首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Due to the dramatic increase in the global mean surface temperature (GMST) during the twentieth century, the climate science community has endeavored to determine which mechanisms are responsible for global warming. By analyzing a millennium simulation (the period of 1000–1990 ad) of a global climate model and global climate proxy network dataset, we estimate the contribution of solar and greenhouse gas forcings on the increase in GMST during the present warm period (1891–1990 ad). Linear regression analysis reveals that both solar and greenhouse gas forcing considerably explain the increase in global mean temperature during the present warm period, respectively, in the global climate model. Using the global climate proxy network dataset, on the other hand, statistical approach suggests that the contribution of greenhouse gas forcing is slightly larger than that of solar forcing to the increase in global mean temperature during the present warm period. Overall, our result indicates that the solar forcing as well as the anthropogenic greenhouse gas forcing plays an important role to increase the global mean temperature during the present warm period.  相似文献   

2.
Climate and atmospheric CO2 concentration are intimately coupled in the Earth system: CO2 influences climate through the greenhouse effect, but climate also affects CO2 through its impact on the amount of carbon stored on land and in the ocean. The change in atmospheric CO2 as a response to a change in temperature ( $\varDelta CO_{2}/\varDelta T$ ) is a useful measure to quantify the feedback between the carbon cycle and climate. Using an ensemble of experiments with an Earth system model of intermediate complexity we show a pronounced time-scale dependence of $\varDelta CO_{2}/\varDelta T$ . A maximum is found on centennial scales with $\varDelta CO_{2}/\varDelta T$ values for the model ensemble in the range 5–12 ppm °C?1, while lower values are found on shorter and longer time scales. These results are consistent with estimates derived from past observations. Up to centennial scales, the land carbon response to climate dominates the CO2 signal in the atmosphere, while on longer time scales the ocean becomes important and eventually dominates on multi-millennial scales. In addition to the time-scale dependence, modeled $\varDelta CO_{2}/\varDelta T$ show a distinct dependence on the initial state of the system. In particular, on centennial time-scales, high $\varDelta CO_{2}/\varDelta T$ values are correlated with high initial land carbon content. A similar relation holds also for the CMIP5 models, although for $\varDelta CO_{2}/\varDelta T$ computed from a very different experimental setup. The emergence of common patterns like this could prove to usefully constrain the climate–carbon cycle feedback.  相似文献   

3.
S. Lovejoy 《Climate Dynamics》2014,42(9-10):2339-2351
Although current global warming may have a large anthropogenic component, its quantification relies primarily on complex General Circulation Models (GCM’s) assumptions and codes; it is desirable to complement this with empirically based methodologies. Previous attempts to use the recent climate record have concentrated on “fingerprinting” or otherwise comparing the record with GCM outputs. By using CO2 radiative forcings as a linear surrogate for all anthropogenic effects we estimate the total anthropogenic warming and (effective) climate sensitivity finding: ΔT anth  = 0.87 ± 0.11 K, $\uplambda_{{2{\text{x}}{\text{CO}}_{2} ,{\text{eff}}}} = 3.08 \pm 0.58\,{\text{K}}$ . These are close the IPPC AR5 values ΔT anth  = 0.85 ± 0.20 K and $\uplambda_{{2{\text{x}}{\text{CO}}_{2} }} = 1.5\!-\!4.5\,{\text{K}}$ (equilibrium) climate sensitivity and are independent of GCM models, radiative transfer calculations and emission histories. We statistically formulate the hypothesis of warming through natural variability by using centennial scale probabilities of natural fluctuations estimated using scaling, fluctuation analysis on multiproxy data. We take into account two nonclassical statistical features—long range statistical dependencies and “fat tailed” probability distributions (both of which greatly amplify the probability of extremes). Even in the most unfavourable cases, we may reject the natural variability hypothesis at confidence levels >99 %.  相似文献   

