首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
本文对华夏地块浙西南八都群片麻岩和侵入其中的花岗岩进行了系统的岩石学、地球化学、LA-ICP-MS锆石U-Pb年代学以及Lu-Hf同位素研究。结果表明,八都群片麻岩中的碎屑锆石普遍发育~1882 Ma的(变质)增生边,而侵入八都群花岗岩的结晶时代集中在1861~1841 Ma。综合本文及前人获得的岩石学和同位素年代学数据可知,华夏地块在古元古代晚期(1890~1850Ma)发生了一次强烈的造山事件,该期造山很可能与Columbia超大陆的聚合作用密切相关,华夏地块可能为Columbia超大陆的一个陆块。除此之外,本研究还在八都杂岩中获得了三叠纪变质锆石年龄(235±1)Ma,综合前人发表资料可知,这些古元古代基底岩石遭受了强烈的印支期改造,可能与华南大陆印支期造山作用相关。然而,关于古元古代基底的三叠纪变形变质、抬升和出露过程及其与印支期构造演化的内在联系,仍有待进一步研究。  相似文献   

2.
So far, the nature and evolution of the lower crust under central Spain have been constrained mainly on the basis of a heterogeneous suite of granulite xenoliths from the Spanish Central System (SCS). In recent years, ultramafic volcanics from the Calatrava Volcanic Field (CVF) have also provided deep-seated crustal xenoliths which have not been studied in detail. Our data, combining mineral, whole-rock and isotopic geochemistry with U–Pb–Hf isotope ratios in zircons from the CVF and SCS xenoliths, highlight the felsic composition of the lower crust under central Iberia. A number of the Calatrava xenoliths represents Variscan igneous protoliths, which are a minor population in the SCS, and were likely formed by crystallisation of intermediate and felsic melts in the lower crust during the Variscan orogeny (leucodiorite protolith age of 314 ± 3 Ma and leucogranite protolith age of 308 ± 2.5 Ma). U–Pb data of metamorphic zircons show that granulite-facies metamorphism mainly occurred from 299 to 285 Ma in both areas. These ages are slightly younger than those of granitic intrusions that could be genetically related to the granulitic residue, which points to a main role of U–Pb isotope resetting in lower crustal zircons during HT or UHT conditions. The zircon U–Pb–Hf isotopic ratios support the idea that the lower crust in central Iberia consists mainly of Ordovician–Neoproterozoic metaigneous and metasedimentary rocks associated with the Cadomian continental arc of northern Gondwana. These rocks provide evidence of mixing between juvenile magmas and an enriched crustal component, ultimately extracted from an Eburnean crust. Other more evolved components present in detrital zircons are likely related to recycling of Archean crust derived from North Africa cratonic terranes.  相似文献   

3.
The South China Block was built up by the assembly of the Yangtze and Cathaysia blocks along the Neoproterozoic Jiangnan Orogenic Belt. The timing of the Jiangnan Orogeny remains controversial. The widespread orogeny–related Neoproterozoic angular unconformity that separates the underlying folded Sibao (ca.1000–820 Ma) and overlying Danzhou (ca.800–720 Ma) Groups was investigated. Six sedimentary samples, below and above the unconformity in three distal localities (Fanjingshan, Madiyi, and Sibao) yield detrital zircon with UPb ages ranging from 779 ± 16 Ma to 3006 ± 36 Ma, with a prominent peak at ca. 852 Ma. The youngest ages of 832 ± 11 Ma and 779 ± 16 Ma are revealed for the underlying Sibao and overlying Danzhou Groups, respectively. The detrital zircon UPb age relative probability plot of the Jiangnan Orogen matches well with those of the Yangtze and Cathaysia blocks since ca. 865 Ma. Integrating geological, geochemical and geochronological results, we suggest that the Paleo–South China Ocean began to subduct under the Yangtze block at ca. 1000 Ma, and was partly closed at ca. 865 Ma. Afterwards, the Yangtze and Cathaysia blocks initially collide at 865 Ma, forming the Jiangnan Orogen. This collision resulted in not only the folding of the Sibao Group, but also sediment deposition in a syn-collisional setting, which makes the upper part of the Sibao Group. The youngest S-type granite dated at ca. 820 Ma that intruded in the Sibao Group marks the late stage of the Jiangnan Orogeny.  相似文献   

