首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The laterites in Burundi, which are formed by weathering of ultrabasic rocks, show a complete profile with the following horizons: canga, the ferruginous crust capping, ferralite, consisting essentially of iron hydroxides, and saprolite, which contains a large quantity of hydrosilicate minerals. Nickel bearing minerals occur in the saprolite and the lower portion of ferralite. Resistivity well-logging and resistivity sounding indicated that the electrical properties of rocks depend upon their composition: Canga and ferralite showed high resistivities of 6,500 Ωm and 800 Ωm, respectively. The resistivity of saprolite was found to be much lower, between 10 Ωm and 20 Ωm. The laterite is underlain by resistive peridotite. The chargeability of saprolite was found to be lower than that of the upper horizons and the bedrock. Electrolytic conductivity of laterite, which depends on the geometry of the deposit, was found to be low, because the laterite contains moisture and ground water, which are highly resistive. The relatively high conductivity of saprolite is caused by nickeliferous hydrosilicates, which exhibit the electrical properties of clay minerals, with an apparent maximum conductivity of 0.25 S/m. The conductivity of saprolite corresponds to a concentration between 30% and 50% of conductive silicate minerals distributed in the pore space of deposit. A nickel enrichment of up to 6% was estimated from the resistivity of the saprolite. Prospecting for laterites by electrical sounding showed that the development of laterite horizons in a nickel deposit correlates with the surface morphology of weathered ultrabasic massif. Thus the method can be used in preliminary exploration of such deposits.  相似文献   

2.
An Erratum has been published for this article in Earth Surface Processes and Landforms 28(13) 2003, 1491. Granite domes, boulders and knobs buried within saprolite have been detected beneath lateritic weathering landsurfaces using 2D electrical resistivity tomography (ERT). This technique provides a valuable means of mapping the bedrock topography and the regolith structures underneath landsurfaces, as it is intrinsically very sensitive to the electrical properties of superimposed pedological, hydrological and geological layers, allowing the determination of their relative geometry and spatial relationships. For instance, 2D inverse electrical resistivity models including topographic data permit the de?nition of lithostratigraphic cross‐sections. It shows that resistive layers, such as the more or less hardened ferruginous horizons and/or the bedrock, are generally well differentiated from poorly resistive layers, such as saprolite, including water‐saturated lenses, as has been corroborated by past and actual borehole observations. The analysis of the 2D geometrical relations between the weathering front, i.e. the bedrock topography, and the erosion surface, i.e. the landsurface topography, documents the weathering and erosion processes governing the development of the landforms and the underlying structures, thus allowing the etching hypothesis to be tested. The in?ltration waters are diverted by bedrock protrusions, which behave as structural thresholds compartmentalizing the saprolite domain, and also the regolith water table, into distinct perched saturated subdomains. The diverted waters are thus accumulated in bedrock troughs, which behave like underground channels where the saprolite production rate may be enhanced, provided that the water drainage is ef?cient. If the landsurface topography controls the runoff dynamics, the actual bedrock topography as depicted by ERT imaging in?uences the hydrodynamics beneath the landsurface. In some way, this may control the actual weathering rate and the shaping of bedrock protrusions as granite domes and knobs within thick saprolite, before their eventual future exposure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The electrical properties of several tens of metres of lateritic weathering mantle were investigated by using electrical resistivity tomography (ERT) in two basement areas of eastern Senegal. The field survey was conducted along two profiles providing continuous coverage. Colour-modulated pseudosections of apparent resistivity vs. pseudo-depth were plotted for all survey lines, giving an approximate image of the subsurface structure. In the area underlain by granitic basement, the pseudosection suggests a very inhomogeneous weathered layer in which the apparent resistivity changes more rapidly than thickness. In the second area, underlain by schists, the lateral changes in electrical properties are less pronounced than those of the granitic area. Interpretation of 2D Wenner resistivity data yielded considerable detail about the regolith, even without pit information. In both areas, the near-surface topsoil comprising undersaturated lateritic material is highly resistive. The intermediate layer with low resistivities (e.g., 20–100 Ωm) contains clays including small quantities of water. The third, highly resistive layer reflects the granitic basement. Comparison of ERT survey results with pit information shows general agreement and suggests that ERT can be used as a fast and efficient exploration tool to map the thick lateritic weathering mantle in tropical basement areas with hard rock geology.  相似文献   

