首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Weathering of rocks that regulate the water chemistry of the river has been used to evaluate the CO2 consumption rate which exerts a strong influence on the global climate. The foremost objective of the present research is to estimate the chemical weathering rate (CWR) of the continental water in the entire stretch of Brahmaputra River from upstream to downstream and their associated CO2 consumption rate. To establish the link between the rapid chemical weathering and thereby enhance CO2 drawdown from the atmosphere, the major ion composition of the Brahmaputra River that drains the Himalaya has been obtained. Major ion chemistry of the Brahmaputra River was resolved on samples collected from nine locations in pre-monsoon, monsoon and post-monsoon seasons for two cycles: cycle I (2011–2012) and cycle II (2013–2014). The physico-chemical parameters of water samples were analysed by employing standard methods. The Brahmaputra River was characterized by alkalinity, high concentration of Ca2+ and HCO3 ? along with significant temporal variation in major ion composition. In general, it was found that water chemistry of the river was mainly controlled by rock weathering with minor contributions from atmospheric and anthropogenic sources. The effective CO2 pressure (log\({{\text{P}}_{{\text{C}}{{\text{O}}_{\text{2}}}}}\)) for pre-monsoon, monsoon and post-monsoon has been estimated. The question of rates of chemical weathering (carbonate and silicate) was addressed by using TDS and run-off (mm year?1). It has been found that the extent of CWR is directly dependent on the CO2 consumption rate which may be further evaluated from the perspective of climate change mitigation The average annual CO2 consumption rate of the Brahmaputra River due to silicate and carbonate weathering was found to be 0.52 (×106 mol Km?2 year?1) and 0.55 (×106 mol Km?2 year?1) for cycle I and 0.49 (×106 mol Km?2 year?1) and 0.52 (×106 mol Km?2 year?1) for cycle II, respectively, which were significantly higher than that of other Himalayan rivers. Estimation of CWR of the Brahmaputra River indicates that carbonate weathering largely dominates the water chemistry of the Brahmaputra River.  相似文献   

2.
Sr isotope data from soils, water, and atmospheric inputs in a small tropical granitoid watershed in the Luquillo Mountains of Puerto Rico constrain soil mineral development, weathering fluxes, and atmospheric deposition. This study provides new information on pedogenic processes and geochemical fluxes that is not apparent in watershed mass balances based on major elements alone. 87Sr/86Sr data reveal that Saharan mineral aerosol dust contributes significantly to atmospheric inputs. Watershed-scale Sr isotope mass balance calculations indicate that the dust deposition flux for the watershed is 2100 ± 700 mg cm−2 ka−1. Nd isotope analyses of soil and saprolite samples provide independent evidence for the presence of Saharan dust in the regolith. Watershed-scale Sr isotope mass balance calculations are used to calculate the overall short-term chemical denudation velocity for the watershed, which agrees well with previous denudation rate estimates based on major element chemistry and cosmogenic nuclides. The dissolved streamwater Sr flux is dominated by weathering of plagioclase and hornblende and partial weathering of biotite in the saprock zone. A steep gradient in regolith porewater 87Sr/86Sr ratio with depth, from 0.70635 to as high as 0.71395, reflects the transition from primary mineral-derived Sr to a combination of residual biotite-derived Sr and atmospherically-derived Sr near the surface, and allows multiple origins of kaolinite to be identified.  相似文献   

3.
Water samples were collected in the main channel of the Geum River, South Korea, and measured dissolved elemental concentrations and isotopic compositions of nitrate in order to identify the factors controlling water chemistry. Elemental concentrations significantly increased location-wise after the confluence from urban areas, indicating the changes in solute sources from chemical weathering to anthropogenic inputs such as manure, fertilizers, and sewage. In particular, the effect of sewage input is manifested in the concentrations of Cl?, SO4 2?, and Na+, while the NO3 ? concentration is influenced mainly by soil inputs with minor contributions from manure and fertilizer because both δ15N–NO3 and δ18O–NO3 indicate NO3 ? mostly consists of soil-derived nitrates in the upper reaches but manure/sewage nitrates in the lower reaches. The relative proportion of three factors, Cl?, Ca2++Mg2+, and NO3 ?, indicates that water chemistry in the upstream is controlled by the soil weathering but that in the downstream by the sewage. Seasonally, water chemistry during summer is dominated by the soil weathering due to the flushing effect but that during winter by the sewage. This study suggests that the relative proportion of three factors can be used for tracing natural and anthropogenic sources in water chemistry.  相似文献   

