首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Climate change, particularly due to the changed precipitation trend, can have a severe impact on soil erosion. The effect is more pronounced on the higher slopes of the Himalayan region. The goal of this study was to estimate the impact of climate change on soil erosion in a watershed of the Himalayan region using RUSLE model. The GCM (general circulation model) derived emission scenarios (HadCM3 A2a and B2a SRES) were used for climate projection. The statistical downscaling model (SDSM) was used to downscale the precipitation for three future periods, 2011–2040, 2041–2070, and 2071–2099, at large scale. Rainfall erosivity (R) was calculated for future periods using the SDSM downscaled precipitation data. ASTER digital elevation model (DEM) and Indian Remote Sensing data – IRS LISS IV satellite data were used to generate the spatial input parameters required by RUSLE model. A digital soil-landscape map was prepared to generate spatially distributed soil erodibility (K) factor map of the watershed. Topographic factors, slope length (L) and steepness (S) were derived from DEM. Normalised difference vegetation index (NDVI) derived from the satellite data was used to represent spatial variation vegetation density and condition under various land use/land cover. This variation was used to represent spatial vegetation cover factor. Analysis revealed that the average annual soil loss may increase by 28.38, 25.64 and 20.33% in the 2020s, 2050s and 2080s, respectively under A2 scenario, while under B2 scenario, it may increase by 27.06, 25.31 and 23.38% in the 2020s, 2050s and 2080s, respectively, from the base period (1985–2013). The study provides a comprehensive understanding of the possible future scenario of soil erosion in the mid-Himalaya for scientists and policy makers.  相似文献   

2.
Evidence for climate change impacts on the hydro-climatology of Japan is plentiful. The objective of the present study was to evaluate the impacts of possible future climate change scenarios on the hydro-climatology of the upper Ishikari River basin, Hokkaido, Japan. The Soil and Water Assessment Tool was set up, calibrated, and validated for the hydrological modeling of the study area. The Statistical DownScaling Model version 4.2 was used to downscale the large-scale Hadley Centre Climate Model 3 Global Circulation Model A2 and B2 scenarios data into finer scale resolution. After model calibration and testing of the downscaling procedure, the SDSM-downscaled climate outputs were used as an input to run the calibrated SWAT model for the three future periods: 2030s (2020–2039), 2060s (2050–2069), and 2090s (2080–2099). The period 1981–2000 was taken as the baseline period against which comparison was made. Results showed that the average annual maximum temperature might increase by 1.80 and 2.01, 3.41 and 3.12, and 5.69 and 3.76 °C, the average annual minimum temperature might increase by 1.41 and 1.49, 2.60 and 2.34, and 4.20 and 2.93 °C, and the average annual precipitation might decrease by 5.78 and 8.08, 10.18 and 12.89, and 17.92 and 11.23% in 2030s, 2060s, and 2090s for A2a and B2a emission scenarios, respectively. The annual mean streamflow may increase for the all three future periods except the 2090s under the A2a scenario. Among them, the largest increase is possibly observed in the 2030s for A2a scenario, up to approximately 7.56%. Uncertainties were found within the GCM, the downscaling method, and the hydrological model itself, which were probably enlarged because only one single GCM (HaDCM3) was used in this study.  相似文献   

3.
内蒙古中北部土壤碳库构成及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
采用网格采样法荻取内蒙古中北部半干旱区土壤样品共527件,分析其碳库构成特征及其影响因素,并初步评估了未来气候变化背景下的碳库变化趋势。结果表明,研究区土壤碳库仍以有机碳为主,不同土壤类型中有机碳占总碳61%~97%,其中沼泽土有机碳密度最高,风沙土最低,盐土无机碳密度最高,暗棕壤最低;在空间分布上,土壤碳受气温和降水...  相似文献   