4.
Developing economy greenhouse gas emissions are growing rapidly relative to developed economy emissions (Boden et al. 2010) and developing economies as a group have greater emissions than developed economies. These developments are expected to continue (U.S. Energy Information Administration 2010), which has led some to question the effectiveness of emissions mitigation in developed economies without a commitment to extensive mitigation action from developing economies. One often heard argument against proposed U.S. legislation to limit carbon emissions to mitigate climate change is that, without participation from large developing economies like China and India, stabilizing temperature at 2 degrees Celsius above preindustrial (United Nations 2009), or even reducing global emissions levels, would be impossible (Driessen 2009; RPC Energy Facts 2009) or prohibitively expensive (Clarke et al. 2009). Here we show that significantly delayed action by rapidly developing countries is not a reason to forgo mitigation efforts in developed economies. This letter examines the effect of a scenario with no explicit international climate policy and two policy scenarios, full global action and a developing economy delay, on the probability of exceeding various global average temperature changes by 2100. This letter demonstrates that even when developing economies delay any mitigation efforts until 2050 the effect of action by developed economies will appreciably reduce the probability of more extreme levels of temperature change. This paper concludes that early carbon mitigation efforts by developed economies will considerably affect the distribution over future climate change, whether or not developing countries begin mitigation efforts in the near term.  相似文献   

5.
We present further steps in our analysis of the early anthropogenic hypothesis (Ruddiman, Clim Change 61:261–293, 2003) that increased levels of greenhouse gases in the current interglacial, compared to lower levels in previous interglacials, were initiated by early agricultural activities, and that these increases caused a warming of climate long before the industrial era (~1750). These steps include updating observations of greenhouse gas and climate trends from earlier interglacials, reviewing recent estimates of greenhouse gas emissions from early agriculture, and describing a simulation by a climate model with a dynamic ocean forced by the low levels of greenhouse gases typical of previous interglacials in order to gauge the magnitude of the climate change for an inferred (natural) low greenhouse gas level relative to a high present day level. We conduct two time slice (equilibrium) simulations using present day orbital forcing and two levels of greenhouse gas forcing: the estimated low (natural) levels of previous interglacials, and the high levels of the present (control). By comparing the former to the latter, we estimate how much colder the climate would be without the combined greenhouse gas forcing of the early agriculture era (inferred from differences between this interglacial and previous interglacials) and the industrial era (the period since ~1750). With the low greenhouse gas levels, the global average surface temperature is 2.7 K lower than present day—ranging from ~2 K lower in the tropics to 4–8 K lower in polar regions. These changes are large, and larger than those reported in a pre-industrial (~1750) simulation with this model, because the imposed low greenhouse gas levels (CH4 = 450 ppb, CO2 = 240 ppm) are lower than both pre-industrial (CH4 = 760 ppb, CO2 = 280 ppm) and modern control (CH4 = 1,714 ppb, CO2 = 355 ppm) values. The area of year-round snowcover is larger, as found in our previous simulations and some other modeling studies, indicating that a state of incipient glaciation would exist given the current configuration of earth’s orbit (reduced insolation in northern hemisphere summer) and the imposed low levels of greenhouse gases. We include comparisons of these snowcover maps with known locations of earlier glacial inception and with locations of twentieth century glaciers and ice caps. In two earlier studies, we used climate models consisting of atmosphere, land surface, and a shallow mixed-layer ocean (Ruddiman et al., Quat Sci Rev 25:1–10, 2005; Vavrus et al., Quat Sci Rev 27:1410–1425, 2008). Here, we replaced the mixed-layer ocean with a complete dynamic ocean. While the simulated climate of the atmosphere and the surface with this improved model configuration is similar to our earlier results (Vavrus et al., Quat Sci Rev 27:1410–1425, 2008), the added information from the full dynamical ocean is of particular interest. The global and vertically-averaged ocean temperature is 1.25 K lower, the area of sea ice is larger, and there is less upwelling in the Southern Ocean. From these results, we infer that natural ocean feedbacks could have amplified the greenhouse gas changes initiated by early agriculture and possibly account for an additional increment of CO2 increase beyond that attributed directly to early agricultural, as proposed by Ruddiman (Rev Geophys 45:RG4001, 2007). However, a full test of the early anthropogenic hypothesis will require additional observations and simulations with models that include ocean and land carbon cycles and other refinements elaborated herein.  相似文献   