4.
A small watershed (160 km2) located in the Massif Central (France) has been chemically, isotopically and hydrologically studied through its dissolved load, bed sediments and soils. This watershed is underlain by basaltic bedrock and associated soils in which the vegetation is dominated mainly by meadows.Dissolved concentrations of major ions (Cl, SO4, NO3, HCO3, Ca, Na, Mg, K, Al and Si), trace elements (Rb and Sr) and strontium isotopes have been determined for two different hydrologic periods on the main stream of the Allanche river and its tributaries.The major objectives of this study were to characterize the chemical and isotopic signatures of each reservoir occurring in the watershed. Changes in chemical and isotopic signatures are interpreted in terms of fluctuations of the different components inputs: rainwater, weathering products, anthropogenic addition.Water quality may be influenced by natural inputs (rainwater, weathering processes) and anthropogenic additions (fertilizers, road salts, etc.). Precipitation serves as a major vehicle for dissolved chemical species in addition to the hydrosystem and, in order to constrain rain inputs, a systematic study of rainwaters is carried out over a one year period using an automatic collector. Corrections of rainwater addition using chloride as an atmospheric input reference were computed for selected elements and the Sr/Sr ratio. After such corrections, the geochemical budget of the watershed was determined and the role of anthropogenic additions evaluated through the relationship between strontium isotopes and major and trace element ratios. Thus, 10% of Ca and Na originate in rainwater input, 40 to 80% in fertilizer additions and 15 to 50% in rock weatheringThe cationic denudation rates for this watershed are around 0.3 g s–1 km2 during low water discharge and 0.6 g s–1 km2 in high water stage. This led to a chemical denudation rate of 5.3 mm/1000 years.For solid matter, the normalization of chemical species relative to parent rocks shows the depletion or enrichment in soils and sediments. The use of K and Ca as mobile reference illustrates the weathering state of soils and sediments relative to parent rocks. This weathering state for bed sediments range from 15 to 45% for the K normalization and from 2 to 50% for the Ca normalization. For the soils, the weathering state ranges from 15 to 57% for the K normalization and from 17 to 90% for the Ca normalization.  相似文献   

5.
In this study, the chemical and Sr isotopic compositions of shallow groundwater and rainwater in the Ordos Desert Plateau, North China, and river water from the nearby Yellow River, are investigated to determine the dissolved Sr source and water–rock interactions, and quantify the relative Sr contribution from each end-member. Three groundwater systems have been identified, namely, GWS-1, GWS-2 and GWS-3 according to the watershed distribution in the Ordos Desert Plateau. Ca2+ and Mg2+ are the most dominant cations in GWS-1, while Na+ is dominant in GWS-3. In addition, there is more SO42− and less Cl in GWS-1 than in GWS-3. The shallow groundwater in GWS-2 seems to be geochemically between that in GWS-1 and GWS-3. The 87Sr/86Sr ratios of the shallow groundwater are high in GWS-1 and GWS-2 and are low in GWS-3. By geochemically comparing the nearby Yellow River, local precipitation and deep groundwater, the shallow groundwater is recharged only by local precipitation. The ionic and isotopic ratios indicate that carbonate dissolution is an important process controlling the chemistry of the shallow groundwater. The intensity of the water–rock interactions varies among the three groundwater systems and even within each groundwater system. Three end-members controlling the groundwater chemistry are isotopically identified: (1) precipitation infiltration, (2) carbonate dissolution and (3) silicate weathering. The relative Sr contributions of the three end-members show that precipitation infiltration and carbonate dissolution are the primary sources of the shallow groundwater Sr in GWS-3 whereas only carbonate dissolution is responsible for the shallow groundwater Sr in GWS-1 and GWS-2. Silicate weathering seems insignificant towards the shallow groundwater's chemistry in the Ordos Desert Plateau. This study is helpful for understanding groundwater chemistry and managing water resources.  相似文献   