4.
Understanding the impacts of climate change on water quality and stream flow is important for management of water resources and environment. Miyun Reservoir is the only surface drinking water source in Beijing, which is currently experiencing a serious water shortage. Therefore, it is vital to identify the impacts of climate change on water quality and quantity of the Miyun Reservoir watershed. Based on long-time-series data of meteorological observation, future climate change scenarios for this study area were predicted using global climate models (GCMs), the statistical downscaling model (SDSM), and the National Climate Centre/Gothenburg University—Weather Generator (NWG). Future trends of nonpoint source pollution load were estimated and the response of nonpoint pollution to climate change was determined using the Soil and Water Assessment Tool (SWAT) model. Results showed that the simulation results of SWAT model were reasonable in this study area. The comparative analysis of precipitation and air temperature simulated using the SDSM and NWG separately showed that both tools have similar results, but the former had a larger variability of simulation results than the latter. With respect to simulation variance, the NWG has certain advantages in the numerical simulation of precipitation, but the SDSM is superior in simulating precipitation and air temperature changes. The changes in future precipitation and air temperature under different climate scenarios occur basically in the same way, that is, an overall increase is estimated. Particularly, future precipitation will increase significantly as predicted. Due to the influence of climate change, discharge, total nitrogen (TN) and total phosphorus (TP) loads from the study area will increase over the next 30 years by model evaluation. Compared to average value of 1961?~?1990, discharge will experience the highest increase (15%), whereas TN and TP loads will experience a smaller increase with a greater range of annual fluctuations of 2021 ~ 2050.  相似文献   

5.
利用政府间气候变化专门委员会第四次评估报告的22个新一代全球气候模式基准期(1961~1990年)模拟结果,从时空尺度分别讨论了与观测过程的差异,评估了模式对长江流域气温和降水的模拟性能。结果表明22个气候模式对长江流域具有一定的模拟能力,地面气温的模拟值都偏低,部分降水的模拟值局部偏高。不同的气候模式的模拟能力差异显著,大部分模式对长江流域的模拟精度有待进一步改进,只有少数几个模式(降水有6个模式,气温有5个模式)的年变化趋势与实况基本一致。综合比较,UKMO_HadCM3和NCAR_PCM两个模式基本能再现长江流域降水和气温的年变化特征。长江流域降水和气温未来情景预估表明各个模式和情景结果虽然存在差异,但对未来90年气候变化的模拟趋势基本一致,将持续增温、降水出现区域性增加,并着重讨论了UKMO_HadCM3模式在2020s(2010~2039年)、2050s(2040~2069年)和2080s(2070~2099年)3个时段的降水和气温时空变化特征,研究结果表明3个时段气温和降水在不同情景下都是逐渐增加的,A2情景下未来降水增幅最显著,B1情景增幅最小。  相似文献   

6.
应用统计降尺度方法预估江淮流域未来降水   总被引:2,自引:0,他引:2       下载免费PDF全文
统计降尺度方法广泛应用于弥补大气环流模式(GCM)模拟区域气候变化能力较弱的不足。利用1960~2009年的NCEP/NCAR再分析资料和江淮流域52个站点降水观测资料,通过敏感性分析,针对4个季节分别选择10个大尺度预测因子,采用主成分分析(PCA)和支持向量机(SVM)相结合的方法,建立了江淮流域降水统计降尺度模型。检验结果表明,该模型获取的江淮流域降水的偏差显著减小,能够描述降水在月、年尺度的变化,适用于HadCM3输出的大尺度气候场,具有预测未来降水变化的能力。将统计降尺度模型应用于HadCM3在A2情景下输出的2020~2099年大尺度预测因子,分3个时段:2020~2039年,2050~2069年和2080~2099年,从年和季节两个时间尺度分析江淮流域未来降水变化。结果表明,相对1960~1999年,未来3个时段的降水有小幅增加,其中2080~2099年增幅最大,为3.6 mm;在未来3个时段的不同季节,降水变化呈现出不同特征。  相似文献   

