometry. A total of 0.1 mol L?1 ethylenediaminetetraacetic acid (EDTA) is used to remove Cu(II) ions from the sorbent surface. The optimum experimental conditions for effective preconcentration of Cu(II), parameters such as pH, eluent type and concentration, flow rate, sample volume, sorbent capacity, and selectivity are investigated. The synthesized solid phase is characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The maximum adsorption capacities of Cu(II)‐IMWCNT and non‐imprinted solid phases are 270.3 and 14.3 mg g?1 at pH 5, respectively. Under optimum experimental conditions for Cu(II) ions, the limit of detection is 0.07 μg L?1 and preconcentration factor is 40. In addition, it is determined to be reusable without significant decrease in recovery values up to 100 adsorption–desorption cycles. Cu(II)‐IMWCNT have a high stability. To check the accuracy of the developed method, certified reference materials, and water samples are analyzed with satisfactory analytical results.  相似文献   

12.
The potential of MCM‐41 for the removal of cationic dyes from water solution was evaluated using sodium dodecyl sulfate (SDS) for the surface modification of this mesoporous material. Admicelle structures formed on the surface of the calcined MCM‐41 are capable of removing organic pollutants and cationic species from water environment. The structural, textural, and surface chemical characteristics of the prepared SDS‐modified MCM‐41 (SDS‐MCM‐41) were studied. The adsorption capacity of SDS‐MCM‐41 was evaluated for methylene blue (MB) as a target cationic dye. Equilibrium adsorption isotherm data were manipulated employing nonlinear regression analysis. The Langmuir, Freundlich, and Sips isotherm models were examined. The adsorption data were well fitted to both Langmuir and Sips isotherm models. The maximum adsorption capacity of SDS‐MCM‐41 for MB, based on Langmuir and Sips models, were 290.8 and 297.3 mg g?1, respectively. Ethanol was found to be an effective solvent for partial regeneration of the adsorbent.  相似文献   

13.
In this study, the removal of zinc(II) ion from an aqueous solution by pistachio shells (PS) is investigated. The dynamic behavior of the adsorption is examined on the effects of pH, adsorbent dosage, and contact time. The adsorption rates are determined quantitatively and simulated by the Lagergren first order, pseudo‐second order, Elovich, and intra‐particle diffusion kinetic models. The adsorption kinetic models are also tested for validity. The thermodynamic parameters, which are also deduced from adsorption experiments, are very useful in elucidating the nature of adsorption. The experimental results reveal that the optimum pH value and the contact time for the adsorption of Zn2+ onto PS are found as 6 and 10 min, respectively. According to these parameters, adsorption process follows the pseudo‐second order kinetic model with high correlation coefficients (R2 = 0.999). The obtained results demonstrate that PS is a reasonably effective adsorbent for the removal of Zn2+ from aqueous leachate of hazardous waste.  相似文献   

14.
Several commercially available adsorbents were screened for their ability to remove Cu, Zn and organotin compounds from both artificial contaminated and real dockyard wastewater. An adsorption--flocculation process using a mixture of two adsorbents (a clay based adsorbent and a powdered activated carbon) was optimized for an optimal adsorbent and pollutant removal. At the optimal conditions the process was evaluated with both artificial and real shipyard wastewater, and the cost of the adsorption-flocculation process with relation to different influent concentrations and discharge limits was estimated.  相似文献   

15.
16.
This paper is an experimental investigation into the removal of arsenic species from simulated groundwater by adsorption onto Ca2+ impregnated granular activated carbon (GAC‐Ca) in the presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH and temperature on the percentage removal of total arsenic (As(T)), As(III) and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration of GAC‐Ca was found to be 8 g/L with an agitation time of 24 h, which reduced As(T) concentration from 188 to 10 μg/L. Maximum removal of As(V) and As(III) was observed in a pH range of 7–11 and 9–11, respectively. Removal of all the above arsenic species decreased slightly with increasing temperature. The presence of Fe and Mn increased the adsorption of arsenic species. Under the experimental conditions at 30°C, the maximum percentage removals of As(T), As(III), As(V), Fe, and Mn were found to be ca. 94.3, 90.6, 98.0, 100 and 63%, respectively. It was also observed that amongst the various regenerating liquids used, a 5 N H2SO4 solution exhibited maximum regeneration (ca. 91%) of the spent GAC‐Ca.  相似文献   