4.
U–Pb zircon analyses from three meta-igneous and two metasedimentary rocks from the Siviez-Mischabel nappe in the western Swiss Alps are presented, and are used to derive an evolutionary history spanning from Paleoarchean crustal growth to Permian magmatism. The oldest components are preserved in zircons from metasedimentary albitic schists. The oldest zircon core in these schists is 3.4 Ga old. Detrital zircons reveal episodes of crustal growth in the Neoarchean (2.7–2.5 Ga), Paleoproterozoic (2.2–1.9 Ma) and Neoproterozoic (800–550 Ma, Pan-African event). The maximum age of deposition for the metasedimentary rocks is given by the youngest detrital zircons within both metasedimentary samples dated at ~490 Ma (Cambrian-Ordovician boundary). This is in the age range of two granitoid samples dated at 505 ± 4 and 482 ± 7 Ma, and indicates sedimentation and magmatism in an extensional setting preceding an Ordovician orogeny. The third felsic meta-igneous rock gives a Permian age of intrusion, and is part of a long-lasting Variscan to post-Variscan magmatic activity. The zircons record only minor disturbance of the U–Pb system during the Alpine orogeny.  相似文献   

5.
黔南独山县位于江南造山带西南段古生代陆源盆地区,是研究盆地物质来源的良好场所.利用碎屑锆石年代学定量分析下泥盆统丹林组底部碎屑锆石年代学特征,可反映其物质来源;利用锆石较稳定特征定量分析锆石微量元素所代表的地质意义也具有可操作性.结果表明,根据丹林组碎屑锆石年龄分布特征,可将其分为4组:早古生代(427~560 Ma)...  相似文献   

6.
Individual grains of zircon from the Archean Kostomuksha, North Karelian and Matkalakhta greenstone belts, which are situated respectively in western, northern and eastern Karelia, are studied using the ion microprobe SHRIMP II. As a result, the oldest 207Pb/206Pb ages of 3151 ± 4.6 and 3329 ± 16 Ma are first determined for detrital zircons from northern and eastern Karelia. The 207Pb/206Pb ages estimated for two subsequent metamorphic events of Archean Eon in eastern Karelia correspond to 3.25 and 3.17–3.10 Ga. The age value of 2711 ± 9.6 Ma is determined for silicic volcano-plutonic complex and quartz stockwork in northern Karelia and the date 2821 ± 15 Ma for magmatic rocks of eastern Karelia. Silicic volcanics from an oceanic plateau section in the Kostomuksha belt are dated at 2791.7 ± 6.1 Ma for the first time in the Archean of Fennoscandia. The oldest detrital zircons from siliciclastic metasediments determine the stabilization time of Archean continental nuclei in East Fennoscandia. The younger generation of greenstone belts is exemplified in the Karelian craton by the Matkalakhta and Kostomuksha structures comprising rock associations less than 2.82 Ga old, mafic rocks of the Kontokki Group included. Geological history of these belts corresponds to geodynamic mesocycle 90–110 Ma long and to the Archean global epoch of metallogeny, which was responsible for origin of most valuable deposits of base and precious metals.  相似文献   

7.
SHRIMP zircon U-Pb dating in the Liguo and Jiagou intrusives indicates that they were formed at -130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at -2500 Ma, -2000 Ma and -1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461±22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intrusives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.  相似文献   

