首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. Renssen 《Climate Dynamics》1997,13(7-8):587-599
 Geological evidence points to a global Younger Dryas (YD) climatic oscillation during the last glacial/ present interglacial transition phase. A convincing mechanism to explain this global YD climatic oscillation is not yet available. Nevertheless, a profound understanding of the mechanism behind the YD climate would lead to a better understanding of climate variability. Therefore, the Hamburg atmospheric circulation model was used to perform four numerical experiments on the YD climate. The objective of this study is to improve the understanding of different forcings influencing climate during the last glacial/interglacial transition and to investigate to what extent the model response agrees with global geological evidence of YD climate change. The following boundary conditions were altered: sea surface conditions, ice sheets, insolation and atmospheric CO2 concentration. Sea surface temperatures based on foraminiferal assemblages proved to produce insufficient winter cooling in the N Atlantic Ocean in two experiments. It is proposed that this discrepancy is caused by uncertainties in the reconstruction method of sea surface temperatures. Therefore, a model-derived set of Atlantic surface ocean conditions was prescribed in a subsequent simulation. However, the latter set represented an Atlantic Ocean without a thermohaline circulation, which is not in agreement with evidence from ocean cores. The global response to the boundary conditions was analysed using three variables, namely surface temperature, zonal wind speed and precipitation. The statistical significance of the changes was tested with a two-tailed t-test. Moreover, the significant responses to cooled oceans were compared with geological evidence of a YD oscillation. This comparison revealed a good match in Europe, Greenland, Atlantic Canada and the N Pacific region, explaining the YD oscillation in these regions as a response to cooled N Atlantic and N Pacific Oceans. However, the results leave the YD climate in other regions completely unexplained. This reflects either an insufficient set of boundary conditions or the important role played by feedbacks within the coupled atmosphere-ocean-ice system. These feedbacks are poorly represented in the used atmospheric model, since ice sheets and the ocean surface conditions have to be prescribed. Received: 30 July 1996 / Accepted: 12 February 1997  相似文献   

2.
The sensitivity of global climate to colder North Atlantic sea surface temperatures is in vestigated with the use of the GISS general circulation model. North Atlantic ocean temperatures 18,000 B.P., resembling those prevalent during the Younger Dryas, were incorporated into the model of the present climate and also into an experiment using orbital parameters and land ice characteristic of 11,000 B.P. The results show that with both 11,000 B.P. and present conditions the colder ocean temperatures produce cooling over western and central Europe, in good agreement with Younger Dryas paleoclimatic evidence. Cooling also occurs over extreme eastern North America, although the precise magnitude and location depends upon the specification of ocean temperature change in the western Atlantic. Despite the presence of increased land ice and colder ocean temperatures, the Younger Dryas summer air temperatures at Northern Hemisphere midlatitudes in the model are warmer than those of today due to changes in the orbital parameters, chiefly precession, and atmospheric subsidence at the perimeter of the ice sheets.  相似文献   

3.
 During the Younger Dryas (YD) the climate in NW Europe returned to near-glacial conditions. To improve our understanding of climate variability during this cold interval, we compare an AGCM simulation of this climate, performed with the ECHAM model, with temperature reconstructions for NW Europe based on geological and paleoecological records. Maps for the mean winter, summer and annual temperature are presented. The simulated winters are consistent with reconstructions in the northern part of the study area. A strong deviation is noted in Ireland and England, where the simulation is too warm by at least 10 °C. It appears that the N Atlantic was cooler than prescribed in the YD simulation, including a southward expansion of the sea-ice margin. The comparison for the summer shows a too warm continental Europe in the simulation. Supposedly, these anomalously warm conditions are caused by the AGCM’s response to the prescribed increased summer insolation. The region of maximum summer cooling is similar in both the simulation and reconstruction, i.e., S Sweden. We suggest that this is due to the local cooling effect of the Scandinavian ice sheet. Compared to the present climate a considerable increase of the annual temperature range is inferred, especially for regions close to the Atlantic Ocean. Received: 20 November 1996 / Accepted: 8 July 1997  相似文献   