7.
The present research evaluated the relation between the normalized difference vegetation index (NDVI) changes and the climate change during 2000–2014 in Qazvin Plain, Iran. Daily precipitation and mean temperature values during 2015–2040 and 2040–2065 were predicted using the statistical downscaling model (SDSM), and these values were compared with the values of the base period (2000–2014). The MODIS images (MOD13A2) were used for NDVI monitoring. In order to investigate the effects of climate changes on vegetation, the relationship between the NDVI and climatic parameters was assessed in monthly, seasonal, and annual time periods. According to the obtained results under the B2 scenario, the mean annual precipitation at Qazvin Station during 2015–2040 and 2040–2065 was 6.7 mm (9.3%) and 8.2 mm (11.36%) lower than the values in the base period, respectively. Moreover, the mean annual temperature in the mentioned periods was 0.7 and 0.92 °C higher than that in the base period, respectively. Analysis of the correlations between the NDVI and climatic parameters in different periods showed that there is a significant correlation between the seasonal temperature and NDVI (P < 0.01). Moreover, the NDVI will increase 0.009 and 0.011 during 2015–2040 and 2040–2065, respectively.  相似文献   

8.
基于Budyko假设预测长江流域未来径流量变化   总被引:3,自引:0,他引:3       下载免费PDF全文
基于Budyko水热耦合平衡假设,推导了年径流变化的计算公式,分析了长江流域多年平均潜在蒸发量、降水量、干旱指数和敏感性参数的空间变化规律。选用BCC-CSM1-1全球气候模式和RCP4.5排放情景,把未来气候要素预估值与LS-SVM统计降尺度方法相耦合,预测长江流域未来的气温、降水和径流变化情况。采用乌江和汉江流域的长期径流观测资料,分析验证了基于Budyko公式计算年径流变化的可靠性。结果表明:降水量变化是影响径流量变化的主导因素;长江各子流域未来径流相对变化增减不一,最大变幅10%左右;在未来2020s(2010—2039年)、2050s(2040—2069年)和2080s(2070—2099年)3个时期内,长江南北两岸流域的径流将出现"南减北增"现象,北岸径流变化增幅逐渐升高,南岸径流变化减幅逐渐降低。  相似文献   

9.
Subsidence of organic soils in the Sacramento-San Joaquin Delta threatens sustainability of the California (USA) water supply system and agriculture. Land-surface elevation data were collected to assess present-day subsidence rates and evaluate rice as a land use for subsidence mitigation. To depict Delta-wide present-day rates of subsidence, the previously developed SUBCALC model was refined and calibrated using recent data for CO2 emissions and land-surface elevation changes measured at extensometers. Land-surface elevation change data were evaluated relative to indirect estimates of subsidence and accretion using carbon and nitrogen flux data for rice cultivation. Extensometer and leveling data demonstrate seasonal variations in land-surface elevations associated with groundwater-level fluctuations and inelastic subsidence rates of 0.5–0.8 cm yr–1. Calibration of the SUBCALC model indicated accuracy of ±0.10 cm yr–1 where depth to groundwater, soil organic matter content and temperature are known. Regional estimates of subsidence range from <0.3 to >1.8 cm yr–1. The primary uncertainty is the distribution of soil organic matter content which results in spatial averaging in the mapping of subsidence rates. Analysis of leveling and extensometer data in rice fields resulted in an estimated accretion rate of 0.02–0.8 cm yr–1. These values generally agreed with indirect estimates based on carbon fluxes and nitrogen mineralization, thus preliminarily demonstrating that rice will stop or greatly reduce subsidence. Areas below elevations of –2 m are candidate areas for implementation of mitigation measures such as rice because there is active subsidence occurring at rates greater than 0.4 cm yr–1.  相似文献   

10.
With few available soil organic carbon (SOC) profiles and the heterogeneity of those that do exist, the estimation of SOC pools in karst areas is highly uncertain. Based on the spatial heterogeneity of SOC content of 23,536 samples in a karst watershed, a modified estimation method was determined for SOC storage that exclusively applies to karst areas. The method is a “soil-type method” based on revised calculation indexes for SOC storage. In the present study, the organic carbon contents of different soil types varied greatly, but generally decreased with increasing soil depth. The organic carbon content decreased nearly linearly to a depth of 0–50 cm and then varied at depths of 50–100 cm. Because of the large spatial variability in the karst area, we were able to determine that influences of the different indexes on the estimation of SOC storage decreased as follows: soil thickness > boulder content > rock fragment content > SOC content > bulk density. Using the modified formula, the SOC content in the Houzhai watershed in Puding was estimated to range from 3.53 to 5.44 kg m?2, with an average value of 1.24 kg m?2 to a depth of 20 cm, and from 4.44 to 14.50 kg m?2, with an average value of 12.12 kg m?2 to a depth of 100 cm. The total SOC content was estimated at 5.39 × 105 t.  相似文献   