6.
The structure parameters of temperature and humidity are important in scintillometry as they determine the structure parameter of the refractive index of air, the primary atmospheric variable obtained with scintillometers. In this study, we investigate the variability of the logarithm of the Monin-Obukhov-scaled structure parameters (denoted as $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ ) of temperature and humidity. We use observations from eddy-covariance systems operated at three heights (2.5, 50, and 90 m) within the atmospheric surface layer under unstable conditions. The variability of $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ depends on instability and on the size of the averaging window over which $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ is calculated. If instability increases, differences in $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ between upward motions (large $C_{s}^2$ ) and downward motions (small $C_{s}^2$ ) increase. The differences are, however, not sufficiently large to result in a bimodal probability density function. If the averaging window size increases, the variances of $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ decrease. A linear regression of the variances of $\log ({\widetilde{C_{s}^2}_{\mathrm {}}})$ versus the averaging window size for various stability classes shows an increase of both the offset and slope (in absolute sense) with increasing instability. For temperature, data from the three heights show comparable results. For humidity, in contrast, the offset and slope are larger at 50 and 90 m than at 2.5 m. In the end we discuss how these findings could be used to assess whether observed differences in $C_{s}^2$ along a scintillometer path or aircraft flight leg are just within the range of local variability in $C_{s}^2$ or could be attributed to surface heterogeneity. This is important for the interpretation of data measured above a heterogeneous surface.  相似文献   

7.
In public debate surrounding climate change, scientific uncertainty is often cited in connection with arguments against mitigative action. This article examines the role of uncertainty about future climate change in determining the likely success or failure of mitigative action. We show by Monte Carlo simulation that greater uncertainty translates into a greater likelihood that mitigation efforts will fail to limit global warming to a target (e.g., 2 °C). The effect of uncertainty can be reduced by limiting greenhouse gas emissions. Taken together with the fact that greater uncertainty also increases the potential damages arising from unabated emissions (Lewandowsky et al. 2014), any appeal to uncertainty implies a stronger, rather than weaker, need to cut greenhouse gas emissions than in the absence of uncertainty.  相似文献   

