首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this study, the development of a moderate coastal storm with intense precipitation that occurred during 12–14 February 1993 is examined using a high‐resolution version of the Canadian Regional Finite‐element (RFE) model with more realistic physical representations. It is shown that the improved RFE model predicts well the coastal cyclogenesis events and also the distribution and intensity of heavy mixed precipitation (rain and snow) associated with the storm. It is found that the cyclogenesis takes place in response to the low‐level inshore advection of high‐θe air from the maritime boundary layer, and the approach of a mid‐level shortwave trough with a warm pool above that is previously associated with a decaying cyclone upstream. More rapid deepening of the cyclone ensues as intense precipitation falls along the warm and cold fronts near the cyclone centre.

Diagnosis of the control and sensitivity simulations reveals that the low‐level inshore warm advection and the propagation of the stratospheric warm pool contribute more significantly to the surface pressure falls during the incipient stage, whereas the mid‐level shortwave trough plays an important role in the cyclogenesis at later stages. Overall, latent heat release accounts for about 50% of the cyclone's total deepening, in agreement with the presence of a moderate baroclinic environment and the generation of intense precipitation.

The diabatic and kinematic structures near the rain‐snow boundary are examined to gain insight into the influence of melting snow on the cyclogenesis. It is shown that the improved RFE model reproduces well the rain‐snow boundary structures as previously observed. Moreover, a thermally indirect circulation (perturbation) can be seen in the vicinity of the rain‐snow boundary. It is found, however, that melting of snow tends to produce a weak negative or negligible impact on the cyclogenesis, as opposed to previous hypotheses.  相似文献   

2.
In this study,the predictability and physical processes leading to the rapid frontal cyclogenesis,that took place in the east coast of the U.S.during 3-4 October 1987,are examined using a nestedgrid.mesoscale model with a fine-mesh grid size of 25km.It is shown that the model reproduces reasonably well the cyclogenesis in a coastal baroclinic zone.its subsequent deepening and movement as well as the pertinent precipitation.It is found that the frontal cyclogenesis occurs in a favorable large-scale environment with pronounced thermal advection in the lower troposphere and marked potential vorticity(PV) concentration aloft associated with the tropopause depression.The transport of warm and moist air from the marine boundary layer by the low-level in-shore flow provides the necessary energy source for the observed heavy precipitation and a variety of weather phenomena reported in the cold sector.Several 24-h sensitivity simulations are performed to examine the relative importance of diabatic heating,adiabatic dynamics and various initial conditions in the frontal cyclogenesis.It is found that latent heat release,even though quite intense,accounts for only 25% of the cyclone's total deepening in this case:the weak impact seems due to the occurrence of latent heating in the cold sector and the upward lifting of the dynamical tropopause by diabatic updrafts.Vorticity budgets show that the lowlevel thermal advection dominates the incipient stage,whereas the vorticity advection determines the rapid deepening rate at the mature stage.The results reveal that the predictability of the present storm is closely related to the vertical coupling between the surface cyclone and the upper-level PV core,which is in turn determined by initial offshore perturbations in the lower troposphere.  相似文献   

3.
季风涡旋对热带气旋生成影响的理想试验研究   总被引:1,自引:0,他引:1  
利用新一代非静力平衡中尺度数值模式WRF_ARW(3.3.1版本)模拟季风涡旋中热带气旋生成的过程,从动力和热力作用两方面分析大尺度季风涡旋对热带气旋生成的影响。结果表明:从动力学角度来看,能提供较大环境场涡度的季风涡旋不利于扰动涡旋快速发展成热带气旋。初始阶段,由于季风涡旋尺度大,垂直涡度径向梯度弱。而垂直涡度径向梯度的强弱可以通过“涡度隔离”效应影响对流单体向涡旋中心的聚集合并过程。随着扰动的组织化,径向入流对涡度的平流作用越来越重要。对流单体相对最大风速半径的位置对热带气旋生成作用明显,当其集中在最大风速半径附近时涡旋容易快速发展。此外,环境场相对涡度与热带气旋的尺度存在显著正相关。初始尺度大的涡旋最终具有较大的外围尺度,其涡度的分布范围也更广。从热力学角度来说,较大的环境场相对湿度有利于热带气旋的生成。虽然较大的环境场湿度能够诱发较强的外围对流,但同时也会使最大风速半径以内存在丰富的对流,后者能够提供充分的内区非绝热加热,降低中心气压,促进涡旋发展。   相似文献   