4.
In this paper we analyze the onsite characterization of a geosynthetic clay liner (GCL) that serves to ensure the impermeability of a landfill cap by DC electrical methods. The imaging of the GCL geoelectrical properties is a challenging problem because it is a very thin (between 4 and 7 mm thick) and resistive layer (from 100,000 to 2,000,000 Ω·m) depending on meteorological conditions and aging. We compare results obtained using electrical resistivity tomography (ERT) using two different kinds of arrays (dipole–dipole DD and Wenner–Schlumberger) on an experimental site with engineered defects. To confirm these results and to find the real onsite GCL resistivity we have performed sampling of the posterior distribution of this parameter using vertical electrical sounding (VES) inversions. Different VES methods were extracted from ERT with DD array and converted into a Schlumberger array.As a main conclusion the dipole–dipole array provides a better resistivity resolution of the defects than the Wenner–Schlumberger array. On ERT images, the defect detection seems to be impossible if the GCL has very high resistivity, as it happened when it was put in place. Taking into account the equivalence rules, the inversions are in both cases (ERT and VES) compatible. The GCL resistivity estimated from PSO (particle swarm optimization) varies from 3.0 105 to 1.106 Ω·m depending on saturation conditions during the twenty first months of its placing. Then, the resistivity dropped to 4.104–9.104 Ω·m, indicating a probable chemical damage of the GCL due to aging. Finally the fact that the VES inversions are solved via PSO sampling allows for the detection of a very thin and resistive layer and opens the possibility of performing micro VES surveys along the landfill to detect possible GCL defects.  相似文献   

5.
This paper presents the first controlled‐source electromagnetic survey carried out in the German North Sea with a recently developed seafloor‐towed electrical dipole–dipole system, i.e., HYDRA II. Controlled‐source electromagnetic data are measured, processed, and inverted in the time domain to estimate an electrical resistivity model of the sub‐seafloor. The controlled‐source electromagnetic survey targeted a shallow, phase‐reversed, seismic reflector, which potentially indicates free gas. To compare the resistivity model to reflection seismic data and draw a combined interpretation, we apply a trans‐dimensional Bayesian inversion that estimates model parameters and uncertainties, and samples probabilistically over the number of layers of the resistivity model. The controlled‐source electromagnetic data errors show time‐varying correlations, and we therefore apply a non‐Toeplitz data covariance matrix in the inversion that is estimated from residual analysis. The geological interpretation drawn from controlled‐source electromagnetic inversion results and borehole and reflection seismic data yield resistivities of ~1 Ωm at the seafloor, which are typical for fine‐grained marine deposits, whereas resistivities below ~20 mbsf increase to 2–4 Ωm and can be related to a transition from fine‐grained (Holocene age) to unsorted, coarse‐grained, and compacted glacial sediments (Pleistocene age). Interface depths from controlled‐source electromagnetic inversion generally match the seismic reflector related to the contrast between the different depositional environments. Resistivities decrease again at greater depths to ~1 Ωm with a minimum resistivity at ~300 mbsf where a seismic reflector (that marks a major flooding surface of late Miocene age) correlates with an increased gamma‐ray count, indicating an increased amount of fine‐grained sediments. We suggest that the grain size may have a major impact on the electrical resistivity of the sediment with lower resistivities for fine‐grained sediments. Concerning the phase‐reversed seismic reflector that was targeted by the survey, controlled‐source electromagnetic inversion results yield no indication for free gas below it as resistivities are generally elevated above the reflector. We suggest that the elevated resistivities are caused by an overall decrease in porosity in the glacial sediments and that the seismic reflector could be caused by an impedance contrast at a thin low‐velocity layer. Controlled‐source electromagnetic interface depths near the reflector are quite uncertain and variable. We conclude that the seismic interface cannot be resolved with the controlled‐source electromagnetic data, but the thickness of the corresponding resistive layer follows the trend of the reflector that is inclined towards the west.  相似文献   