11.
Spatial distributions of 0-20 cm soil carbon sources/sinks caused by land use changes from the year 1980 to 2000 in an area of 2.97 × 10~6 km~2 in eastern China were investigated using a land use dataset from a recent soil geochemical survey.A map of soil carbon sources/sinks has been prepared based on a spatial analysis scheme with GIS.Spatial statistics showed that land use changes had caused 30.7 ± 13.64 Tg of surface soil organic carbon loss,which accounts for 0.33%of the total carbon storage of 9.22 Pg.The net effect of the carbon source was estimated to be ~ 71.49 Tg soil carbon decrease and ~40.80 Tg increase.Land use changes in Northeast China(NE) have the largest impact on soil organic carbon storage compared with other regions.Paddy fields,which were mainly transformed into dry farmland in NE,and constructed land in other regions,were the largest carbon sources among the land use types.Swamp land in NE was also another large soil carbon source when it was transformed into dry farmland or paddy fields.Dry farmland in the NE region formed the largest soil organic carbon sink,as some were transformed into paddy fields,forested land,and other land use types with high SOCD.  相似文献   

12.
Increased nitrogen (N) input to ecosystems could alter soil organic carbon (C) dynamics, but the effect still remains uncertain. To better understand the effect of N addition on soil organic C in wetland ecosystems, a field experiment was conducted in a seasonally inundated freshwater marsh, the Sanjiang Plain, Northeast China. In this study, litter production, soil total organic C (TOC) concentration, microbial biomass C (MBC), organic C mineralization, metabolic quotient (qCO2) and mineralization quotient (qmC) in 0–15 cm depth were investigated after four consecutive years of N addition at four rates (CK, 0 g N m?2 year?1; low, 6 g N m?2 year?1; moderate, 12 g N m?2 year?1; high, 24 g N m?2 year?1). Four-year N addition increased litter production, and decreased soil organic C mineralization. In addition, soil TOC concentration and MBC generally increased at low and moderate N addition levels, but declined at high N addition level, whereas soil qCO2 and qmC showed a reverse trend. These results suggest that short-term N addition alters soil organic C dynamics in seasonally inundated freshwater marshes of Northeast China, and the effects vary with N fertilization rates.  相似文献   

13.
Tibetan Plateau (TP) is the highest and most extensive plateau in the world and has been known as the roof of the world, and it is sensitive to climate change. The researches of CO2 fluxes (F C) in the TP region play a significant role in understanding regional and global carbon balance and climate change. Eddy covariance flux measurements were conducted at three sites of south-eastern TP comprising Dali (DL, cropland ecosystem), LinZhi (LZ, alpine meadow ecosystem) and Wenjiang (WJ, cropland ecosystem); amongst those DL and LZ are located in plateau region, while WJ is in plain region. Dynamics of F C and influences of vegetation, meteorological (air temperature, photosynthetically active radiation, soil temperature and soil water content) and terrain factors (altitude) were analysed on the basis of data taken during 2008. The results showed that, in the cool sub-season (March, April, October and December), carbon sink appeared even in December with fluxes of (?0.021 to ?0.05) mg CO2 m?2 s?1 and carbon source only in October (0.03 ± 0.0048) mg CO2 m?2 s?1 in DL and WJ site. In LZ site, carbon sink was observed in April: (?0.036 ± 0.0023) mg COm?2 s?1 and carbon sources in December and March (0.008–0.010 mg CO2 m?2 s?1). In the hot sub-season (May–August), carbon source was observed only in May with (0.011 ± 0.0022), (0.104 ± 0.0029) and (0.036 ± 0.0017) fluxes in LZ, DL and WJ site, respectively, while carbon sinks with (?0.021 ± 0.0041), (?0.213 ± 0.0007) and (?0.110 ± 0.0015) mg CO2 m?2 s?1 fluxes in LZ, DL, and WJ, respectively. Comparing with plain region (WJ), carbon sinks in plateau region (DL and LZ) lasted for a longer time, and the absorption sum was large and up to (–357.718 ± 0.0054) and (?371.111 ± 0.0039) g C m?2 year?1, respectively. The LZ site had the weakest carbon sink with (?178.547 ± 0.0070) g C m?2 year?1. Multivariate analysis of covariance showed that altitude (AL) as an independent factor explained 39.5 % of F C (P < 0.026). F C had a quadratic relationship with Normalized difference vegetation index (NDVI) (R 2 ranges from 0.485 to 0.640 for three sites), an exponential relationship with soil temperature at 5-cm depth (ST 5) at night time and a quadratic relationship with air temperature (T a) at day time. Path analysis indicated that photosynthetically active radiation (PAR), sensible heat fluxes (H) and other factors all had direct or indirect effects on F C in all of the three tested sites around the south-eastern TP.  相似文献   

