首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Determination of the actual mercury concentration in Mediterranean basin seawater was achieved by means of an instrument based on fluorescence spectrometry developed for this purpose, during a field study aboard the oceanographic ship “L.F. Marsili”, between August 1980 and May 1982.Dissolved ·total’ and ·reactive’ mercury and mercury associated with particulate matter were determined on surface and subsurface waters in the Tyrrhenian Sea from La Spezia to Sicily.Concentrations in the range 1.4–19.7 ng l−1 for ·total dissolved mercury’, 0.5–5.9 ng l−1 for ·reactive dissolved mercury’ and 0.3–8.0 ng l−1 for mercury associated with the particulate matter, were measured on surface and subsurface waters in the Tyrrhenian Sea from La Spezia to Sicily.Even if the mean value of the total mercury concentration (dissolved + particulate) was found to be about twice as high as those observed for the oceans, the difference does not seem to be as high as predicted by the model proposed by Buffoni and co-workers to explain the large difference of mercury levels between tunas caught, respectively, in the Mediterranean and in the Oceans.  相似文献   

2.
Seventy percent of 342 seawater samples collected in the Bering Sea, North and South Pacific, Japan Sea, East and South China Seas, and Indian Ocean had concentrations of “total” mercury ranging from 3 to 6 ng Hg l?1 with an arithmetic mean of 5.3 ng l?1 and a geometric mean of 5.0 ng l?1. In some cases, a higher concentration was observed at the surface, at the halocline or thermocline, or in the bottom water. But in general, there was no consistent correlation between mercury concentration and depth, except for a statistical tendency for mercury concentration to be slightly higher in the surface water. This tendency suggests that mercury in the ocean is supplied from the atmosphere by rain washout. The latitudinal variation of surface mercury concentrations showed that the maximum concentration at each latitude decreased from 40°N to 30°S. This variation provides evidence that atmospheric mercury is emitted mainly from continental areas naturally or anthropogenically.  相似文献   

3.
The Mussel Watch program conducted along the French coasts for the last 20 years indicates that the highest mercury concentrations in the soft tissue of the blue mussel (Mytilus edulis) occur in animals from the eastern part of Seine Bay on the south coast of the English Channel, the “Pays de Caux”. This region is characterized by the presence of intertidal and submarine groundwater discharges, and no particular mercury effluent has been reported in its vicinity. Two groundwater emergence systems in the karstic coastal zone of the Pays de Caux (Etretat and Yport with slow and fast water percolation pathways respectively) were seasonally sampled to study mercury distribution, partitioning and speciation in water. Samples were also collected in the freshwater–seawater mixing zones in order to compare mercury concentrations and speciation between these “subterranean” or “groundwater” estuaries and the adjacent macrotidal Seine estuary, characterized by a high turbidity zone (HTZ). The mercury concentrations in the soft tissue of mussels from the same areas were monitored at the same time.The means of the “dissolved” (< 0.45 μm) mercury concentrations (HgTD) in the groundwater springs were 0.99 ± 0.15 ng l− 1 (n = 18) and 0.44 ± 0.17 ng l− 1 (n = 17) at Etretat and Yport respectively. High HgTD concentrations were associated with strong runoff over short water pathways during storm periods, while low concentrations were associated with long groundwater pathways. Mean particulate mercury concentrations were 0.22 ± 0.05 ng mg− 1 (n = 16) and 0.16 ± 0.10 ng mg− 1 (n = 17) at Etretat and Yport respectively, and decreased with increasing particle concentration probably as a result of dilution by particles from soil erosion. Groundwater mercury speciation was characterized by high reactive-to-total mercury ratios in the dissolved phase (HgRD/HgTD: 44–95%), and very low total monomethylmercury concentrations (MMHg < 8 pg l− 1). The HgTD distributions in the Yport and Etretat mixing zones were similar (overall mean concentration of 0.73 ± 0.21 ng l− 1, n = 43), but higher than those measured in the adjacent industrialized Seine estuary (mean: 0.31 ± 0.11 ng l− 1, n = 67). In the coastal waters along the Pays de Caux dissolved monomethylmercury (MMHgD) concentrations varied from 9.5 to 13.5 pg l− 1 (2 to 8% of the HgTD). Comparable levels were measured in the Seine estuary (range: 12.2– 21.1 pg l−1; 6–12% of the HgTD). These groundwater karstic estuaries seem to be mostly characterized by the higher HgTD and HgRD concentrations than in the adjacent HTZ Seine estuary. While the HTZ of the Seine estuary acts as a dissolved mercury removal system, the low turbid mixing zone of the Pays de Caux receives the dissolved mercury inputs from the groundwater seepage with an apparent Hg transfer from the particulate phase to the “dissolved” phase (< 0.45 μm). In parallel, the soft tissue of mussels collected near the groundwater discharges, at Etretat and Yport, exhibited significantly higher values than those found in the mussel from the mouth of the Seine estuary. We observe that this difference mimics the differences found in the mercury distribution in the water, and argue that the dissolved phase of the groundwater estuaries and coastal particles are significant sources of bioavailable mercury for mussels.  相似文献   