8.
Vertical mixing of the nocturnal stable boundary layer (SBL) over a complex land surface is investigated for a range of stabilities, using a decoupling index ( $0 < D_{rb} < 1$ ) based on the 2–50 m bulk gradient of the ubiquitous natural trace gas radon-222. The relationship between $D_{rb}$ and the bulk Richardson number ( $R_{ib}$ ) exhibits three broad regions: (1) a well-mixed region ( $D_{rb} \approx 0.05$ ) in weakly stable conditions ( $R_{ib} < 0.03$ ); (2) a steeply increasing region ( $0.05 < D_{rb} < 0.9$ ) for “transitional” stabilities ( $0.03 < R_{ib} < 1$ ); and (3) a decoupled region ( $D_{rb} \approx 0.9$ –1.0) in very stable conditions ( $R_{ib} > 1$ ). $D_{rb}$ exhibits a large variability within individual $R_{ib}$ bins, however, due to a range of competing processes influencing bulk mixing under different conditions. To explore these processes in $R_{ib}$ $D_{rb}$ space, we perform a bivariate analysis of the bulk thermodynamic gradients, various indicators of external influences, and key turbulence quantities at 10 and 50 m. Strong and consistent patterns are found, and five distinct regions in $R_{ib}$ $D_{rb}$ space are identified and associated with archetypal stable boundary-layer regimes. Results demonstrate that the introduction of a scalar decoupling index yields valuable information about turbulent mixing in the SBL that cannot be gained directly from a single bulk thermodynamic stability parameter. A significant part of the high variability observed in turbulence statistics during very stable conditions is attributable to changes in the degree of decoupling of the SBL from the residual layer above. When examined in $R_{ib}$ $D_{rb}$ space, it is seen that very different turbulence regimes can occur for the same value of $R_{ib}$ , depending on the particular combination of values for the bulk temperature gradient and wind shear, together with external factors. Extremely low turbulent variances and fluxes are found at 50 m height when $R_{ib} > 1$ and $D_{rb} \approx 1$ (fully decoupled). These “quiescent” cases tend to occur when geostrophic forcing is very weak and subsidence is present, but are not associated with the largest bulk temperature gradients. Humidity and net radiation data indicate the presence of low cloud, patchy fog or dew, any of which may aid decoupling in these cases by preventing temperature gradients from increasing sufficiently to favour gravity wave activity. The largest temperature gradients in our dataset are actually associated with smaller values of the decoupling index ( $D_{rb} < 0.7$ ), indicating the presence of mixing. Strong evidence is seen from enhanced turbulence levels, fluxes and submeso activity at 50 m, as well as high temperature variances and heat flux intermittencies at 10 m, suggesting this region of the $R_{ib}$ $D_{rb}$ distribution can be identified as a top-down mixing regime. This may indicate an important role for gravity waves and other wave-like phenomena in providing the energy required for sporadic mixing at this complex terrain site.  相似文献   

9.
地球失控增暖可能性的数值模拟   总被引:5,自引:4,他引:1  
通过改变太阳常数引进强外辐射强迫的变化,利用NCAR气候系统模式CSM1.4,就气候系统对强外辐射强迫下的失控增暖效应进行了初步研究。结果表明:气候对于太阳常数分别增加2.5%、10%与增加25%的响应有所不同,即对于较小的强迫,气候系统的响应是线性的;而对于较大的强迫,响应很可能是非线性的。对于NCAR模式,如果强迫足够大,气候系统将会经历失控增暖。失控增暖的主要趋势并不是最初设想的正的水汽反馈增暖,至少在模式中,不只是“失控的温室效应”增暖,还有“失控的云反馈”增暖。  相似文献   

10.
G. J. Boer 《Climate Dynamics》2011,37(11-12):2253-2270
The result in climate simulations, supported in the observation-based record, is that the ratio $\phi = T_{L} /T_{O} $ of land-average to ocean-average temperature change is greater than one and varies comparatively modestly as climate changes. This is investigated in results from the CMIP3 data archive of climate change simulations following the B1 and more strongly forced A1B scenarios as well as in 2×CO2 integrations. The associated precipitation ratio $ \psi = P_{L} /P_{O} $ is also considered briefly. The behaviour of ? is analyzed in terms of a forcing-response view of the energy balance over land and ocean regions. The analysis indicates that the value of ??>?1 is not maintained by separate local balances over land and ocean but by an energetic balance that also involves a change in transport between the regions. The transport change does not restrain the land warming by exporting energy to the ocean region but, rather, the reverse. The anomalous transport is from the ocean to the land region even though the ocean warms less than the land does. Feedbacks in the ocean region, especially in the equatorial Pacific, do not sufficiently counteract the forcing and the result is an excess of energy that is transported to the land. The land warms in order to radiate away both the energy from the forcing over land but also the extra energy imported from the ocean region, thereby maintaining ??>?1. This situation can be understood to parallel the SST-forced case in model studies where ??>?1 despite the forcing being confined to the ocean area. The climate system is effective in redistributing forcing so that it is the local feedbacks, rather than the pattern of the forcing, that determine the temperature response. Land and ocean averaged quantities and budgets behave in a consistent manner to provide a simplified representation of the changes in temperature and energetic processes that are occurring. The geographical distributions of the terms do not, however, display a strong land/ocean demarcation. The land/ocean average budgets and balances are the residual of processes that vary considerably within the land and ocean boundaries.  相似文献   