6.
The architecture of the critical zone includes the distribution, thickness, and contacts of various types of slope deposits and weathering products such as saprolite and weathered bedrock resting on solid bedrock. A quantitative analysis of architecture is necessary for many model‐driven approaches used by pedologic, geomorphic, hydrologic or biologic studies. We have used electrical resistivity tomography, a well‐established geophysical technique causing minimum surficial disturbance, to portray the subsurface electrical resistivity differences at three study sites (Green Lakes Valley; Gordon Gulch; Betasso) at the Boulder Creek Critical Zone Observatory (BcCZO). Possible limitations of the technique are discussed. Interpretation of the specific resistivity values using natural outcrops, pits, roadcuts and drilling data as ground truth information allows us to image the critical zone architecture of each site. Green Lakes Valley (3700 MASL), a glacially eroded alpine basin, shows a rather simple, split configuration with coarse blockfields and sediments, partly containing permafrost above bedrock. The critical zone in Gordon Gulch (2650 MASL), a montane basin with rolling hills, and Betasso (1925 MASL), a lower montane basin with v‐shaped valleys, is more variable due to a complex Quaternary geomorphic history. Boundaries between overlying stratified slope deposits and saprolite were identified at mean depths of 3.0 ± 2.2 m and 4.1 ± 3.6 m in the respective sites. The boundary between saprolite and weathered bedrock is deeper in Betasso at 5.8 ± 3.7 m, compared with 4.3 ± 3.0 m in Gordon Gulch. In general, the data are consistent with results from seismic studies, but electrical resistivity tomography documents a 0.5–1.5 m shallower critical zone above the weathered bedrock on average. Additionally, we document high lateral variability, which results from the weathering and sedimentation history and seems to be a consistent aspect of critical zone architecture within the BcCZO. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The response of two-dimensional, inclined, sheet-like conductors with, low conductance values to plane wave electromagnetic fields in the very low frequency (VLF) range has been evaluated by using a numerical technique. The conductance values of the conductors considered are appropriate for those produced by water and/or clay-filled fracture and shear zones in the Precambrian crystalline rocks of the Canadian Shield. The surrounding host rock was assumed to be, resistive with resistivities in the 1–10 k.m range to reflect the high resistivities over the shield areas. No overburden was assumed in this analysis.The results of the computations are presented in the form of characteristic interpretation diagrams to interpret ground VLF data in the field, where facilities for direct numerical modelling may not be available. A method for interpreting ground VLF data using such characteristic diagrams has been proposed in this paper which requires a prior knowledge of the host rock resistivity and the inclination of the conductor. These two parameters may be derived from a VLF resistivity survey and from appropriate filtering of the VLF tilt angle response. The interpretation method was applied to a ground VLF anomaly obtained at a research site near Atikokan in NW Ontario, which yielded an interpretation compatible with information from geological mapping.Geological Survey of Canada Contribution No. 51888.  相似文献   