8.
The Qingbaikouan System is the lowest unit of the Neoproterozoic Erathem in Chinese stratigraphic succession,and it now provides a precise geochronological framework and geological time scale for mapping and stratal correlation in China.However,a sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age date (1368±12 Ma) obtained from a bentonite in the Qingbaikouan Xiamaling Formation indicates that it belongs to the Mesoproterozoic Erathem instead.This change is a milestone in understanding the Precambrian Stratigraphic Time Scale in China,and it has had great influence on Precambrian correlations in Asia.Otherwise,a large amount of geochronological work has been done in the "Jiangnan Orogen Belt" of South China,and new isotopic data have redefined the traditional recognition of metamorphosed Mesoproterozoic strata from the Sibao orogeny to the Neoproterozoic Erathem.Based on SHRIMP zircon U-Pb age data,the authors regard the Sibao orogeny (equal to the Wuling orogeny) as a movement at ca 820 Ma,meaning that the Sibao orogeny was not equivalent to the Grenvillian orogeny.Finally,we report here the first SHRIMP U-Pb age of the boundary between the top of the Qingbaikouan Gongdong Formation (786.8±5.6 Ma) and the bottom of the Chang'an (diamictite) Formation (778.4±5.2 Ma),which is the age of the lowest diamictite of the Nanhuan System in China.  相似文献   

9.
In a re-study of regional geology by the China Geological Survey (CGS), the key problem is in the stratigraphical division and correlation. According to the new isotopic dating of the Meso- and Neoproterozoic in China, there have been great changes in the strata correlation and tectonic explanation. The authors obtained four zircon sensitive high resolution ion micro-probe (SHRIMP) U-Pb datings from the bentonite of the Lengjiaxi Group (822±10 Ma, 823±12 Ma and 834±11 Ma) and Banxi Group (802.6±7.6 Ma) in north Hunan Province, which is considered to be the middle part of the Jiangnan Orogenic Belt. On the basis of the zircon dating mentioned above, the end of the Wuling orogen is first limited in the period from 822 Ma to 802 Ma in one continued outcrop (Lucheng section) in Linxiang city, Hunan Province. Combining a series of new zircon U-Pb datings in the Yangtze and Cathaysia blocks, several Neoproterozoic volcanic events and distribution of the metamorphic rocks in the Jiangnan Orogenic Belt have been distinguished. In the context of the global geodynamics, it is useful to set up a practical and high precision chronological framework and basic and unified late Precambrian section in South China.  相似文献   

10.
Detailed studies on U-Pb ages and Hf isotope have been carried out in zircons from a carbonatite dyke associated with the Bayan Obo giant REE-Nb-Fe deposit, northern margin of the North China Craton(NCC), which provide insights into the plate tectonic in Paleoproterozoic. Analyses of small amounts of zircons extracted from a large sample of the Wu carbonatite dyke have yielded two ages of late Archaean and late Paleoproterozoic(with mean 207 Pb/206 Pb ages of 2521±25 Ma and 1921±14 Ma, respectively). Mineral inclusions in the zircon identified by Raman spectroscopy are all silicate minerals, and none of the zircon grains has the extremely high Th/U characteristic of carbonatite, which are consistent with crystallization of the zircon from silicate, and the zircon is suggested to be derived from trapped basement complex. Hf isotopes in the zircon from the studied carbonatite are different from grain to grain, suggesting the zircons were not all formed in one single process. Majority of εHf(t) values are compatible with ancient crustal sources with limited juvenile component. The Hf data and their TDM2 values also suggest a juvenile continental growth in Paleoproterozoic during the period of 1940–1957 Ma. Our data demonstrate the major crustal growth during the Paleoproterozoic in the northern margin of the NCC, coeval with the assembly of the supercontinent Columbia, and provide insights into the plate tectonic of the NCC in Paleoproterozoic.  相似文献   

11.
Amphibolites occur in a number of localities in the Cathaysia Block, some of them have been migmatised and their protoliths represent basaltic magmas erupted in various tectonic settings. Four migmatised amphibolites were collected from Jiangxi and Fujian Provinces. Cathodo-luminescence images of zircons extracted from the representative amphibolites show unzoned or sector-zoned structure. LA-ICP-MS analysis indicates that most zircons have high Th/U ratios and yield U–Pb zircon ages of 446 ± 5, 435 ± 2, 434 ± 4 and 423 ± 2 Ma, respectively. Lu–Hf isotopic analysis on these zircons gives Hf model ages ranging from 900 to 1200 Ma. Based on lithological observations and previously published geochronological data, we interpret that these U–Pb ages record an important tectonothermal event that led to the migmatization. This early Paleozoic (Caledonian) tectonothermal event in the Southeastern China has a great tectonic implication for the evolutionary history of the Cathaysia Block.  相似文献   