11.
The scalar flux–gradient relationships of temperature ( $\phi _{T}$ ? T ) and specific humidity ( $\phi _{q}$ ? q ) under unstable conditions are investigated using eddy-covariance measurements of air–sea turbulent fluxes and vertical profiles of temperature and specific humidity collected from a marine meteorological platform. The gradients of temperature and specific humidity are obtained from measurements at five heights above the sea surface using the log-square fitting method and the simpler first-order approximation method. The two methods yield similar results. The proposed flux–gradient relationships $\phi _{T}$ ? T and $\phi _{q}$ ? q covers a wide range of instability: the stability parameter $\zeta $ ζ ranges from $-$ ? 0.1 to $-$ ? 50. The functional form of the proposed flux–gradient relationships is an interpolation between the Businger–Dyer relation and the free convection relation, which includes the “ $-$ ? 1/2” and “ $-$ ? 1/3” scaling laws at two different stability regimes. The widely used COARE 3.0 algorithm, which is an interpolation between the integrals of the Businger–Dyer and the free convection relations, is also evaluated and compared. The analysis and comparisons show that both schemes generate reasonable values of $\phi _{q}$ ? q in the whole unstable regime. The COARE 3.0 algorithm, however, overestimates $\phi _{T}$ ? T values under very unstable conditions. The errors in the flux–gradient relationships induced by the random errors in the turbulence measurements are assessed. When the random errors are taken into account, the observations agree with predictions of various schemes fairly well, implying that the dominant transport mechanism is adequately captured by the Monin–Obukhov similarity theory. The study also shows that $\phi _{q}$ ? q is significantly ${>}\phi _{T}$ > ? T under unstable conditions and that the ratio $\phi _{q}/\phi _{T}$ ? q / ? T increases with $-\zeta $ ? ζ . The ratio of $\phi _{q}$ ? q to $\phi _{T}$ ? T and the ratio of turbulent transport efficiencies of heat and water vapour ( $R_{wT}/R_{wq}$ R wT / R wq ) suggest that heat is transported more efficiently than water vapour under unstable conditions.  相似文献   

12.
Climate change mitigation via a reduction in the anthropogenic emissions of carbon dioxide (CO2) is the principle requirement for reducing global warming, its impacts, and the degree of adaptation required. We present a simple conceptual model of anthropogenic CO2 emissions to highlight the trade off between delay in commencing mitigation, and the strength of mitigation then required to meet specific atmospheric CO2 stabilization targets. We calculate the effects of alternative emission profiles on atmospheric CO2 and global temperature change over a millennial timescale using a simple coupled carbon cycle-climate model. For example, if it takes 50 years to transform the energy sector and the maximum rate at which emissions can be reduced is ?2.5% $\text{year}^{-1}$ , delaying action until 2020 would lead to stabilization at 540 ppm. A further 20 year delay would result in a stabilization level of 730 ppm, and a delay until 2060 would mean stabilising at over 1,000 ppm. If stabilization targets are met through delayed action, combined with strong rates of mitigation, the emissions profiles result in transient peaks of atmospheric CO2 (and potentially temperature) that exceed the stabilization targets. Stabilization at 450 ppm requires maximum mitigation rates of ?3% to ?5% $\text{year}^{-1}$ , and when delay exceeds 2020, transient peaks in excess of 550 ppm occur. Consequently tipping points for certain Earth system components may be transgressed. Avoiding dangerous climate change is more easily achievable if global mitigation action commences as soon as possible. Starting mitigation earlier is also more effective than acting more aggressively once mitigation has begun.  相似文献   