8.
Soil‐covered upland landscapes constitute a critical part of the habitable world. Our understanding of how they evolve as a function of different climatic, tectonic and geological regimes is important across a wide range of disciplines and depends, in part, on understanding the links between chemical and physical weathering processes. Extensive previous work has shown that soil production rates decrease with increasing soil column thickness, but chemical weathering rates were not measured. Here we examine a granitic, soil‐mantled hillslope at Point Reyes, California, where soil production rates were determined using in situ produced cosmogenic nuclides (10Be and 26Al), and we quantify the extent as well as the rates of chemical weathering of the saprolite from beneath soil from across the landscape. We collected saprolite samples from the base of soil pits and analysed them for abrasion pH as well as for major and trace elements by X‐ray fluorescence spectroscopy, and for clay mineralogy by X‐ray diffraction spectroscopy. Our results show for the first time that chemical weathering rates decrease with increasing soil thickness and account for 13 to 51 per cent of total denudation. We also show that spatial variation in chemical weathering appears to be topographically controlled: weathering rate decreases with slope across the divergent ridge and increases with upslope contributing area in the convergent swale. Furthermore, to determine the best measure for the extent of saprolite weathering, we compared four different chemical weathering indices – the Vogt ratio, the chemical index of alteration (CIA), Parker's index, and the silicon–aluminium ratio – with saprolite pH. Measurements of the CIA were the most closely correlated with saprolite pH, showing that weathering intensity decreases linearly with an increase in saprolite pH from 4·7 to almost 7. Data presented here are among the first to couple directly rates of soil production and chemical weathering with how topography is likely to control weathering at a hillslope scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Gas hydrates are a potential energy resource, a possible factor in climate change and an exploration geohazard. The University of Toronto has deployed a permanent seafloor time‐domain controlled source electromagnetic (CSEM) system offshore Vancouver Island, within the framework of the NEPTUNE Canada underwater cabled observatory. Hydrates are known to be present in the area and due to their electrically resistive nature can be monitored by 5 permanent electric field receivers. However, two cased boreholes may be drilled near the CSEM site in the near future. To understand any potential distortions of the electric fields due to the metal, we model the marine electromagnetic response of a conductive steel borehole casing. First, we consider the commonly used canonical model consisting of a 100 Ωm, 100 m thick resistive hydrocarbon layer embedded at a depth of 1000 m in a 1 Ωm conductive host medium, with the addition of a typical steel production casing extending from the seafloor to the resistive zone. Results show that in both the frequency and time domains the distortion produced by the casing occurs at smaller transmitter‐receiver offsets than the offsets required to detect the resistive layer. Second, we consider the experimentally determined model of the offshore Vancouver Island hydrate zone, consisting of a 5.5 Ωm, 36 m thick hydrate layer overlying a 0.7 Ωm sedimentary half‐space, with the addition of two borehole casings extending 300 m into the seafloor. In this case, results show that the distortion produced by casings located within a 100 m safety zone of the CSEM system will be measured at 4 of the 5 receivers. We conclude that the boreholes must be positioned at least 200 m away from the CSEM array so as to minimize the effects of the casings.  相似文献   

10.
Magneto-telluric measurements were carried out at a group of eight sites, from Braunschweig to Lübeck, to determine the resistivity values associated with the North German conductivity anomaly. The data were analyzed for scalar and tensor apparent resistivities over the period range 5–2000 seconds. The results in general indicate very conductive (?I Ω-m) sediments overlying a resistive basement which is strongly lineated. Interpreted basement depth (?6 km) is compatible with published seismic refraction data. Principal conductivity axes in the basement appear to be directly related to trends of salt domes and major troughs. A major change in axis direction occurs near the center of the North German anomaly.  相似文献   