4.
In order to characterize our study area and to provide reference values to be used in the future to measure the changes produced by an increase in contamination, the concentrations of chlorinated hydrocarbons have been investigated in fifty-one samples of seawater, taken at four different depths: air-sea interface, surface, one metre and bottom waters, and in twenty-three samples of surface sediments from Blanca Bay, Argentina. Of eleven organochlorine compounds we were looking for (α BHC, lindane, heptachlor, δ BHC. aldrin, heptachlor epoxide, dieldrin, o-p′DDD, p-p′DDD, o-p′DDT and p-p′DDT), seven could be detected in seawater and three in surface sediments with the following mean concentrations: α-BHC=48·2 ng l?1; lindane=54·2 ng l?1; heptachlor=45·0 ng l?1; δ BHC=12·5 ng l?1; aldrin=61·8 ng l?1 and ΣDDT=67·0 ng l?1; and δ BHC=3·2 ng g?1; lindane=4·2 ng g?1 and heptachlor=1·0 ng g?1 for seawater, regarding the surface waters, and sediment samples, respectively.Concentration factors among the different water layers were also studied to see if there was any correlation between chlorinated hydrocarbon contents and the water depths from which the samples were taken. As a mean value, the air-sea interface water contains 18 times more of these compounds than that of the water near the bottom. A comparison of the values corresponding to seawater and surface sediments from our study area with those levels measured in samples from other geographic locations is also presented.With the purpose to detect a relationship between chlorinated hydrocarbon concentrations and the contents of particulate matter (PM) on the one hand, and particulate organic material (POM) on the other hand, four groups of samples containing different amounts of PM and POM, respectively were formed. From a comparison of the results obtained, lindane, heptachlor and δ BHC showed a tendency to lower concentrations in those samples containing little PM whereas α BHC and aldrin remained without important changes. No significant correlation was found between organochlorine levels and contents of POM.  相似文献   

5.
To characterize the current status and historical trends in organochlorine pesticides (OCPs) contamination in Deep Bay, an important water body between Hong Kong and mainland China with a Ramsar mangrove wetland (Maipo), samples from seawater, suspended particulate matter (SPM), surface sediment, sediment core and fish were collected to determine the OCPs concentrations. Sediment core dating was accomplished using the 210Pb method. The average concentrations of DDTs, HCHs and chlordanes in water were 1.96, 0.71, 0.81 ng l−1, while in SPM were 36.5, 2.5, 35.7 ng g−1 dry weight, in surface sediment were 20.2, 0.50, 2.4 ng g−1 dry weight, and in fish were 125.4, 0.43, 13.1 ng g−1 wet weight, respectively. DDTs concentrations in various matrices of Deep Bay were intermediate compared with those in other areas. Temporal trends of the targeted OCPs levels in sediment core generally increased from 1948 to 2004, with the highest levels in top or sub-surface sediment. Both DDT composition and historical trends indicated an ongoing fresh DDT input. A positive relationship between the bioconcentration factor (BCF) of target chemicals and the corresponding octanol–water partition coefficient (Kow), and between the biota-sediment accumulation factors (BSAF) and the Kow were observed in the Bay. The risk assessment indicated that there were potential ecological and human health risks for the target OCPs in Deep Bay.  相似文献   