14.
We used a 55-cm sediment core from shallow Chaiwopu Lake in the central Tianshan Mountains of Xinjiang, northwest China, to investigate climate and environmental changes in this arid region over the past ~150 years. The core was dated using 137Cs. We compared temporal changes in several sediment variables with recent meteorological and tree-ring records. Organic matter had a positive correlation with the Palmer Drought Severity Index in the central Tianshan Mountains, and the δ13C of organic matter had a positive correlation with regional temperature. We applied constrained incremental sum-of-squares cluster analysis to element concentrations in the core and identified three distinct zones: (1) 55–46 cm, ~1860–1910, (2) 46–26 cm, ~1910–1952, and (3) 26–0 cm, 1952–present. Between 1880 and 1910 AD, following the Little Ice Age (LIA), the sediment environment was relatively stable, climate was cold and dry, and the lake water displayed high salinity, in contrast to conditions during the LIA. During the LIA, westerlies carried more water vapor into Central Asia when the North Atlantic Oscillation was in a negative phase, and encountered the enhanced Siberia High, which probably led to increased precipitation. In the period 1910–1950 AD, the lake was shallow and the regional climate was unstable, with high temperatures and humidity. In the last ~15–20 years, human activities caused an increase in sediment magnetic susceptibility, and heavy metal and total phosphorus concentrations in the sediment were substantially enriched. Mean annual temperature displays a warming trend over the past 50 years, and the lowest temperature was observed in the 1950s. There has been an increase in annual total precipitation since the 1990s. The combined influences of climate and human activity on the lake environment during this period were faithfully recorded in sediments of Chaiwopu Lake. This study provides a scientific basis for environmental management and protection.  相似文献   

15.
汉江流域未来降水径流预测分析研究   总被引:7,自引:0,他引:7  
本文应用统计降尺度法将全球气候模式和VIC分布式水文模型进行耦合,研究未来A2气候情景下汉江流域降水径流变化情况.首先应用基于光滑支持向量机的统计降尺度法在全球气候模式CGCM2和HadCM3的A2气候情景下,分别预测未来汉江流域日降水、气温过程,然后将预测降水过程作为VIC模型的输入,模拟预测未来汉江流域径流过程.研究结果表明,在CGCM2气候模式下,2020s(2011~2040年)时期汉江流域径流小于基准年,2050s(2041~2070年)时期与基准年基本相当,2080s(2071~2100年)时期大于基准年;在HadCM3气候模式下,2020s时期汉江流域径流小于基准年,2050s和2080s时期均比基准年增加;降水、气温预测结果与径流基本一致.  相似文献   