11.
The conversion of bedrock to regolith marks the inception of critical zone processes, but the factors that regulate it remain poorly understood. Although the thickness and degree of weathering of regolith are widely thought to be important regulators of the development of regolith and its water‐storage potential, the functional relationships between regolith properties and the processes that generate it remain poorly documented. This is due in part to the fact that regolith is difficult to characterize by direct observations over the broad scales needed for process‐based understanding of the critical zone. Here we use seismic refraction and resistivity imaging techniques to estimate variations in regolith thickness and porosity across a forested slope and swampy meadow in the Southern Sierra Critical Zone Observatory (SSCZO). Inferred seismic velocities and electrical resistivities image a weathering zone ranging in thickness from 10 to 35 m (average = 23 m) along one intensively studied transect. The inferred weathering zone consists of roughly equal thicknesses of saprolite (P‐velocity < 2 km s?1) and moderately weathered bedrock (P‐velocity = 2–4 km s?1). A minimum‐porosity model assuming dry pore space shows porosities as high as 50% near the surface, decreasing to near zero at the base of weathered rock. Physical properties of saprolite samples from hand augering and push cores are consistent with our rock physics model when variations in pore saturation are taken into account. Our results indicate that saprolite is a crucial reservoir of water, potentially storing an average of 3 m3 m?2 of water along a forested slope in the headwaters of the SSCZO. When coupled with published erosion rates from cosmogenic nuclides, our geophysical estimates of weathering zone thickness imply regolith residence times on the order of 105 years. Thus, soils at the surface today may integrate weathering over glacial–interglacial fluctuations in climate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A magnetotelluric survey was performed at the Çatalca Region, west of Istanbul, Turkey with the aim of investigating geoelectrical properties of the upper crust near the Çatalca Fault and its vicinity. Broadband magnetotelluric data were collected at nine sites along a single southwest-northeast profile to image the electrical resistivity structure from surface to the 5 km depth. The dimensionality of the data was examined through tensor decompositions and highly two-dimensional behavior of the data is shown. Following the tensor decompositions, two-dimensional inversions were carried out where E-polarization, B-polarization and tipper data were utilized to construct electrical resistivity models. The results of the inversions suggest: a) the Çatalca Fault extends from surface to 5 km depth as a conductive zone dipping to southwest; b) the thickness of the sedimentary cover is increasing from SW to NE to 700 m with low resistivity values between 1–100 Ωm; c) the crystalline basement below the sedimentary unit is very resistive and varies between 2000–100000 Ωm; d) a SW-dipping resistivity boundary in the northeastern part of our profile may represent the West Black Sea Fault.  相似文献   

13.
A detailed magnetotelluric survey was conducted in 2013 in the Sehqanat oil field, southwestern Iran to map the geoelectrical structures of the sedimentary Zagros zone, particularly the boundary between the Gachsaran Formation acting as cap rock and the Asmari Formation as the reservoir. According to the electrical well logs, a large resistivity contrast exists between the two formations. The Gachsaran Formation is formed by tens to hundreds of metres of evaporites and it is highly conductive (ca. 1 Ωm–10 Ωm), and the Asmari Formation consists of dense carbonates, which are considerably more resistive (more than 100 Ωm). Broadband magnetotelluric data were collected along five southwest–northeast directed parallel lines with more than 600 stations crossing the main geological trend. Although dimensionality and strike analysis of the magnetotelluric transfer functions showed that overall they satisfied local 2D conditions, there were also strong 3D conditions found in some of the sites. Therefore, in order to obtain a more reliable image of the resistivity distribution in the Sehqanat oil field, in addition to standard 2D inversion, we investigated to what extent 3D inversion of the data was feasible and what improvements in the resistivity image could be obtained. The 2D inversion models using the determinant average of the impedance tensor depict the main resistivity structures well, whereas the estimated 3D model shows significantly more details although problems were encountered in fitting the data with the latter. Both approaches resolved the Gachsaran–Asmari transition from high conductivity to moderate conductivity. The well‐known Sehqanat anticline could also be delineated throughout the 2D and 3D resistivity models as a resistive dome‐shaped body in the middle parts of the magnetotelluric profiles.  相似文献   

14.
In the paper the principles of a new inversion method as well as the results of its application are described by using synthetic and field VES data. The basic idea of the method says that the horizontal changes in the layer thicknesses and the resistivities of the 2-D geological structure can be described by (expanding in series) functions of one variable. The coefficients of the functions are determined from the VES data by simultaneous inversion method using a least-squares technique. The local thicknesses and the resistivities of the geological structure are calculated from the coefficients from point to point along the profile. Using this method, the equivalence can considerably be reduced, and by using the functions chosen on the basis of a priori knowledge, the whole geological model can be determined by this inversion method. In the inversion the local 1-D forward modelling is used and this approximation is often applied in the VES practice. To qualify the results of the inversion, the correlation matrix for the coefficients are calculated and the error values for the local model parameters are introduced.  相似文献   