6.
The changes in the water chemistry of rivers can reflect influence of anthropogenic activities on the water environment to some extent. To understand the relationship between the spatial distribution of the eco-environment of the watershed and the characteristics of water chemistry and geochemistry of rivers, firstly, the digital Wujiang watershed was built, and then the sub-watersheds were delineated, taking the sample points as sub-watershed outlets based on GIS. Secondly, using the function of spatial analyst of GIS, the statistical features of eco-environment (such as lithology and land use/cover) of each sub-watershed were calculated according to their respective classification. Finally, the correlation between the spatial distribution of lithology of the sub-watersheds and their corresponding 87Sr/86Sr ratio of river water, the correlation between NO3 /HCO3 , Cl/HCO3 , SO4 2−/HCO3 and anthropogenic activities, respectively, and the correlation between the fraction of green vegetation of the sub-watershed and their corresponding flux of TDS (total dissolved solids) were analyzed quantitatively. The results justify that the 87Sr/86Sr ratio of river water is highly dependent on the lithologic feature of the watershed and indicate that anthropogenic activities are one of the main sources of NO3 and SO4 2− of river waters. The output of TDS is highly dependent on the percentage of vegetation cover of the watershed.  相似文献   

7.
The geochemical and isotopic compositions of river water are controlled by different factors. The seasonal and spatial variations in the geochemical composition, δD, δ18O, and δ15N–NO3 of the Kumho River were investigated to reveal the geochemical processes occurring at different seasons. The Kumho River, which runs through different geologic terrains with different land use characteristics, is the largest tributary of the Nakdong River, the longest river in South Korea. The data varied significantly according to the land use and the season. Each monitoring station showed the lowest concentrations of various ions during July, the rainy season, due to the increase of precipitation rate. The ionic concentrations gradually increased downstream by the mineral weathering and anthropogenic activity. At the upper regions of the river, Ca and HCO3, which are closely associated with mineral weathering, were the most dominant cation and anion, respectively. The relatively high Si concentration of the headwater samples, caused by the weathering of volcanic rocks, also showed the importance of weathering in the upper regions mainly composed of volcanic rocks. The downstream regions of the Kumho River are mainly influenced by sedimentary rocks. At the lower reaches of the river, especially near the industrial complexes in Daegu, the third largest city in Korea, Na, Cl, and SO4 became the dominant ions, indicating that the anthropogenic pollution became more important in regulating the chemical composition of the river. The increasing (Ca + Mg + Na + K)/HCO3 ratio downstream also indicates that the anthropogenic effects became more important as the river flows downstream. The isotopic compositions of δD and δ18O indicate that the river waters were significantly affected by evaporation during May and July, but the evaporation effect was relatively low during October. The isotopic composition of δ15N–NO3 increased downstream, also confirming that anthropogenic effects became more significant at the lower reach of the river and near Daegu.  相似文献   

8.
Taiwan is a typical active orogenic belt situated at the collision boundary between the Eurasian Continental Plate and the Philippine Sea Plate. Dissolved major and trace constituents, as well as Sr and Sr isotopes in river waters collected from the Danshuei River basin in northern Taiwan have been studied to evaluate chemical weathering processes. The results of principal component analysis show that the ion sources in these river waters can be categorized into 3 major components: chemical weathering, seasalt contribution and local anthropogenic input. The chemical weathering is the most dominant factor that contributes about 85% of total variances. Significantly increased Na/Cl and Ca/Cl, as well 87Sr/86Sr, were observed in most upper stream samples. The Na/Cl and Ca/Cl ratios in the Dahan Stream, however, are much higher than the Shindien Stream. Even though average rainfall is stronger in the Shindien drainage basin, chemical evidence from river waters supports less intense weathering in the region. Selective dissolution of secondary calcites explains the observed high Ca/Cl, Sr/Cl and Ca/Na in the Dahan Stream. These results highlight the potential importance of tectonic factors, such as uplift and physical erosion in studying chemical weathering in an active orogenic belt.  相似文献   