4.
用Zwack-Okossi方程对一次爆发性气旋的诊断分析   总被引:1,自引:1,他引:0  
利用ECMWF资料作初始场,MM4模式输出的结果和Zw ack- Okossi方程作诊断工具,对1981年12月20~21日生成在西北太平洋的一次爆发性气旋进行了数值试验和诊断分析。得到:气旋的爆发性发展主要是由正涡度平流和非地转场激发,其中涡度平流对气旋发展贡献最大,温度平流的影响则较小,两者主要是在对流层高层起作用,而非地转场则在对流层低层起主要作用。由水汽造成的非绝热加热对本次爆发性气旋的生成影响不大,积云对流潜热的反馈作用更小。另外次天气尺度系统对爆发性气旋形成贡献较小  相似文献   

5.
陈受钧 《气象学报》1987,45(4):495-499
Bergeron定义在42.5°纬度气旋加深率达到19hPa 24h~(-1)者为“气象炸弹”。东亚海岸气旋的发展经常可以超过这个标准。这种爆发性发展前高空温压场的特征和中等程度的发展相似。因此,“气象炸弹”的产生应该是斜压过程和其他机理的综合结果。  相似文献   

6.
The development mechanisms of the explosive cyclone that occurred during 3–4 April 2012 over East Sea (Sea of Japan) are examined through numerical simulation and sensitivity experiments using the Weather and Research Forecasting (WRF) model. The characteristics of this explosive cyclone are different from typical cyclonic features observed in this region, including its intensity, deepening rate, and formation time. Numerical simulation, reanalysis data, upper and surface weather charts, and satellite data indicate that the strong baroclinic instability and temperature advection associated with upper-level cut-off low and the interaction of potential vorticity (PV) anomalies between the lower- and upper-level are essential to explosive cyclogenesis.The sensitivity experiments of the explosive cyclone show that latent heat release (LHR) is an important factor in explosive cyclogenesis. The intensification, extent, and movement speed of the cyclone are amplified by LHR as well as the formation of an upper-level cut-off low. The role of LHR is primary important in the generation and evolution of the cyclone. Especially, the LHR contributes to roughly 50% of decrease in sea level pressure (SLP) and 50% of the central cyclone’s low-level PV generation in initial stage. During a 48-h simulation, the contributions of the LHR, surface heat flux, and their interaction on the decrease of SLP of the cyclone are found to be 40.6, −8.2, and 10.5%, respectively. These results reveal that the explosive cyclone has larger deepening rates than OJ cyclones, and develops with a large amount of LHR near the cyclone center.  相似文献   

7.
1. Introduction There have been two di?erent approaches used fortracking extratropical cyclones. The traditional andmost common approach is to follow the minimum sur-face pressure of a cyclone (e.g., Petterssen, 1956; Car-nell and Senior, 1998; Serreze…  相似文献   

8.
In this paper, the potential vorticity structure and inversion of the cyclogenesis over the Yangtze River and Huaihe River valleys during 21 23 June 2003 are investigated with a potential vorticity (PV) framework. The cyclogenesis is manifested by a lower-tropospheric PV anomaly over the Yangtze River and Huaihe River valleys at early stages mainly due to latent heat release, which greatly affects the evolution of the associated lower-tropospheric geopotential height and wind fields as demonstrated by piecewise PV inversion. At later stages, an upper-tropospheric PV anomaly develops, resulting in the growth of ridges over the cyclone in both the upstream and downstream, which provide a favorable background field for the low-level cyclone development. But the effect of a surface thermal anomaly always impedes the development of the cyclone to different extents during this cyclogenesis. It is further demonstrated that the position and the strength of the PV anomaly are closely related to the low-level cyclone development, and the lower-tropospheric PV anomaly seems to constitute the most significant feature, for instance, contributing about 60% to the low-level jet (LLJ).  相似文献   