6.
Seventy-nine total-mercury analyses of seawater samples, collected from the surface down to 5,700 m depth in the northeastern Pacific Ocean and in the South Polar seas, showed a homogeneous distribution of mercury with depth at all stations, although its absolute concentration in the northeastern Pacific (12–30 ng/kg) was 3 to 5 times less than that in the polar waters (50–150 ng/kg). The high concentrations are ascribed to an input of mercury resulting from submarine volcanism.The mercury content was also determined in 8 surface-film samples, 3 sediment cores (0–30 cm), 2 pack-ice samples and 1 sample each of snow and sea smoke.  相似文献   

7.
Coastal marine sediment, air and seawater samples were collected at six sampling stations in the Eastern Mediterranean Sea distant from pollutant point sources. All sediment samples were analyzed to determine polycyclic aromatic hydrocarbon (PAH), black carbon (BC) and organic carbon (OC) contents. The PAH contents of gaseous and seawater samples of the study were determined in order to evaluate the role of air–sea exchange as PAH nonpoint source to the marine sediments. The average concentration of the total PAHs (∑PAHs) in the sediments varied from 2.2 to 1056.2 ng g−1 dry weight. The average BC and OC contents varied from 0.3 to 5.6 and from 2.9 to 21.4 mg g−1 dry weight, respectively. ∑PAH concentration in the marine atmosphere varied from 20.0 to 83.2 ng m−3. Air–water exchange flux (FA–W) estimation has indicated air transport as a significant source of PAHs to pristine marine sediments of Eastern Mediterranean. In addition, the significant correlation between the PAHs and the organic and soot carbon content further suggests the importance of atmospheric input of PAHs to the sediments.  相似文献   

8.
Total and reactive mercury concentrations have been measured on samples of surface water taken along the shores of the Bay of Biscay and in the Gironde Estuary. In the low turbid areas of the Bay of Biscay the average concentration of total mercury of unfiltered samples is 3.5 ± 0.7 (n = 15) and the reactive mercury 2.1 ± 0.7 (n = 12) pmol l−1; the high levels, up to 27.6 (total mercury) and 4.6 (reactive mercury) pmol l−1 are from the most turbid samples taken from the Marennes-Oléron basin. In the Gironde Estuary, the distribution of total dissolved mercury rises to a peak of concentration (38 pmol l−1) within the high turbidity zone where the salinity is lower than 10‰. The possible origin of this pattern of distribution is discussed.  相似文献   

9.
Particulate matter was collected in the Bering Sea and the northern North Pacific Ocean during the cruise of R. V. Hakuho-maru, Ocean Research Institute of Tokyo University in summer of 1975. The particulate matter was analyzed for organic carbon and nitrogen, chlorophylla and amino acids.The concentrations of particulate organic carbon and nitrogen were measured with the range of 16–422gC l–1 and 1–85gN l–1, 19–186gC l–1 and 1–26gN l–1, 46–1,038gC l–1 and 6–79gN l–1 and 19–246gC l–1 and 2–25gN l–1 in the Oyashio, the Deep Bering Sea, the continental shelf of Bering Sea and the northern North Pacific, respectively. Particulate organic carbon and nitrogen decreased with depth throughout the areas. The average concentrations of organic carbon and nitrogen in the entire water column tended to decrease in the following order; the continental shelf > Oyashio > northern North Pacific > Deep Bering Sea.C/N of particulate matter varied in the range of 3–15 (7 on average) in surface waters throughout the areas and these values tended to increase with depth to 5–20 (11 on average) in deep waters without significant regional variability.Linear regressions between chlorophylla and particulate organic carbon in the euphotic layers indicate that detrital organic carbon accounted for 34.2, 44.9, 49.1 and 25.2 % of particulate organic carbon in the Oyashio, the Deep Bering Sea, the continental shelf and the northern North Pacific, respectively.Particulate amino acid was determined in the range of 10.3–78.0g l–1, 104–156g l–1 and 10.4–96.4g l–1 in the Deep Bering Sea, the continental shelf and the northern North Pacific, respectively. Aspartic acid, glutamic acid, serine, glycine and alanine were found as dominant species of amino acid of particulate matter.  相似文献   