9.
Grasslands of north-central Kansas are underlain by carbonate aquifers and shale aquitards. Chemical weathering rates in carbonates are poorly known, and, because large areas are underlain by these rocks, solute fluxes are important to estimating global weathering rates. Grasslands exist where the amount of precipitation is extremely variable, both within and between years, so studies in grasslands must account for changes in weathering that accompany changes in precipitation. This study: (1) identifies phases that dominate chemical fluxes at Konza Prairie Biological Station (KPBS) and Long-Term Ecological Research Site, and (2) addresses the impact of variable precipitation on mineral weathering. The study site is a remnant tallgrass prairie in the central USA, representing baseline weathering in a mid-temperate climate grassland.Groundwater chemistry and hydrology in the 1.2 km2 watershed used for this study suggest close connections between groundwater and surface water. Water levels fluctuate seasonally. High water levels coincide with periods of precipitation plus low evapotranspiration rather than during precipitation peaks during the growing season. Precipitation is concentrated before recharging aquifers, suggesting an as yet unquantified residence time in the thin soils.Groundwater and surface water are oversaturated with respect to calcite within limitations of available data. Water is more dilute in more permeable aquifers, and water from one aquifer (Morrill) is indistinguishable from surface water. Cations other than Ca co-vary with each other, especially Sr and Mg. Potassium and Si co-vary in all aquifers and surface water, and increases in concentrations of these elements are the best indicators of silicate weathering at this study site. Silicate-weathering indices correlate inversely to aquifer hydraulic conductivity.87Sr/86Sr in water ranges from 0.70838 to 0.70901, and it decreases with increasing Sr concentration and with increasing silicate-weathering index. Carbonate extracted from aquifer materials, shales, soil, and tufa has Sr ranging from about 240 (soil) to 880 ppm (Paleozoic limestone). 87Sr/86Sr ranges from 0.70834 ± 0.00006 (limestone) to 0.70904 ± 0.00019 (soil). In all cases, 87Sr/86Sr of aquifer limestone is lower than 87Sr/86Sr of groundwater, indicating a phase in addition to aquifer carbonate is contributing solutes to water.Aquifer recharge controls weathering: during periods of reduced recharge, increased residence time increases the total amount of all phases dissolved. Mixing analysis using 87Sr/86Sr shows that two end members are sufficient to explain sources of dissolved Sr. It is proposed that the less radiogenic end member is a solution derived from dissolving aquifer material; longer residence time increases its contribution. The more radiogenic end member solution probably results from reaction with soil carbonate or eolian dust. This solution dominates solute flux in all but the least permeable aquifer and demonstrates the importance that land-surface and soil-zone reactions have on groundwater chemistry in a carbonate terrain.  相似文献   

10.
We investigated the source of heavy metals in soils at a site in South Korea, where a ground transportation of zinc-concentrates (ZnS, sphalerite) occurs daily. Seventy soil samples were collected at the site and analyzed for residual concentrations of heavy metals, as well as their chemical and mineralogical properties. Enrichment factor was calculated based on local geochemical background level of metals in soils and confirmed the contamination of soils in the area by an anthropogenic source. The concentration data were also subjected to a Pearson correlation analysis to determine the possible influences of anthropogenic sources and identify the primary source. A slight negative correlation between heavy metals and Al, and a weak correlation between heavy metals and Fe implied that the heavy metals originated from anthropogenic inputs rather than a geogenic source. A strong positive linear correlation between Zn and other heavy metals (i.e., As, Cd, Cu, Pb, r ≥ 0.96, p ≤ 0.001) suggested the influence of a single anthropogenic source of zinc-concentrates containing all of these heavy metals. Zinc-concentrate oxidation and leaching experiments, which mimicked physical and chemical weathering in the environment, indicated that zinc-concentrate could be transformed to zinc oxides and release Cd and Pb upon precipitation. The findings in this study provide an insight into the fate of the Zn that the original form of zinc-concentrate would not remain in the soil after long-term weathering, which should be considered when source of heavy metals is identified.  相似文献   