13.
Recent studies have highlighted the nonlinear rainfall response to El Niño sea surface temperature (SST) events in the Indo-Pacific region and how this response might change over coming decades. Here we investigate the response to La Niña SST anomalies with and without global warming by performing idealised SST-forced experiments with an atmospheric general circulation model. The La Niña SST anomaly is multiplied by a factor \(1 \le \alpha \le 4\) and added to climatological SSTs. Similar experiments using El Niño SST anomalies were previously performed, in which large nonlinearities in the precipitation response were evident. We find that: (i) Under current climatic conditions, as \(\alpha\) increases, the precipitation responds in three ways: the intertropical convergence zone (ITCZ) dries and moves poleward, the maximum precipitation along the equator moves west, and the South Pacific convergence zone (SPCZ) narrows, intensifies, and elongates. For weak ( \(\alpha = 1\) ) La Niña events, the precipitation anomalies approximately mirror those from the El Niño events along the ITCZ and SPCZ, though there are some marked differences in the central-eastern Pacific. For stronger La Niña events ( \(\alpha > 1\) ), precipitation responds nonlinearly to SST anomalies, though the nonlinearities are smaller and differ spatially from the nonlinearities in the El Niño runs. (ii) The addition of a global warming SST pattern increases rainfall in the western Pacific and SPCZ, enhances the narrowing of the SPCZ, and increases the nonlinear response in the western Pacific. However, large La Niña events reduce the impact of global warming along the central-eastern equatorial Pacific as the global warming and La Niña SST anomalies have opposite signs in that region. (iii) The response to La Niña SST anomalies is driven primarily by changes in the atmospheric circulation, whereas the response to the global warming SST pattern is mainly driven by increases in atmospheric moisture. (iv) Large changes in La Niña-driven rainfall anomalies can occur in response to global warming, even if the La Nina SST anomalies relative to the warmer background state are completely unchanged.  相似文献   

14.
The surface air temperature increase in the southwestern United States was much larger during the last few decades than the increase in the global mean. While the global temperature increased by about 0.5 °C from 1975 to 2000, the southwestern US temperature increased by about 2 °C. If such an enhanced warming persisted for the next few decades, the southwestern US would suffer devastating consequences. To identify major drivers of southwestern climate change we perform a multiple-linear regression of the past 100 years of the southwestern US temperature and precipitation. We find that in the early twentieth century the warming was dominated by a positive phase of the Atlantic multi-decadal oscillation (AMO) with minor contributions from increasing solar irradiance and concentration of greenhouse gases. The late twentieth century warming was about equally influenced by increasing concentration of atmospheric greenhouse gases (GHGs) and a positive phase of the AMO. The current southwestern US drought is associated with a near maximum AMO index occurring nearly simultaneously with a minimum in the Pacific decadal oscillation (PDO) index. A similar situation occurred in mid-1950s when precipitation reached its minimum within the instrumental records. If future atmospheric concentrations of GHGs increase according to the IPCC scenarios (Solomon et al. in Climate change 2007: working group I. The Physical Science Basis, Cambridge, 996 pp, 2007), climate models project a fast rate of southwestern warming accompanied by devastating droughts (Seager et al. in Science 316:1181–1184, 2007; Williams et al. in Nat Clim Chang, 2012). However, the current climate models have not been able to predict the behavior of the AMO and PDO indices. The regression model does support the climate models (CMIP3 and CMIP5 AOGCMs) projections of a much warmer and drier southwestern US only if the AMO changes its 1,000 years cyclic behavior and instead continues to rise close to its 1975–2000 rate. If the AMO continues its quasi-cyclic behavior the US SW temperature should remain stable and the precipitation should significantly increase during the next few decades.  相似文献   