15.
Groundwater constitutes the main source of freshwater in Shalatein, on the western coast of the Red Sea, in Egypt. The fresh aquifer of Shalatein is intensively dissected by shallow and deep faults associated with the occurrence of dykes and/or dyke swarms. In this context, synthesis of electrical resistivity, ground magnetics, and borehole data was implemented to investigate the freshwater aquifer condition, locate the intrusive dykes and/or dyke swarms, and demarcate the potential freshwater zones. Nine Schlumberger VES’s with maximum current electrode half-spacing (AB/2) of 682 m were conducted. The subsurface was successfully delineated by general four layers. The fresh aquifer of the Quaternary and Pre-Quaternary alluvium sediments was effectively demarcated with true resistivities ranged from 30 to 105 Ωm and thickness ranged between 20 and 60 m. A ground magnetic survey comprised 35 magnetic profiles, each 7 km in length. Magnetic data interpretation of the vertical derivatives (first and second order), downward continuation (100 m), apparent susceptibility (depth of 100 m), and wavelength filters (Butterworth high-pass of wavelengths <100 m and Band-Pass of wavelengths 30–100 m) successfully distinguished the near surface structure with five major clusters of dyke swarms, whereas filters of the upward continuation (300 m) and Butterworth low-pass (wavelengths >300 m) clearly reflected the deep-seated structure. The computed depth by the 3D Euler deconvolution for geological contacts and faults (SI = 0) ranged from 14 to 545 m, whereas for dyke and sill (SI = 1), it ranged from 10 to 1,095 m. The western part of the study area is recommended as a potential freshwater zone as it is characterized by depths >100 m to the top of the dykes, higher thickness of the fresh aquifer (45–60 m), depths to the top of the fresh aquifer ranging from 25 to 40 m, and higher resistivities reflecting better freshwater quality (70–105 Ωm).  相似文献   

16.
Landscapes evolve in response to external forces, such as tectonics and climate, that influence surface processes of erosion and weathering. Internal feedbacks between erosion and weathering also play an integral role in regulating the landscapes response. Our understanding of these internal and external feedbacks is limited to a handful of field‐based studies, only a few of which have explicitly examined saprolite weathering. Here, we report rates of erosion and weathering in saprolite and soil to quantify how climate influences denudation, by focusing on an elevation transect in the western Sierra Nevada Mountains, California. We use an adapted mass balance approach and couple soil‐production rates from the cosmogenic radionuclide (CRN) 10Be with zirconium concentrations in rock, saprolite and soil. Our approach includes deep saprolite weathering and suggests that previous studies may have underestimated denudation rates across similar landscapes. Along the studied climate gradient, chemical weathering rates peak at middle elevations (1200–2000 m), averaging 112·3 ± 9·7 t km–2 y–1 compared to high and low elevation sites (46·8 ± 5·2 t km?2 y?1). Measured weathering rates follow similar patterns with climate as those of predicted silica fluxes, modeled using an Arrhenius temperature relationship and a linear relationship between flux and precipitation. Furthermore, chemical weathering and erosion are tightly correlated across our sites, and physical erosion rates increase with both saprolite weathering rates and intensity. Unexpectedly, saprolite and soil weathering intensities are inversely related, such that more weathered saprolites are overlain by weakly weathered soils. These data quantify exciting links between climate, weathering and erosion, and together suggest that climate controls chemical weathering via temperature and moisture control on chemical reaction rates. Our results also suggest that saprolite weathering reduces bedrock coherence, leading to faster rates of soil transport that, in turn, decrease material residence times in the soil column and limit soil weathering. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a new method for the measurement on core samples of their electrical resistivity, its anisotropy and heterogeneity. The equipment used has been developed in the field laboratory of the German Continental Deep Drilling program KTB in the north-east of Bavaria on the western rim of the Bohemian Massif. The apparatus measures the resistivity at a fixed frequency as a function of the drill core azimuth and along the core by moving point electrode configurations. From these azimuth and depth dependences, mean values of resistivity and additional information about its anisotropy and heterogeneity are determined. Geometrical averaging is used, because the resistivity data follows a log normal distribution. The quantitative parameters ‘azimuth factor’, corresponding to horizontal anisotropy, and ‘heterogeneity factor’ are introduced. The depth logs of resistivity, azimuth factor and heterogeneity factor, measured on cores obtained from the KTB main drill hole (gneisses and amphibolites) at depths between 4150 m and 8080 m are presented. The geometrically averaged mean values of resistivity of gneisses and amphibolites are in the same range (? 103Ωm). The resistivities tend to decrease with depth. The stress release of the drill cores during recovery produces microcracks which may partially account for this effect. Reduced resistivities (down to 150 Ωm) within an amphibolite core correlate with an alteration zone. One sample of this core displays alteration from fresh to completely altered. This sample is also electrically heterogeneous (heterogeneity factor ? 2). Other samples with uniform low alteration are more homogeneous heterogeneity factor ? 1.4). In general, higher anisotropies are observed in gneisses (mean azimuth factor 2.8), lower anisotropies in amphibolites (mean azimuth factor 1.3). Examples of isotropic and homogeneous samples, as well as anisotropic and heterogeneous samples are also presented.  相似文献   