9.
肖庆农  张颖  李微 《大气科学》1995,19(4):465-474
本文将锋面作为密度的零级不连续面,对锋面上扰动的非线性发展演变进行了数值研究,所用的锋面模型是f平面上的浅水、两层模型,差分格式具有位涡拟能守恒和动能守恒的性质。锋面波的发展与初始扰动尺度有关,天气尺度的扰动可以维持较长的发展时间,形成较大振幅的波动,其结构类似于具有锢囚锋结构的气旋,相反,较小尺度扰动不易形成锢囚锋结构。同时,锋面波的发展演变受Richardson数(Ri)的影响,Ri越小,锋面波发展的时间越长,波动振幅越大;Ri越大时,锋面波发展的时间越短,波动容易衰减。锋面波的发展类似于气旋的形成过  相似文献   

10.
非绝热加热对江淮气旋影响的数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
盛华  陶诗言 《大气科学》1991,15(3):55-65
本文采用数值模拟方法考察了潜热、感热和水汽蒸发等诸因素对江淮气旋的影响。对各种试验进行了涡度平衡与能量平衡的诊断分析,结果表明:江淮气旋初生时,扰动从基本气流中获得能量,正压不稳定起着重要作用;在江淮气旋发展后期,斜压性比较明显。潜热释放有意义地修正了系统的相速,一定程度上加强了系统的强度。海上感热和水汽蒸发促进了深对流发展,加大降水,同时加强了有效位能的释放,从而加强了系统发展,但它们的作用是有阶段性的。  相似文献   

11.
Summary The nudging assimilation scheme described in the companion paper by Brill et al. is applied to study oceanic cyclogenesis during GALEIOP 10 on 27–28 February 1986. A 36-h control simulation statically initialized from 0000 UTC 27 February 1986 data moves the cyclone too far north and east in the 12-h period of most rapid deepening limiting the usefulness of the simulation for diagnostic study. The use of nudging to dynamically assimilate special 3-h and routine 12-h rawindsonde and dropsonde data into the model during the entire 36-h forecast period failed to deepen the cyclone as it moved northeast off the Atlantic seaboard beyond the area covered 3-h by sounding data. Subjectively analyzed mean sea-level pressures (MSLP) were included in the data base to allow the model to nudge toward 3-h surface pressure analyses extended to cover the region of cyclogenesis over the ocean. The assimilation of 3-h surface data over the ocean is insufficient to produce a realistic simulation of cyclogenesis. This result motivated the use of the nudging technique to assimilate surface pressure and upper air data over land during the 12-h pre-cyclogenetic period (i.e. dynamic initialization) and compare the subsequent 24-h simulation with one initialized statically at the same synoptic time.Dynamic initialization produced the best simulation of the occanic cyclone based upon the standard statistical scores and positions of the MSLP minima. This simulation is used to diagnose differences between cyclogenesis during GALEIOP 1 and IOP 10. Isentropic analyses and vertical cross sections are derived from the model simulations and are used to contrast the strength of the upper tropospheric forcing and the low-level static stability associated with each case. The results of the diagnostic analyses reveal that stronger surface response (based upon MSLP minima) to weaker upper-level forcing during GALEIOP 10 (compared with GALEIOP 1) was associated with differences in the lower tropospheric static stability and thermal advection patterns and their interaction with upper tropospheric features.With 19 Figures  相似文献   

12.
Abstract

The influences of surface fluxes and convective precipitation are investigated for two 36‐h periods of cyclogenesis over the northeastern Pacific Ocean. Three methods are tested of specifying the fraction of moisture supply that produces convective precipitation in a modified form of Kuo's (1974) parametrization scheme using an 8‐level primitive equations model.

When convection is included, precipitation amounts are greater and the cyclone deepening is better predicted than when convection is not included. Predicted cyclogenesis is very sensitive to sea temperature. As the low moves over warmer water, the effect of sensible heating is to increase the moisture convergence in the atmospheric boundary layer. This increases the precipitation rates and accelerates deepening. It is concluded that the CISK mechanism plays an important role in extratropical cyclogenesis.  相似文献   