12.
Microfossils and a U–Pb age dating on zircon grains in the tuff beds exposed in the axial part of the Tsukeng anticline along the Pinglin River in the Western Foothills near Nantou, central Taiwan, show an occurrence of the Eocene volcanics unconformably beneath the uppermost part of the Latest Oligocene Wuchihshan Formation. This is the first discovery of the Eocene tuff exposed in the Western Foothills.The proposed Miocene “Tsukeng Formation” and “Takeng Formation” of Ho et al. (1956) named for sequences exposed in the Nantou area, Western Foothills, have to be abandoned and the standard Oligocene–Miocene lithostratigraphy used commonly in the Western Foothills of northern Taiwan is properly applicable in central Taiwan. The thick pink–brown–green colored volcanics unconformably beneath the uppermost Wuchihshan Formation is named for the first time as the Pinglin Tuff which contains Late Middle Eocene calcareous nannofossils (Zone NP16) consistent with a U–Pb age dating (38.8 ± 1 Ma) on zircon grains in the tuff. The Pinglin Tuff is overlying the Middle Eocene Chungliao Formation which contains indigenous larger foraminifera Discocyclina dispansa ex. interc. sella-dispansa and calcareous nannofossils of Zones NP14–15. The Middle Eocene Pinglin Tuff and Chungliao Formation represent the Paleogene syn-rift sequence unconformably overlain by the Latest Oligocene–Miocene post-rift sequence. This is the first document with conclusive paleontological data and age dating showing an occurrence of Paleogene marine rift basin exposed in the Western Foothills. This study also confirms similar Tertiary basin architecture between the Taiwan Strait–Pearl River Mouth Basin in the NE South China Sea and the Western Foothills onland central Taiwan.  相似文献   

13.
The Yunmengshan Geopark in northern Beijing is located within the Yanshan range. It contains the Yunmengshan batholith, which is dominated by two plutons: the Yunmengshan gneissic granite and the Shicheng gneissic diorite. Four samples of the Yunmengshan gneissic granite give SHRIMP zircon U–Pb ages from 145 to 141 Ma, whereas four samples of the Shicheng gneissic diorite have ages from 159 Ma to 151 Ma. Dikes that cut the Yunmengshan diorite record SHRIMP zircon U–Pb age of 162±2 and 156±4 Ma. The cumulative plots of zircons from the diorites show a peak age of 155 Ma, without inherited zircon cores, and the peak age of 142 Ma for granite is interpreted as the emplacement age of the Yunmengshan granitic pluton, whose igneous zircons contain inherited zircon cores. The data presented here show that there were two pulses of magmatism: early diorites, followed c13 Ma later by true granites, which incorporated material from an older continental crust.  相似文献   

14.
The Dotulur alkalic granite and Usugli Depression volcanics (West Stanovoi Superterrane of the Central Asia Fold Belt) have been dated by the U–Pb method, and their geochemistry has been analyzed. The geochemistry of the rocks suggests their intraplate nature. The alkalic granite and volcanics have similar ages of 142 ± 1 Ma and 138 ± 3 Ma, respectively. Considering the Usugli Depression structural position as an upper fault slice of the Elikan metamorphic core, the obtained dates allow the formation of the mentioned core and, accordingly, the collapse of central part of the Mongol–Okhotsk orogeny to have occurred not prior to 140 Ma.  相似文献   