11.
We investigated chemical weathering in a high elevation granitic environment in three selected watersheds located in the Pyrenees (France). The sites were located on glacial deposits derived from similar Hercynian (∼300 Ma) granites characterized by the occurrence of zoned plagioclases and trace calcic phases (epidote, prehnite, sphene, apatite). The surface waters at those sites show high Ca/Na molar ratios (>1) which could not be explained by the dissolution of the major plagioclase (oligoclase) present in the rocks. The coupled approach of investigating stream water chemistry and the mineralogy and chemistry of rocks and soils allowed us to explore the role of the weathering of trace calcic minerals in calcium export at the watershed scale. The weathering of the trace calcic minerals which represent ∼ 1% of the total rock volume are responsible for more than 90% of the calcium export at the sites. Annual cationic fluxes (∼ 23.104 eq/km2/yr) calculated for the Estibère watershed are among the highest reported for high elevation systems draining granitic rocks and ∼ 80% of this annual cationic flux can be attributed to the weathering of trace calcic phases. Calculations based on isotopic values (87Sr/86Sr) go in the same direction. Except apatite, the trace calcic phases appear to be mainly silicates, thus the type of chemical weathering observed in the Estibère watershed may have an influence on atmospheric CO2 consumption by granite weathering. However, comparison with other watersheds draining granitic environments worldwide, and with the two other sites in the Pyrenees, indicate that the role of trace calcic phases is important in most young environments exposed to chemical weathering (e.g., high elevation catchments on glacial deposits). Other factors such as the date of glacial retreat, the physical denudation rate, the hydrological functioning of the watershed and the nature and structure of the soil cover are also important.  相似文献   

12.
Groundwater from karst subterranean streams is among the world’s most important sources of drinking water supplies, and the hydrochemical characteristics of karst water are impacted by both natural environment and people. Therefore, the study of hydrochemistry and its solutes’ sources is very important to ensure the normal function of life support systems. In this paper, thirty?five representative karst groundwater samples were collected from different aquifers (limestone and dolomite) and various land use types in Chongqing to trace the sources of solutes and relative hydrochemical processes. Hydrogeochemical types of karst groundwater in Chongqing were mainly of the Ca?HCO3 type or Ca (Mg)?HCO3 type. However, some hydrochemical types of karst groundwater were the K+Na+Ca?SO4 type (G25 site) or Ca?HCO3+SO4 type (G26 and G14 site), indicating that the hydrochemistry of these sites might be strongly influenced by anthropogenic activities or unique geological characteristics. The dissolved Sr concentrations of the studied groundwater ranged from 0.57 to 15.06 μmmol/L, and the 87Sr/86Sr varied from 0.70751 to 0.71627. The δ34S?SO42? fell into a range of ?6.8‰?21.5‰, with a mean value of 5.6‰. The variations of both 87Sr/86Sr and Sr values of the groundwater samples indicated that the Sr element was controlled by the weathering of limestone, dolomite and silicate rock. However, the figure of 87Sr/86Sr vs. Sr2+/[K++Na+] showed that the anthropogenic inputs also obviously contributed to the Sr contents. For tracing the detailed anthropogenic effects, we traced the sources of solutes collected karst groundwater samples in Chongqing according to the δ34S value of potential sulfate sources. The variations of both δ34S and 1/SO42? values of the groundwater samples indicated that the atmospheric acid deposition (AAD), dissolution of gypsum (GD), oxidation of sul?de mineral (OS) or anthropogenic inputs (SF: sewage or fertilizer) have contributed to solutes in karst groundwater. The influence of oxidation of sul?de mineral, atmospheric acid deposit and anthropogenic inputs to groundwater in Chongqing karst areas was much widespread.  相似文献   

13.
This paper presents a study on the Wular Lake which is the largest fresh water tectonic lake of Kashmir Valley, India. One hundred and ninety-six (196) water samples and hundred (100) sediment samples (n = 296) have been collected to assess the weathering and Anthropogenic impact on water and sediment chemistry of the lake. The results showed a significant seasonal variability in average concentration of major ions being highest in summer and spring and lower in winter and autumn seasons. The study revealed that lake water is alkaline in nature characterised by medium total dissolved solids and electrical conductivity. The concentration of the major ion towards the lake central showed a decreasing trend from the shore line. The order of major cations and anions was Ca2+ > Mg2+ > Na+ > K+ and HCO3 ? > SO4 2? > Cl?, respectively. The geochemical processes suggested that the chemical composition lake water is mostly influenced by the lithology of the basin (carbonates, silicates and sulphates) which had played a significant role in modifying the hydrogeochemical facies in the form of Ca–HCO3, Mg–HCO3 and hybrid type. Chemical index of alteration values of Wular Lake sediments reflect moderate weathering of the catchment area. Compared to upper continental crust and the post-Archean Shale, the sediments have higher Si, Ti, Mg and Ca contents and lower Al, Fe, Na, K, P, Zn, Pb, Ni, Cu content. Geoaccumulation index (Igeo) and US Environmental Protection Agency sediment quality standards indicated that there is no pollution effect of heavy metals (Zn, Mn, Pb, Ni and Co).The study also suggested that Wular Lake is characterised by both natural and anthropogenic influences.  相似文献   