10.
Fouha Bay is a 400-m-long funnel-shaped, 10-m-deep, coral-fringed embayment on the southwest coast of Guam. It drains a small catchment area (5 km2) of steeply sloping, highly erodible lateritic soils. River floods are short-lived and the sediment load is very large, with suspended sediment concentration (SSC) exceeding 1000 mg l−1. The resulting river plume is about 1 m thick and is pulsing in a series of 1–2 h-long events, with outflow velocity peaking at 0.05 m s−1. Turbulent entrainment results in an oceanic inflow at depth into the bay. As soon as river flow stops, the plume floats passively and takes 5 days to be flushed out of Fouha Bay. The suspended fine sediment flocculates in 5 min and aggregates on ambient transparent exopolymer particles to form muddy marine snow flocs. In calm weather, about 75% of the riverine mud settles out of the river plume into the underlying oceanic water where it forms a transient nepheloid layer. This mud ultimately settles and is trapped in Fouha Bay. Under typhoon-driven, swell waves, the surface plume is at least 7 m thick and bottom entrainment of mud results in SSC exceeding 1000 mg l−1 for several days. It is suggested that successful management of fringing coral reefs adjacent to volcanic islands may not be possible without proper land use management in the surrounding catchment.  相似文献   

11.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

12.
An array of sediment traps was deployed for the analysis of the pattern of particulate organic carbon (POC) supply to the sea bottom in April, May and July 1988 at the mouth of Otsuchi Bay (about 80 m depth), Northeastern Japan.On the basis of a simple two-component mixing model using stable carbon isotope ratios, the POC flux was separated into marine planktonic and terrestrial components. Both the planktonic and terrestrial POC fluxes had maximum values at 30 m above the sea bottom throughout the three experiments. The planktonic POC flux showed a significant decrease with depth between 30 m and 10 m or 5 m above the bottom. Vertical supply of the planktonic POC and supply of the resuspended planktonic POC were estimated on the basis of regression lines between water depth and the planktonic POC flux in the depth range where the flux decreases with depth.Vertical supply of the planktonic POC and supply of the resuspended planktonic POC to the sea bottom were largest in May (52.1 mgC m–2 d–1 and 19.5 mgC m–2 d–1 at 5 m above the sea bottom), and horizontal supplies of the terrestrial POC were almost constant (31.9±3.5 mgC m–2 d–1 at 5 m above the bottom) throughout the three experiments.  相似文献   

13.
In Tokyo Bay the concentrations of dissolved gaseous mercury (DGM) in the surface seawater and total gaseous mercury (TGM) over the sea were measured during December 2003, October 2004 and January 2005. Based on these data, the evasional fluxes of mercury from the sea surface were estimated using a gas exchange model. In addition, an automatic wet and dry deposition sampler was used to measure the wet and dry depositional fluxes of mercury from December 2003 to November 2004 at three locations in and near Tokyo Bay. The results indicate that the average DGM and TGM levels of seven locations are 52 ± 26 ng m−3 and 1.9 ± 0.6 ng m−3, respectively, which shows that the surface seawater in Tokyo Bay is supersaturated with gaseous mercury, leading to an average mercury evasional flux of 140 ± 120 ng m−2d−1. On the other hand, the annual average wet and dry depositional fluxes of mercury at three locations were 19 ± 3 μg m−2yr−1 and 20 ± 9 μg m−2yr−1, respectively. These depositional fluxes correspond to the daily average total depositional flux of 110 ± 20 ng m−2d−1. Thus, it is suggested that in Tokyo Bay, the evasional fluxes of mercury are comparable to the depositional fluxes.  相似文献   