13.
Based on an analysis of the relationship between the tropical cyclone genesis frequency and large-scale circulation anomaly in NCEP reanalysis, large-scale atmosphere circulation information forecast by the JAMSTEC SINTEX-F coupled model is used to build a statistical model to predict the cyclogenesis frequency over the South China Sea and the western North Pacific. The SINTEX-F coupled model has relatively good prediction skill for some circulation features associated with the cyclogenesis frequency including sea level pressure, wind vertical shear, Intertropical Convergence Zone and cross-equatorial air flows. Predictors derived from these large-scale circulations have good relationships with the cyclogenesis frequency over the South China Sea and the western North Pacific. A multivariate linear regression (MLR) model is further designed using these predictors. This model shows good prediction skill with the anomaly correlation coefficient reaching, based on the cross validation, 0.71 between the observed and predicted cyclogenesis frequency. However, it also shows relatively large prediction errors in extreme tropical cyclone years (1994 and 1998, for example).  相似文献   

14.
A numerical experiment has been carried out to study the mechanism of cyclogenesis and the develop-ment of disturbances. First, an idealized field of temperature and pressure is designed, which is very similar to the actual synoptic situation, consisting of the jet-like zonal circulation with some nonzonal waves superim-posed on it. Prediction is made by using a six-level splitting primitive model with the idealized field as an initial one. The results show that if a disturbance like a frontal zone in the lower troposphere is superim-posed on the zonal circulation, a frontal cyclone will quickly develop and then gradually become an oc-cluded one. Its life cycle is similar to that of the actual frontal cyclone on the synoptic map. However, if there is a disturbance superimposed on the zonal circulation in the middle troposphere, the cyclone with weaker intensity will be slowly formed near the surface. Finally, if the initial disturbance is located at the high-level, a situation like a cut-off low rather than a frontal cyclone will develop.  相似文献   

15.
In this paper, the Pennsylvania State University-NCAR Mesoscale Model (MM4) is used to investigate the explosive oceanic cyclone of 14-15 March 1988 over the warm Kuroshio Current. A series of numerical simulations on this cyclogenesis indicates that the favorable weather condi-tions and strong baroclinity in the low- and middle-level are essential to its explosive development. The explosive cyclogenesis occurred over a wide range of sea surface temperatures (SST’s), which was then characterized by strong baroclinity, the low-level jet (LLJ) was initially formed under the favorable atmospheric circulation and then this LLJ advected the moisture and heat northward for the explosive development of the cyclone, the LLJ played an important role in the process of cyclogenesis. Sensitivity experiments show that the latent heating was a key factor to explosive cyclogenesis, the latent heating deepened the short-wave trough, which resulted in the rapid intensification of the cyclone; while in the explosive intensification stage and continuous de-velopment stage, there was less contribution of local surface processes for the explosion of the cy?clone.  相似文献   

16.
2006年7—9月西北太平洋热带气旋季节活动的数值模拟   总被引:4,自引:1,他引:3  
利用NCEP(National Centers for Environmental Prediction)提供的1°×1°的FNL(final)资料和中尺度WRF(Weather Research and Forecasting)模式,研究了热带气旋(tropical cyclone,简记TC)动力季节预报的可能性,通过在27km的粗网格中运用张弛逼近(Nudging)技术,对2006年7-9月西北太平洋TC活动进行了92d的连续数值积分。与观测结果比较表明,WRF模式不仅较好地模拟了MJO(Madden-Julian oscillation)和准双周振荡的活动情况,而且模拟的TC频数、移动路径和强度都与实际观测结果比较接近。在嵌套的9km网格中,不仅模拟出眼墙、暖心等TC结构的主要特征和TC的西行盛行路径及登陆活动情况,而且所模拟的生成过程包括早期研究中提出的TC生成过程中的两次快速发展的过程。模拟的TC初始涡旋主要出现在季风槽中,伴随准双周振荡活动,它的第一次发展在初始涡旋中心形成强烈的对流区;经过一段时间的减弱后,在有利的大尺度形势下,涡旋中心湿水汽层迅速增厚,导致气旋的第二次强烈发展。  相似文献   