14.
Lake water, river water, and groundwater from the Lake Qinghai catchment in the northeastern Tibetan Plateau, China have been analyzed and the results demonstrate that the chemical components and 87Sr/86Sr ratios of the waters are strictly constrained by the age and rock types of the tributaries, especially for groundwater. Dissolved ions in the Lake Qinghai catchment are derived from carbonate weathering and part from silicate sources. The chemistry of Buha River water, the largest tributary within the catchment, underlain by the late Paleozoic marine limestone and sandstones, constrains carbonate-dominated compositions of the lake water, being buffered by the waters from the other tributaries and probably by groundwater. The variation of 87Sr/86Sr ratios with cation concentrations places constraint on the Sr-isotopic compositions of the main subcatchments surrounding Lake Qinghai. The relative significance of river-water sources from different tributaries (possibly groundwater as well) in controlling the Sr distribution in Lake Qinghai provides the potential to link the influence of hydrological processes to past biological and physical parameters in the lake. The potential role of groundwater input in the water budget and chemistry of the lake emphasizes the need to further understand hydrogeological processes within the Lake Qinghai system.  相似文献   

15.
Forty-one metric tons of the mineral wollastonite (CaSiO3) was applied to an 11.8 hectare watershed at the Hubbard Brook Experimental Forest (HBEF; White Mountains, New Hampshire, USA) with the goal of restoring the Ca estimated to have been depleted from the soil exchange complex by acid deposition. This experiment provided an opportunity to gain qualitative information on whole watershed hydrologic flow paths by studying the response of stream water chemistry to the addition of Ca. Because the Ca/Sr and 87Sr/86Sr ratios of wollastonite strongly contrast that of other Ca sources in the watershed, the wollastonite-derived Ca can be identified and its amount estimated in various ecosystem components. Stream water chemistry at the HBEF varies seasonally due to shifts in the proportion of base flow and interflow. Prior to the wollastonite application, seasonal variations in 87Sr/86Sr ratios indicated that 87Sr/86Sr was higher during base flow than interflow, due largely to greater amounts of biotite weathering along deeper flow paths. After the application, Ca/Sr and 87Sr/86Sr changed markedly as the high Ca/Sr and low 87Sr/86Sr wollastonite dissolved and mixed with stream water. The Ca addition provided information on the response times of various flow paths and ion exchange processes to Ca addition in this small upland watershed. During the first year after the addition, wollastonite applied to the near stream zone dissolved and was partially immobilized by cation exchange sites in the hyporheic zone. In the second and third years after the addition we infer that much of this Ca and Sr was subsequently desorbed from the hyporheic zone and was exported from the watershed in stream flow. In the fourth through ninth years after the addition, Ca and Sr from wollastonite that had dissolved in upland soils was transported to the stream by interflow during wet periods when the ground water table was elevated. Between years three and nine the minimum annual Ca/Sr ratio (in late summer base flow) increased, providing evidence that Ca and Sr had increasingly infiltrated to the deepest flow paths. Strong seasonal variations in Ca/Sr and 87Sr/86Sr ratios of stream water resulted from the wollastonite addition to upland forest soils, and these ratios have become sensitive to changing flow paths during the annual cycle. Most notably, high flow events now produce large excursions in stream geochemistry toward the high Ca/Sr and low 87Sr/86Sr ratios of wollastonite. Nine years after the application we estimate that ∼360 kg of Ca from wollastonite has been exported from the watershed in stream flow. The rate of export of Ca from wollastonite dissolution has stabilized at about 11 kg of Ca per year, which accounts for ∼30% of the dissolved Ca in the stream water. Given that 19 metric tons of Ca were applied to the watershed, and assuming this current rate of loss, it should take over 1000 years for this added Ca to be transported from the watershed.  相似文献   