14.
From July to November, the thermocline which has strong temperature gradient (0.7C m–1) is formed in the bottom water of Beppu Bay, and it prevents the downward mixing of surface water. This has caused the bottom water of the basin to become depleted in oxygen, and in November the bottom water below about 60 m depth becomes anoxic. Accordingly manganese and iron are reduced and more soluble under the anoxic condition, those concentrations are high relative to surface water, and the maximums are 1,240g l–1 and 80g l–1. Under the anoxic condition, the flux of dissolved manganese from the sediment is about 10g cm–2 day–1.  相似文献   

15.
Sedimentary core samples were collected from Mikawa Bay and analyzed for organic C, N and P, carbohydrate and protein including amino acids. Sedimentation rates for each of the core samples were found to lie in the range of 0.21–0.24 g cm–2yr–1 by the210Pb method. Degradation rate constants of organic C, N and P, carbohydrate and protein including amino acids had ranges of 3.8–5.5, 4.7–5.9, 6.3–7.4, 5.7–6.8 and 3.9–6.8×10–2yr–1, respectively. The rate of degradation of organic matter in the sediment was also calculated and is discussed in relation to the flux of particulate organic matter to the surface of the sediment.  相似文献   

16.
The metal load into sediments and the change in the sedimentary environment of Osaka Bay in the Seto Inland Sea have been studied through geochemical analysis of core sediments, using both Pb-210 dating and a selective chemical leaching technique. Analytical results from a 6-m core of sediment show that copper and zinc pollution started in the late 1800's and the present enrichment ratios of copper and zinc, relative to background levels (20 mg kg–1 for Cu and 94 mg kg–1 for Zn), are 2.8 and 4.1, respectively. The present anthropogenic copper and zinc loads into Osaka Bay sediments, are 47 and 368 ton yr–1, while natural copper and zinc loads are 40 and 186 ton yr–1, respectively. Osaka Bay sediment at the present day is considered to be seriously polluted by zinc, now. The vertical profiles of copper and zinc in four successively separated fractions (10% acetic acid soluble fraction: F-HAC, 0.1M hydrochloric acid-soluble fraction: F-HCl, hydrogen peroxide-soluble fraction: F-H2O2 and hydrofluoric acid-soluble fraction: F-HF) from the core sediments indicate that enrichments of copper and zinc in the upper layer of the sediment are dependent on increases in the metal contents of the F-HAC, F-HCl and F-H2O2 fractions. Copper in F-HAC, and zinc in F-HAC and F-HCl, seem to be of anthropogenic origin.Results of sequential studies of the whole Seto Inland Sea can be summarized as follows: At the present time, the sedimentary loads of copper and zinc over the whole Seto Inland Sea area are 630 and 3,500 ton yr–1, respectively, while the natural and anthropogenic loads are 320 and 310 ton yr–1 for copper and 1,800 and 1,700 ton yr–1 for zinc, respectively.  相似文献   

17.
As part of a study of estuarine selenium cycling, we measured the concentration, chemical form (speciation), and distribution of particulate selenium under various river flow conditions in the North San Francisco Bay (from the Golden Gate to the Sacramento and San Joaquin Rivers). We also conducted laboratory studies on the accumulation of selenium by phytoplankton, the critical first step in the transformation of dissolved to particulate selenium. Total particulate selenium concentration in the North SF Bay was relatively constant between high and low flow periods, ranging spatially from 0.05 to 0.35 nmol l−1 and comprising between 5 and 12% of the total water column selenium inventory. Mean concentrations were generally highest in the Carquinez Strait–Suisun Bay region (salinity 0–17) and lowest in Central Bay. However, selenium content of suspended particles varied with river flow, with higher content during low flow (9.76 ± 4.17 nmol g−1; mean ± sd; n = 67) compared to high flow (7.10 ± 4.24 nmol g−1; n = 39). Speciation analyses showed that most particulate selenium is organic selenide (45 ± 27%), with a smaller proportion (typically <30%) of adsorbed selenite + selenate and a varying proportion (35 ± 28%) of elemental selenium. Based on the amount of elemental selenium in the seston (total suspended material), we calculate that resuspension of estuarine sediments could contribute 29–100% of particulate selenium in the water column. While selenium content of SF Bay seston (>0.4 μm) is relatively unenriched compared to phytoplankton (13.6–155 nmol g−1 dry weight) on a mass basis, when normalized to carbon or nitrogen, seston contains a similar selenium concentration to SF Bay sediments or phytoplankton cultures. SF Bay seston is thus comprised of selenium-rich phytoplankton and phyto-detritus, but also inorganic clay mineral particles that effectively “dilute” total particulate selenium. Selenium concentrations in algal cultures (11 species) exposed to 90 nmol l−1 selenite show relatively large differences in selenium accumulation, with the diatoms, chlorophytes and cryptophytes generally having lower selenium cell content (3.8 ± 2.7 × 10−9 nmol selenium cell−1) compared to the dinoflagellates (193 ± 73 × 10−9 nmol selenium cell−1). Because phytoplankton are such a rich (but variable) source of selenium, their dynamics could have a profound effect on the particulate selenium inventory in the North SF Bay.  相似文献   