17.
In order to make inferences on the possible future changes of tropical cyclogenesis frequency, we apply the diagnostic computation of the Yearly Genesis Parameter (YGP) proposed by Gray (1975) to the large-scale fields simulated by a GCM. The YGP is an empirical diagnostic of the frequency of Tropical Cyclones (TCs) based on six physical parameters computed from seasonal means of atmospheric and oceanic variables. In this paper, we apply the YGP diagnostic to the results of three climate simulations performed with the atmospheric General Circulation Model (GCM) of Météo-France: ARPEGE-Climat. In a control simulation of the current climate, it is shown that the model has a realistic tropical climatology and that the computed YGP reproduces the geographical distribution of the tropical cyclogenesis frequency. The YGP is then applied to two simulations corresponding to two scenarios of doubled carbon dioxide concentration. The two experiments differ by the sea surface temperatures (SSTs) used as a lower boundary condition. In both simulations the YGP gives a large increase of total cyclogenesis frequency, but without extension of the area of possible cyclone genesis. The increase in YGP is due essentially to the contribution of the ocean thermal energy factor in the thermodynamical potential. The dynamical parameters, on the contrary, limit the cyclogenesis increase and are a major explanation of the difference between the two experiments. This is in agreement with the results of the previous similar study of Ryan et al. (1992) concerning the importance of large-scale atmospheric circulation modifications on tropical cyclone climatology. After discussing the observed relationships between ocean surface temperature and large-scale convection, and questioning the use of a fixed temperature threshold in the diagnosis of tropical cyclone frequency, we propose a modification to the YGP consisting in replacing the thermodynamical potential by a term proportional to the convective precipitation computed by the GCM. For the simulation of the present climate this modification affects only marginally the geographical distribution of tropical cyclone genesis, but for the doubled CO2 case, the modified YGP diagnoses a more limited increase in TC genesis in the Northern Hemisphere and a small reduction in the Southern Hemisphere, which seems in better agreement with other recent modelling studies with high resolution climate models (Bengtsson et al., 1996). We conclude that the modified YGP based on convective precipitation could serve as a useful diagnostic of tropical cyclone genesis, and should be tested in simulations with other GCMs.  相似文献   

18.
The paper presents a part of the results obtained within the framework of the research program on numerical analysis of helical features of the developing tropical cyclone, by using the regional ETA model of the atmosphere. A set of integral characteristics and of gridded diagnostics is selected and substantiated, allowing revealing and tracing evolution of large-scale helical-vortex instability associated with specific properties of helical convective turbulence under condition of tropical cyclogenesis. The helicity vertical flux (helicity index) is calculated following the technique by Kurganskii for two tropical cyclones: Man-Yi (2007) and Wilma (2005). It is shown that the helicity index changes during the tropical cyclone evolution reflect adequately the tendencies of pressure and velocity changes and thus the index can be used as an indicative characteristic of intensity of the developing tropical cyclone.  相似文献   

19.
This study investigates the life cycle of Bay of Bengal cyclone JAL, characterized by a rapid fluctuation in its intensity during 60-h interval. The cyclone JAL underwent a period of rapid intensification during 24-h from 0000 UTC 05 November to 0000 UTC 06 November 2010. It was quasi-static during subsequent 24 h followed by a 12-h period of unusually rapid decay. During the rapid cyclogenesis phase, the system intensified (by 25 kt) from deep depression (DD) to severe cyclonic storm (SCS) and weakened (by 30 kt) from SCS to DD during the 12-h period of rapid cyclolysis. European Centre for Medium Range Weather Forecasts (ECMWF) model analysis field is used to analyze the Q vectors, K index and potential vorticity (PV) to diagnose the life cycle of this unusual cyclone. The analysis reveals that the 500–700 hPa column-averaged Q-vector convergence above the surface cyclone had strengthened and very high values of the K index produced a burst of heavy precipitation during the development stage of the cyclone. The associated latent heat release produced a substantial diabatic positive PV anomaly in the lower and middle troposphere that caused rapid cyclogenesis. The rapid cyclolysis is coincident with the weakening of the upper and lower PV anomalies and the westward shearing of the upper PV from the cyclone centre. Thus, the very latent heat release that assisted the rapid development of the cyclone also played an important role in its subsequent rapid decay. ECMWF model forecast for track and intensity is also verified.  相似文献   

20.
Some numerical simulations from real data were carried out to examine the impacts of surface frictionand orographic forcing on the East Asia coastal cyclogenesis.The results show that the decreasing of the surfacefriction over the ocean is essential for the cyclone development and the mechanical forcing of Qinghai-XizangPlateau acts a damping effect in the initial stage of the cyclone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号