15.
The current outbreak of mountain pine beetle (MPB) that started in the late 1990s in British Columbia, Canada, is the largest ever recorded in the north American native habitat of the beetle. The killing of trees is expected to change the vertical distribution of net radiation ( $Q^*$ Q ? ) and the partitioning of latent ( $Q_\mathrm{E}$ Q E ) and sensible ( $Q_\mathrm{H}$ Q H ) heat fluxes in the different layers of an attacked forest canopy. During an intensive observation period in the summer of 2010, eddy-covariance flux and radiation measurements were made at seven heights from ground level up to 1.34 times the canopy height in an MPB-attacked open-canopy forest stand $(\hbox {leaf area index} = 0.55~\mathrm{{m}}^{2}\ \mathrm{{m}}^{-2})$ ( leaf area index = 0.55 m 2 m - 2 ) in the interior of British Columbia, Canada. The lodgepole pine dominated stand with a rich secondary structure (trees and understorey not killed by the beetle) was first attacked by the MPB in 2003 and received no management. In this study, the vertical distribution of the energy balance components and their sources and sinks were analyzed and energy balance closure (EBC) was determined for various levels within the canopy. The low stand density resulted in approximately 60 % of the shortwave irradiance and 50 % of the daily total $Q^*$ Q ? reaching the ground. Flux divergence calculations indicated relatively strong sources of latent heat at the ground and where the secondary structure was located. Only very weak sources of latent heat were found in the upper part of the canopy, which was mainly occupied by dead lodgepole pine trees. $Q_\mathrm{H}$ Q H was the dominant term throughout the canopy, and the Bowen ratio ( $Q_\mathrm{H}/Q_\mathrm{E}$ Q H / Q E ) increased with height in the canopy. Soil heat flux ( $Q_\mathrm{G}$ Q G ) accounted for approximately 4 % of $Q^*$ Q ? . Sensible heat storage in the air ( $\Delta Q_\mathrm{S,H}$ Δ Q S , H ) was the largest of the energy balance storage components in the upper canopy during daytime, while in the lower canopy sensible heat storage in the boles ( $\Delta Q_\mathrm{S,B}$ Δ Q S , B ) and biochemical energy storage ( $\Delta Q_\mathrm{S,C}$ Δ Q S , C ) were the largest terms. $\Delta Q_\mathrm{S,H}$ Δ Q S , H was almost constant from the bottom to above the canopy. $\Delta Q_\mathrm{S,C}$ Δ Q S , C , $\Delta Q_\mathrm{S,B}$ Δ Q S , B and latent heat storage in the air ( $\Delta Q_\mathrm{S,E}$ Δ Q S , E ) varied more than $\Delta Q_\mathrm{S,H}$ Δ Q S , H throughout the canopy. During daytime, energy balance closure was high in and above the upper canopy, and in the lowest canopy level. However, where the secondary structure was most abundant, ${\textit{EBC}} \le 66\,\%$ EBC ≤ 66 % . During nighttime, the storage terms together with $Q_\mathrm{G}$ Q G made up the largest part of the energy balance, while $Q_\mathrm{H}$ Q H and $Q_\mathrm{E}$ Q E were relatively small. These radiation and energy balance measurements in an insect-attacked forest highlight the role of secondary structure in the recovery of attacked stands.  相似文献   

16.
17.
Given the well-documented campaign in the USA to deny the reality and seriousness of anthropogenic climate change (a major goal of which is to “manufacture uncertainty” in the minds of policy-makers and the general public), we examine the influence that perception of the scientific agreement on global warming has on the public’s beliefs about global warming and support for government action to reduce emissions. A recent study by Ding et al. (Nat Clim Chang 1:462–466, 2011) using nationally representative survey data from 2010 finds that misperception of scientific agreement among climate scientists is associated with lower levels of support for climate policy and beliefs that action should be taken to deal with global warming. Our study replicates and extends Ding et al. (Nat Clim Chang 1:462–466, 2011) using nationally representative survey data from March 2012. We generally confirm their findings, suggesting that the crucial role of perceived scientific agreement on views of global warming and support for climate policy is robust. Further, we show that political orientation has a significant influence on perceived scientific agreement, global warming beliefs, and support for government action to reduce emissions. Our results suggest the importance of improving public perception of the scientific agreement on global warming, but in ways that do not trigger or aggravate ideological or partisan divisions.  相似文献   