18.
Over 50 seawater samples from two different sites—Barcelona (Spain) and Banyuls-sur-Mer (France)—were analyzed in order to study the extent and postulate the processes driving the enrichment of hydrophobic organic pollutants in the sea surface microlayer (SML). A number of individual polychlorinated biphenyl (PCB) congeners (41) were measured to study their partitioning between the particulate (fraction > 0.7 μm) and the dissolved + colloidal phases (fraction < 0.7 μm), with the latter being differentiated into estimated dissolved and colloidal phases. In addition, several organochlorine pesticides were also measured, namely, HCB, α-HCH, γ-HCH, 4,4′-DDE, 4,4′-DDD and 4,4′-DDT. The presence of PCB congener profiles found in the SML suggests a dynamic coupling with the atmosphere in Banyuls sampling site, whereas offshore Barcelona the presence of highly chlorinated congeners was due to persistent sediment resuspension. The average PCB concentration in the SML dissolved + colloidal phase were higher in Banyuls (7.8 ng L 1) than in Barcelona (3.6 ng L 1) samples, but in the particulate phase concentrations were higher in Barcelona (3.2 ng L 1) to that of Banyuls (1.4 ng L 1). However, PCB concentrations in the SML generally also showed large variability. Enrichment factors of PCBs and other organochlorine compounds in the SML with respect to the underlying water column ranged from 0.2 to 7.4. This may be explained for both the dissolved + colloidal and particulate phases by the enrichment in the SML of organic carbon (OC) as discerned from particle–water and colloid–water partitioning.  相似文献   

19.
Time series of the vertical distribution of resuspended matter and bottom current were collected concurrently during summer at a few anchored stations in the Seto Inland Sea. The vertical distribution of resuspended matter was measured every hour for about one tidal cycle and the three components of current fluctuation were obtained at each sampling station. Current data at each sampling station show that the bottom is hydraulically smooth.Assuming that the averaged vertical distribution of resuspended matter for one tidal cycle shows a steady state distribution, the settling velocityWs of resuspended matter is estimated to be in the range of 1.2×10–2 to 5.7×10–2 cm sec–1 from analysis of the averaged distributions.The relation between the erosion rate and the bottom shear stress for this study area is investigated and is compared with that for other areas. The results show that the erosion of sediment in the Seto Inland Sea during summer occurs even due to the low bottom shear stress which is considered as almost smooth hydraulically.  相似文献   

20.
Dissolved iodate and total iodine were studied in St Helena Bay, South Africa, during a period of acute hypoxia, following upwelling off Cape Columbine. Despite the generally high concentrations of chlorophyll α (10–30 mg m−3) total iodine concentration was essentially constant in the main part of the Bay, and similar to that found elsewhere in the oceans. Occasional, lower concentrations of total iodine (0·28 to 0·42 μM) were found with exceptionally high chlorophyll α concentrations (500 mg m−3) in shallow waters. In contrast, iodate was found to be reduced to iodide at both the surface and the bottom of the Bay. The implications of these changes are discussed, given that the surface waters reflect sustained eutrophication while the bottom waters are hypoxic as a result of the organic-rich sediment from the waters above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号