16.
A detailed investigation of the fluvial geochemistry of the Han River system allows to estimate the rates of chemical weathering and the consumption of CO2. The Han River drains approximately 26,000 km2 and is the largest river system in South Korea in terms of both water discharge and total river length. It consists of two major tributaries: the North Han River (NHR) and the South Han River (SHR). Distinct differences in basin lithology (silicate vs. carbonate) between the NHR and SHR provide a good natural laboratory in which to examine weathering processes and the influence of basin geology on water quality. The concentrations of major elements and the Sr isotopic compositions were obtained from 58 samples collected in both summer and winter along the Han River system in both 2000 and 2006. The concentrations of dissolved loads differed considerably between the NHR and SHR; compared with the SHR, the NHR had much lower total dissolved solids (TDS), Sr, and major ion concentrations but a higher Si concentration and 87Sr/86Sr ratio. A forward model showed that the dissolved loads in the NHR came primarily from silicate weathering (55 ± 11%), with a relatively small portion from carbonates (30 ± 14%), whereas the main contribution to the dissolved loads in the SHR was carbonate weathering (82 ± 3%), with only 11 ± 4% from silicates. These results are consistent with the different lithologies of the two drainage basins: silicate rocks in the NHR versus carbonate rocks in the SHR. Sulfuric acid derived from sulfide dissolution in coal-containing sedimentary strata has played an important role in carbonate weathering in the SHR basin, unlike in the NHR basin. The silicate weathering rate (SWR) was similar between the NHR and SHR basins, but the rate of CO2 consumption in the SHR basin was lower than in the NHR basin due to an important role of sulfuric acid derived from pyrite oxidation.  相似文献   

17.
Fossil shark teeth and coprolites from three major phosphorite occurrences in the Gafsa Basin (southwestern Tunisia) were investigated for their geochemical compositions to improve local stratigraphy and to better assess paleoenvironmental conditions. 87Sr/86Sr isotope ratios of shark teeth from the Early Maastrichtian El Haria Formation and from the Early Eocene Métlaoui s.s. Formation yielded Sr isotope ages of 68 ± 1 and 47.9 ± 1.3 Ma, respectively, which accord with the expected stratigraphic positions of these sediments. Conversely, shark teeth from the Paleocene–Eocene Chouabine Formation have large variation in Sr isotope ratios even within individual layers. After statistical treatment and then elimination of certain outlier samples, three age-models are proposed and discussed. The most reasonable solution includes three subsequent Sr ages of 61.8 ± 2.2 Ma, 57.2 ± 1.8 and 54.6 ± 1.6 for layer IX, layers VIII–V and layers IV–0, respectively. Three scenarios are discussed for explanation of the presence of the outliers: (1) diagenesis, (2) re-working and (3) locally controlled seawater Sr isotope ratio. The most plausible account for the higher 87Sr/86Sr ratios relative to the global ocean in some fossils is enhanced intrabasinal re-working due to low sea level. Conversely, the sample with lower 87Sr/86Sr than the global seawater may link to diagenesis or to seawater influenced by weathering of Late Cretaceous marine carbonates, which latter is supported by model calculation as well. The εNd values of these fossils are very similar to those reported for Paleogene and Late Cretaceous Tethyan seawater and are compatible with the above interpretations. The relatively low oxygen isotope values in shark teeth from the topmost phosphate bed of the Chouabine Formation, together with the Sr isotope results, point toward recovering better connections with the open sea. These δ18O data reflect elevated ambient temperature, which may link to the Early Eocene Climatic Optimum.  相似文献   