15.
The Xihuashan and Tieshanlong tungsten deposit is an important large quartz vein‐type W‐polymetallic deposit in the southern Jiangxi Province, eastern Nanling Range. Zircon U–Pb analyses of representative ore‐forming granites from the Xihuashan and Tieshanlong tungsten deposit yield ages of 146.3 ± 2.9 Ma and 146.0 ± 3.8 Ma, respectively. According to the zircon Raman spectroscopy, these granitic rocks are disturbed by different degrees of hydrothermal alteration, whereas most zircons exhibit primary oscillatory zoning and Th/U ratios in the range of magmatic zircon, which means the analysis results represent the crystallization age of metallogenetic granitic assemblages. In combination with regional geological data, it is suggested that the Late Jurassic is probably another important episode of granitic magmatism and W‐Sn mineralization in southern Jiangxi Provinces, even South China.  相似文献   

16.
In situ U–Pb dating and Hf isotopic of detrital zircons from beach sediments of Yalong Bay were analyzed to trace sedimentary provenance and reveal the crustal evolution of Hainan Island in South China. The grain size distribution of the sediments displays a clear single-peak feature, indicating the sediments were formed under the same condition of hydrodynamic force. The detrital zircons had Th/U ratios of greater than 0.1, and REE pattern displayed a positive Ce anomaly and a negative Eu anomaly, indicating that these zircons are predominantly of magmatic origin. The U–Pb spectrum of detrital zircons mainly peaked at the Yanshanian (96–185 Ma), Hercynian–Indosinian (222–345 Ma) and Caledonian (421–477 Ma). A portion of the detrital zircons were of Neoproterozoic origin (728–1,003 Ma), which revealed that the basement in the eastern region of Hainan Island was mainly of Neoproterozoic, with rare Archean materials. The positive ε Hf(t) values (0 to +10.1) of the Neoproterozoic detrital zircons indicated that the juvenile crust grew in the southeastern Hainan Island mainly during the Neoproterozoic period. The Neoproterozoic orogeny in the southeastern part of the island (0.7–1.0 Ga) occurred later than in the northwestern region of the island (1.0–1.4 Ga). Importantly, the Grenvillian orogeny in the southeastern area of Hainan Island shared the same timing with that of the western Cathaysia Block; i.e., both areas concurrently underwent this orogenic event, thereby forming a part of the Rodinia supercontinent. Afterwards, the crust experienced remelting and reworking during the Caledonian Hercynian–Indosinianand Yanshanian accompanied by the growth of a small amount of juvenile crust.  相似文献   

17.
The Malani Igneous Suite (MIS) in NW India represents one of the largest and well‐preserved Precambrian felsic igneous provinces, with minor mafic volcanics and dykes. The SIMS (Secondary Ion Mass Spectrometric) zircon U‐Pb geochronology yielded 776.8 ± 4.5 to 758.5 ± 6.9 Ma ages for rhyolites from Jodhpur region and Sindreth Basin while dacite sample from Punagarh Basin was dated to 760.5 ± 10 Ma. Zircons from rhyolitic and dacitic lavas have oxygen isotopic compositions that can be grouped into low δ18OV‐SMOW (4.12 to ‐1.11‰) and high (δ18O = 8.23‐5.12‰) categoroes, respectively. The low δ18O zircons have highly radiogenic Hf isotopic compositions (εHf(t)= +13.0 to +3.6) suggesting high temperature bulk cannibalization of upper level juvenile crust as the essential process for magma generation. Older than 800 Ma xenocrystic zircons in dacite have high δ18O values whereas 795 Ma ones have mantle‐like Hf‐O isotopic compositions, reflecting a significant shift in tectono‐thermal regime in NW India during 800‐780 Ma. A synchronous transition in the South China Block and Madagascar suggests a spatially and temporally linked geodynamic system. Geochemical data in combination with the new isotopic results point towards an overall convergent plate margin setting undergoing localized lithospheric extension. The NW India and South China blocks together with Madagascar and the Seychelles lay either along the periphery of Rodinia or off the supercontinent with the age of convergent plate margin magmatism coinciding with breakup of the supercontinent.  相似文献   