17.
The removal of Cu, Zn, and Cd from a sandy soil was investigated using iron filings as an adsorbent, and subsequently recovering the iron filings by magnetic separation. The best treatment was obtained by using 5% iron filings and 3 h contact time between iron filings and the soil. The metal removal efficiency from soil extracts was evaluated, using MetPLATETM, a toxicity test that is specific for heavy metals, and the 48 h Ceriodaphnia dubia acute toxicity test. The toxicity removal was generally higher than 95% for Cu after a single treatment. With regard to Zn-spiked soil, the toxicity removal was 96.1%, 70.0%, and 49.6% after single treatment at the input concentration of 200 mg/kg, 400 mg/kg, and 800 mg Zn2+/kg soil, respectively. After two or three successive treatments, more than 90% of the toxicity was removed for 400 mg/kg and 800 mg/kg Zn-spiked soils. In the case of Cd-spiked soil, a single treatment removed 51.1% of the toxicity from 200 mg/kg Cd-spiked soil extracts while more than 90% of the toxicity was removed after two or three treatments. Chemical analysis and a mass balance study were also carried out to investigate the Cu distribution in the soil fractions. The results indicate that, before treatment, a large portion of Cu was immobilized in the soil matrix. Following magnetic separation, Cu was removed from both the soil matrix and extracts and was indeed adsorbed and concentrated on the iron filings. The retrieval of Cu by iron filings was further examined by energy dispersive X-ray spectroscopy (EDS).  相似文献   

18.
In this paper, a novel adsorbent developed by means of granulating of natural zeolite nanoparticles (i.e., clinoptilolite) was evaluated for possible removal of the petroleum monoaromatics (i.e., benzene, toluene, ethylbenzene, and xylene, BTEX). To do this, the natural zeolite was ground to produce nanosized particulate, then modified by two cationic surfactants and granulated. The effect of various parameters including temperature, initial pH of the solution, total dissolved solids (TDS), and concentration of a competitive substance (i.e., methyl tert‐butyl ether, MTBE) were studied and optimized using a Taguchi statistical approach. The results ascertained that initial pH of the solution was the most effective parameter. However, the low pH (acidic) was favorable for BTEX adsorption onto the developed adsorbents. In this study, the experimental parameters were optimized and the best adsorption condition by determination of effective factors was chosen. Based on the S/N ratio, the optimized conditions for BTEX removal were temperature of 40°C, initial pH of 3, TDS of 0 mg/L, and MTBE concentration of 100 µg/L. At the optimized conditions, the uptake of each BTEX compounds reached to more than 1.5 mg/g of adsorbents.  相似文献   

19.
Biofiltration is a commonly practiced biological technique to remove volatile compounds from waste gas streams. From an industrial view‐point, biofilter (BF) operation should be flexible to handle temperatures and inlet load (IL) variations. A compost BF was operated at different temperatures (30–45°C) and at various inlet loading rates (ILR; 8–598 g m?3 h?1) under intermittent loading conditions. Complete removal of n‐hexane was observed at 30 and 35°C at ILRs up to 330 g m?3 h?1. Besides, 20–75% of the pollutant was removed at 40°C, corresponding to the different ILs applied to the BF. Increasing the temperature to 45°C decreased the removal efficiency (RE) significantly. A feed forward neural network was used to predict the RE of BF with temperature and ILR as the input variables. The experimental data was divided into training (2/3) and test datasets (1/3). The best structure of neural network was obtained by trial and error on the basis of the least differences between predicted and experimental values, as ascertained from their coefficient of regression (R2) values. The modeling results showed that a multilayer network with the topology 2?10?1 was able to predict BF performance effectively with R2‐value of 0.995 for the test data. The results from this study showed the predicting capability of ANNs which can be considered as an alternative for conventional knowledge‐based models.  相似文献   

20.
The adsorption of three cationic dyes (rhodamine B, RB; crystal violet, CV; and malachite green, MG) onto termite feces, a low‐cost adsorbent, was investigated. The adsorbent was characterized by IR spectroscopy, point of zero charge measurement, and the Boehm titration method. The adsorption follows the pseudo‐second‐order kinetic model and the Langmuir–Freundlich isotherm with maximum adsorption capacities of 95.53 mg g?1 (RB), 75.71 mg g?1 (CV), and 44.78 mg g?1 (MG). The study of thermodynamics showed that the adsorption is a spontaneous and endothermic process. This works suggest that termite feces can be used as a new low‐cost adsorbent for cationic dye removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号