18.
Groundwater chemistry in a coastal region (Kunsan, Korea) having complex contaminant sources was investigated. Water analysis data for 197 groundwater samples collected from the uniformly distributed sixty-six wells were used. Chemical analysis results indicate that groundwaters show wide concentration ranges in major inorganic ions, reflecting complex hydrochemical processes. Due to the complexity of groundwater chemistry, the samples were classified into four groups based on Cl and NO3 concentrations and the processes controlling water chemistry were evaluated based on the reaction stoichiometry. The results explained the importance of mineral weathering, anthropogenic activities (nitrification and oxidation of organic matters), and Cl-salt inputs (seawater, deicer, NaCl, etc.) on groundwater chemistry. It was revealed that mineral dissolution is the major process controlling the water chemistry of the low Cl and NO3 group (Group 1). Groundwaters high in NO3 (Groups 2 and 4) are acidic in nature, and their chemistry is largely influenced by nitrification, oxidation of organic matters and mineral dissolution. In the case of chloride rich waters (Group 3), groundwater chemistry is highly influenced by mineral weathering and seawater intrusion associated with cation-exchange reactions.  相似文献   

19.
The stable isotope composition of strontium (expressed as δ88/86Sr) may provide important constraints on the global exogenic strontium cycle. Here, we present δ88/86Sr values and 87Sr/86Sr ratios for granitoid rocks, a 150 yr soil chronosequence formed from these rocks, surface waters and plants in a small glaciated watershed in the central Swiss Alps. Incipient chemical weathering in this young system, whether of inorganic or biological origin, has no resolvable effect on the 87Sr/86Sr ratios and δ88/86Sr values of bulk soils, which remain indistinguishable from bedrock in terms of Sr isotopic composition. Although due in part to the chemical heterogeneity of the forefield, the lack of a resolvable difference between soil and bedrock isotopic composition indicates that these soils have thus far witnessed minimal net loss of Sr; a low degree of chemical weathering is also implied by bulk soil chemistry. The isotopic composition of Sr in streamwater is more radiogenic than median soil, reflecting the preferential weathering of biotite in the catchment; streamwater δ88/86Sr values, however, are indistinguishable from bulk soil δ88/86Sr values, implying that no resolvable fractionation of Sr isotopes takes place during release to the weathering flux in the Damma forefield. Analyses of plant tissue reveal that plants (Rhododendron and Vaccinium) preferentially assimilate the lighter isotopes of Sr such that their δ88/86Sr values are significantly lower than those of the soils in which they grow. Additionally, δ88/86Sr values of foliar and floral tissues are lower than those of roots, contrary to observations for Ca, for which Sr is often used as an analogue in weathering studies. We suggest that processes that discriminate against Sr in favour of Ca, due to the different nutritional requirement of plants for these two elements, are responsible for the observed contrast.  相似文献   

20.
Rainwater plays an important role in scavenging of aerosols and gases from atmosphere, and its chemistry helps to understand the relative contributions of atmospheric pollution sources. The present work is aimed to understand and explain the sources, seasonal patterns and the processes thereof affecting rainwater chemistry in an urban environment of Delhi, India. Rainwater samples (n = 111) collected throughout the year in New Delhi showed alkalinity in general. Eight rainwater samples, collected in late monsoon and winter season, had pH less than 5.6 indicating that Delhi continues to face the prospects of acid rain despite the introduction of compressed natural gas as the clean fuel in city transport. Organic acids could be the possible contributors of acidity in rainwater samples having the fractional acidity (FA) value of 0.174, which is greater than the annual average FA (0.011) and the (Ca2+ + Mg2+ + NH4 +)/(SO4 2? + NO3 ?) ration of more than one. Average acid neutralization factors of cations decrease in the order Ca2+ (1.01) > NH4 + (0.77) > Mg2+ (0.10). However, neutralization by Ca2+ dominates only in summer season as cation-rich dust is transported from the Great Indian Thar Desert to this region by strong summer S–SW winds, while NH4 + dominates in rainwater of other three sampling seasons. Identified dominant sources for soluble ions in rainwater are (1) non-silicate crustal source for carbonates and sulfates of Ca and Mg, (2) emissions from catalytic convertor-fitted vehicles and agriculture fields for NH3 and (3) mixed anthropogenic sources for SO4 2?, NO3 ? and Cl?. Rainwater chemistry showed significant seasonal variations. This could be due to the changes in relative proportions of natural and anthropogenic sources of soluble ions to rainwater. Dominance of anthropogenic sources over crustal sources can result in acidic rains, which can adversely affect the environment and human health in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号