18.
U‐Pb isotopic systems of zircons from the Boobina and Spinaway Porphyries from the Precambrian Pilbara Block of Western Australia indicate ages of 3307± 19 Ma and 2768 ± 16 Ma, respectively. The Boobina Porphyry intrudes upper members of the Archaean greenstones of the Warrawoona Group. The Spinaway Porphyry intrudes basal units of the unconformably overlying volcanics and sediments of the Mt Bruce Supergroup. The age of the Boobina Porphyry, together with previous zircon U‐Pb and whole rock Sm‐Nd age determinations on stratigraphically older units, indicate that early Archaean volcanism in the Pilbara took place between 3560 Ma and 3300 Ma. On the basis of the age determination of the Spinaway Porphyry, and the chronometric definition of 2500 Ma for the Archaean—Proterozoic boundary, by the International Subcommis‐sion on Precambrian Stratigraphy (James H. L. 1978, Precambrian Res. 7, 193–204), the lower units of the Mt Bruce Supergroup should now be assigned to the Archaean.  相似文献   

19.
ABSTRACT

The Tiantang Cu–Pb–Zn polymetallic deposit in western Guangdong, South China, is hosted in the contact zone between the monzogranite porphyry and limestone of the Devonian Tianziling Formation. Orebodies occur in the skarn and skarnized marble as bedded, lenses, and irregular shapes. In this study, we performed LA-ICP-MS zircon U–Pb dating, zircon trace elements, and Hf isotopic analyses on the Tiantang monzogranite porphyry closely related to Cu–Pb–Zn mineralization. Twenty-two zircons from the sample yield excellent concordia results with a weighted mean 206Pb/238U age of 104.5 ± 0.7 Ma, which shows that the emplacement of the monzogranite porphyry in the Tiantang deposit occurred in the Early Cretaceous. The zircon U–Pb age is largely consistent with the sulphide Rb–Sr isochron ages, indicating that both the intrusion and Cu–Pb–Zn mineralization were formed during the Early Cretaceous in South China. The εHf(t) values of three inherited zircons from the monzogranite porphyry are 13.1, 11.9, and 12.9, respectively, and the two-stage Hf model ages are 1096 Ma, 1087 Ma, and 1055 Ma, respectively. Except for the three inherited zircons, all εHf(t) values of zircons are negative and have a range of ?7.6 to ?3.4, with the two-stage model ages (TDM2) of 1380–1643 Ma, which indicates the rock-forming materials were mainly derived from the partial melting of Mesoproterozoic to Neoproterozoic crust rocks, and probably included some Neoproterozoic arc-related volcanic-sedimentary materials. In this study, the monzogranite porphyry from the Tiantang deposit has calculated Ce4+/Ce3+ ratios of zircon ranging from 91 to 359, indicative of a more oxidized signature and significant prospecting potential for ore-related magmatism. Based on ore deposit geology, isotope geochemistry, and geochronology of the Tiantang Cu–Pb–Zn deposit and regional geodynamic evolution, the formation of Early Cretaceous magmatism and associated polymetallic mineralization in South China is believed to be related to large-scale continental extension and subsequent upwelling of the asthenosphere.  相似文献   

20.
The Ediacaran–Cambrian transition is a critical interval marking drastic biological, oceanic and geochemical co‐evolutions in geological history, but it is poorly constrained geochronologically in South China. We here present two new sets of SIMS U–Pb zircon ages from Ediacaran–Cambrian boundary strata (Dengying, Liuchapo and Niutitang formations) deposited in the slope–basin environments of carbonate platforms. Two weighted‐mean U–Pb ages of 542.1 ± 5.0 Ma and 542.6 ± 3.7 Ma in the basal and mid‐upper Liuchapo Formation, respectively, in slope and basinal settings provide the first direct age set for the Ediacaran–Cambrian boundary in South China. Another two U–Pb ages of 524.2 ± 5.1 Ma and 522.3 ± 3.7 Ma from the base of the overlying Niutitang Formation indicate that this widespread unit in South China was deposited about 20 Ma after the onset of the Cambrian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号