18.
In this study, we used an archive of borehole logs from the British Geological Survey to collect information on the spatial structure of weathering that extends from the surface to competent bedrock across the Triassic Sherwood Sandstone Group outcrop (750 km2), in the East Midlands, UK. The borehole logs were used to estimate the thickness of the soil (n = 280) and soil and saprolite (S&S) to competent rock (n = 500). The weathering profile of the sandstone consisted of soil (median thickness ~ 1·5 m) overlying a transition zone of compacted and weakly cemented weathered sandstone saprolite over bedrock. Topographic analysis using a NEXTMAP 5 m × 5 m digital elevation model (DEM) revealed no significant relationships between slope properties (relief, flow length, flow accumulation or slope angle) and soil or S&S thickness. A weak, but statistically significant correlation was found between the thickness of the soil and S&S (rs = 0·25, p < 0·001, n = 192). The variation in soil thickness may be related to changes in current and historic and land‐use, variation in sandstone properties and the influence of glacial/peri‐glacial processes. The thickness of the saprolite was more variable towards the southern part of the study area, where it increased to a maximum 40 m. We hypothesize and provide evidence that the greater weathering thickness is related to the occurrence of increased faulting in this part of the study region, allowing increased access to meteoric waters. A possible source of increased water supply is meltwater from Quaternary ice sheets; the overburden of ice may have increased sub‐glacial pore water pressure, with the fractures and faults acting as a drainage system for the removal of dissolved weathering products. British Geological Survey © NERC 2010  相似文献   

19.
Analytical solutions of vertical electrical soundings (VES) have mostly been applied to groundwater exploration and monitoring groundwater quality on terrains of fairly simple geology and geomorphology on which the electrode arrays are symmetrical (e.g. Schlumberger or Wenner configurations). The sounding interpretation assumes flat topography and horizontally stratified layers. Any deviations from these simple situations may be impossible to interpret analytically. The recently developed GEA-58 geoelectrical instrument can make continuous soundings along a profile with any colinear electrode configuration. This paper describes the use of finite-difference and finite-element methods to model complex earth resistivity distributions in 2D, in order to calculate apparent resistivity responses to any colinear current electrode distribution in terrains in which the earth resistivities do not vary along the strike. The numerical model results for simple situations are compared with the analytical solutions. In addition, a pseudo-depth section of apparent resistivities measured in the field with the GEA-58 is compared with the numerical solution of a real complex resistivity distribution along a cross-section. The model results show excellent agreement with the corresponding analytical and experimental data.  相似文献   

20.
Vertical electrical sounding technique (VES) is used as an alternative approach to pumping test for computing the Quaternary aquifer transmissivity in the Khanasser Valley, Northern Syria. The method is inexpensive, easy and gives faster results with higher special resolution than the traditional pumping technique. The hydraulic conductivity values obtained using VES agree with the pumping test results, which in the Khanasser Valley vary between the order of 0.864 and 8.64 m/day (10−5 and 10−4 m/s). The probable location of the Quaternary aquifer in the Khanasser Valley is obtained through the transmissivity map derived from VES. The knowledge of transmissivity is fundamental for modeling and management processes in the Khanasser Valley. Other similar semiarid regions can benefit from the approach successfully applied in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号