18.
Non-uniform interhemispheric temperature trends over the past 550 years   总被引:1,自引:0,他引:1  
The warming trend over the last century in the northern hemisphere (NH) was interrupted by cooling from ad 1940 to 1975, a period during which the southern hemisphere experienced pronounced warming. The cause of these departures from steady warming at multidecadal timescales are unclear; the prevailing explanation is that they are driven by non-uniformity in external forcings but recent models suggest internal climate drivers may play a key role. Paleoclimate datasets can help provide a long-term perspective. Here we use tree-rings to reconstruct New Zealand mean annual temperature over the last 550 years and demonstrate that this has frequently cycled out-of-phase with NH mean annual temperature at a periodicity of around 30–60 years. Hence, observed multidecadal fluctuations around the recent warming trend have precedents in the past, strongly implicating natural climate variation as their cause. We consider the implications of these changes in understanding and modelling future climate change.  相似文献   

19.
Expert elicitation studies have become important barometers of scientific knowledge about future climate change (Morgan and Keith, Environ Sci Technol 29(10), 1995; Reilly et al., Science 293(5529):430–433, 2001; Morgan et al., Climate Change 75(1–2):195–214, 2006; Zickfeld et al., Climatic Change 82(3–4):235–265, 2007, Proc Natl Acad Sci 2010; Kriegler et al., Proc Natl Acad Sci 106(13):5041–5046, 2009). Elicitations incorporate experts’ understanding of known flaws in climate models, thus potentially providing a more comprehensive picture of uncertainty than model-driven methods. The goal of standard elicitation procedures is to determine experts’ subjective probabilities for the values of key climate variables. These methods assume that experts’ knowledge can be captured by subjective probabilities—however, foundational work in decision theory has demonstrated this need not be the case when their information is ambiguous (Ellsberg, Q J Econ 75(4):643–669, 1961). We show that existing elicitation studies may qualitatively understate the extent of experts’ uncertainty about climate change. We designed a choice experiment that allows us to empirically determine whether experts’ knowledge about climate sensitivity (the equilibrium surface warming that results from a doubling of atmospheric CO2 concentration) can be captured by subjective probabilities. Our results show that, even for this much studied and well understood quantity, a non-negligible proportion of climate scientists violate the choice axioms that must be satisfied for subjective probabilities to adequately describe their beliefs. Moreover, the cause of their violation of the axioms is the ambiguity in their knowledge. We expect these results to hold to a greater extent for less understood climate variables, calling into question the veracity of previous elicitations for these quantities. Our experimental design provides an instrument for detecting ambiguity, a valuable new source of information when linking climate science and climate policy which can help policy makers select decision tools appropriate to our true state of knowledge.  相似文献   

20.
The present work provides a new methodology to determine onset dates of the rainy season (ONR) in central Amazon (CAM) using the antisymmetric in relation to the equator outgoing longwave radiation (OLR) (AOLR) data, for the 1979–2006 period. Spatial averages of the AOLR ( $\overline {AOLR} $ ) over the CAM for the ONR periods are obtained. These periods correspond to 25 pentads centered on the mean pentad for the ONR. The sign changes from positive to negative of the $\overline {AOLR} $ for the ONR periods indicate the transition from dry to wet season. Composites of several variables are done for pentads before and after the ONR dates. These composites show physically consistent features. The potential of the $\overline {AOLR} $ time series as an index for monitoring tasks is analyzed. The results here show that the $\overline {AOLR} $ for the ONR period captures the transition from dry to wet conditions in the CAM area during 2006. The advantages of this method are discussed. The new simple method proposed here seems to be efficient in determining the ONR in the CAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号