16.
Seagrass ecosystems are attracting attention as potentially important tools for carbon (C) sequestration, comparable to those terrestrial and aquatic ecosystems already incorporated into climate change mitigation frameworks. Despite the relatively low C stocks in living biomass, the soil organic carbon pools beneath seagrass meadows can be substantial. We tested the relationship between soil C storage and seagrass community biomass, productivity, and species composition by revisiting meadows experimentally altered by 30 years of consistent nutrient fertilization provided by roosting birds. While the benthos beneath experimental perches has maintained dense, Halodule wrightii-dominated communities compared to the sparse Thalassia testudinum-dominated communities at control sites, there were no significant differences in soil organic carbon stocks in the top 15 cm. Although there were differences in δ13C of the dominant seagrass species at control and treatment sites, there was no difference in soil δ13C between treatments. Averages for soil organic carbon content (2.57?±?0.08 %) and δ13C (?12.0?±?0.3?‰) were comparable to global averages for seagrass ecosystems; however, our findings question the relevance of local-scale seagrass species composition or density to soil organic carbon pools in some environmental contexts.  相似文献   

17.
Growing wetland loss along a coastal area in China was examined through shoreline recession and land use changes. Carbon storage or sequestration in coastal wetland soils was based on vertical marsh accretion and aerial change data. Marshes sequester significant amounts of carbon through vertical accretion; however, large amounts of carbon previously sequestered in the soil profile are lost through rapid land use changes and shoreline recessions. The Liaohe Delta (LHD) was divided into nine landscape types based on Landsat TM digital images from 1991 to 2011. The distributed areas and transfer matrices of each landscape type were calculated. Combined with the organic carbon content and bulk density of 202 soil surface samples from field investigations in 2012, the soil organic carbon pools and stocks were estimated. Results showed that the soil organic carbon pools varied from 0.58 to 9.75 kg m?2, and organic carbon storage in the upper 20 cm of soil was 1935.92 × 104 and 1863.87 × 104 t in 1991 and 2011, respectively. We attributed these large losses of carbon to rapid land use changes. The construction of levees along the shoreline has triggered large instantaneous losses of previously sequestered carbon through the destruction of 278.06 km2 of tidal flats. Our results reveal that the LHD wetlands might not serve as a desired sink of carbon if maladministration practices are applied. These results can provide scientific guidance for decision makers in determining an effective way to maintain the soil carbon pool in the wetlands of the LHD.  相似文献   

18.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

19.
Glaciers are among the most conspicuous and dynamic features on the earth’s surface and are also highly sensitive to changes in climatic parameters. Glaciers in the Kashmir Himalayas have been reported to be retreating due to climate forcing. Kolahoi Glacier is one of the largest and important glaciers of the Kashmir Himalayas and is the main source of Liddar River, which is the largest tributary of the Jhelum River system. In the present study, an analysis to assess the response of Kolahoi Glacier to the changing climate was carried out using the Survey of India (SoI) map and multi-temporal Landsat satellite data. The results show a significant change in the spatial extent of Kolahoi Glacier. The total area of this glacier has reduced from 12.21 km2 in 1962 to 11.61 km2 in 2010. An analysis of meteorological data (temperature and precipitation) shows that the average annual temperature increased from 9.1 °C in 1980–1989 to 10.3 °C in 2000–2009, while the precipitation decreased from 1329.44 to 1126.89 mm during the same period. The results suggest that this glacier will be annihilated completely if the same retreating trend continues.  相似文献   

20.

In this work, a dynamic GIS modeling approach is presented that incorporates: a) geoinformatic techniques, b) 55-year historical meteorological data, and c) field measurements, in order to estimate soil erosion risk in intensively cultivated regions. The proposed GIS-based modeling approach includes the estimation of soil erosion rates due to surface water flow under current and future climate change scenarios A2 and B1 for the years 2030 and 2050. The soil erosion was estimated using the Universal Soil Loss Equation (USLE). The proposed soil erosion model was validated using field measurements at different sites of the study area. The results show that an extended part of the study area is under intense erosion with the mean annual loss to be 4.85 t/ha year−1. Moreover, an increase in rainfall intensity, especially for scenario B1, can generate a significant increase (32.44 %) in soil loss for the year 2030 and a much more (50.77 %) for the year 2050 in comparison with the current conditions. Regarding the scenario A2, a slight decrease (1.85 %) in soil loss was observed for the year 2030, while for 2050 the results show an adequate increase (7.31 %) in comparison with the present. All these approaches were implemented at one of the most productive agricultural areas of Crete in Greece dominated by olive and citrus crops.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号