4.
Highly variable atmospheric radiocarbon concentrations are a distinct feature during the last deglaciation. The synchronisation of two high-resolution AMS 14C-dated records, Lake Go?ci??, and a floating Late Weichselian glacial varve chronology at the Allerød-Younger Dryas transition allowed us to assess in detail atmospheric Δ14C changes between late Allerød and early Preboreal. The combined data set shows a drastic rise in Δ14C during the first 200 years or so of Younger Dryas and the two following about 500 year-long 14C plateaux. Model experiments which included variations in the geomagnetic field, atmospheric CO2 variations and a drastic reduction in North Atlantic Deep Water flux at the onset of Younger Dryas allowed to reproduce the distinct rise in Δ14C during the first 200 years of Younger Dryas fairly well. Also the drop in Δ14C at the Younger Dryas/Holocene boundary seems reasonably explained by changes in North Atlantic Deep Water circulation. However, the reason behind the anomalous behaviour of the Δ14C signal in the middle of Younger Dryas remains an open question.  相似文献   

5.
Synoptic activity over the Northern Hemisphere is evaluated in ensembles of ECHAM5/MPI-OM1 simulations for recent climate conditions (20C) and for three climate scenarios (following SRES A1B, A2, B1). A close agreement is found between the simulations for present day climate and the respective results from reanalysis. Significant changes in the winter mid-tropospheric storm tracks are detected in all three scenario simulations. Ensemble mean climate signals are rather similar, with particularly large activity increases downstream of the Atlantic storm track over Western Europe. The magnitude of this signal is largely dependent on the imposed change in forcing. However, differences between individual ensemble members may be large. With respect to the surface cyclones, the scenario runs produce a reduction in cyclonic track density over the mid-latitudes, even in the areas with increasing mid-tropospheric activity. The largest decrease in track densities occurs at subtropical latitudes, e.g., over the Mediterranean Basin. An increase of cyclone intensities is detected for limited areas (e.g., near Great Britain and Aleutian Isles) for the A1B and A2 experiments. The changes in synoptic activity are associated with alterations of the Northern Hemisphere circulation and background conditions (blocking frequencies, jet stream). The North Atlantic Oscillation index also shows increased values with enhanced forcing. With respect to the effects of changing synoptic activity, the regional change in cyclone intensities is accompanied by alterations of the extreme surface winds, with increasing values over Great Britain, North and Baltic Seas, as well as the areas with vanishing sea ice, and decreases over much of the subtropics.  相似文献   

6.
The relationship between atmospheric blocking over Europe and the Atlantic eddy-driven jet stream is investigated in the NCEP/NCAR Reanalysis and in a climate model. This is carried out using a bidimensional blocking index based on geopotential height and a diagnostic providing daily latitudinal position and strength of the jet stream. It is shown that European Blocking (EB) is not decoupled from the jet stream but it is mainly associated with its poleward displacements. Moreover, the whole blocking area placed on the equatorward side of the jet stream, broadly ranging from Azores up to Scandinavia, emerges as associated with poleward jet displacements. The diagnostics are hence applied to two different climate model simulations in order to evaluate the biases in the jet stream and in the blocking representation. This analysis highlights large underestimation of EB, typical feature of general circulation models. Interestingly, observed blocking and jet biases over the Euro-Atlantic area are consistent with the blocking-jet relationship observed in the NCEP/NCAR Reanalysis. Finally, the importance of sea surface temperatures (SSTs) is investigated showing that realistic SSTs can reduce the bias in the jet stream variability but not in the frequency of EB. We conclude highlighting that blocking-related diagnostics can provide more information about the Euro-Atlantic variability than diagnostics simply based on the Atlantic jet stream.  相似文献   

7.
This study analyzes a three-member ensemble of experiments, in which 0.1 Sv of freshwater was applied to the North Atlantic for 100 years in order to address the potential for large freshwater inputs in the North Atlantic to drive abrupt climate change. The model used is the GFDL R30 coupled ocean–atmosphere general circulation model. We focus in particular on the effects of this forcing on the tropical Atlantic region, which has been studied extensively by paleoclimatologists. In response to the freshwater forcing, North Atlantic meridional overturning circulation is reduced to roughly 40% by the end of the 100 year freshwater pulse. Consequently, the North Atlantic region cools by up to 8°C. The extreme cooling of the North Atlantic increases the pole-to-equator temperature gradient and requires more heat be provided to the high latitude Atlantic from the tropical Atlantic. To accommodate the increased heat requirement, the ITCZ shifts southward to allow for greater heat transport across the equator. Accompanying this southward ITCZ shift, the Northeast trade winds strengthen and precipitation patterns throughout the tropical Atlantic are altered. Specifically, precipitation in Northeast Brazil increases, and precipitation in Africa decreases slightly. In addition, we find that surface air temperatures warm over the tropical Atlantic and over Africa, but cool over northern South America. Sea-surface temperatures in the tropical Atlantic warm slightly with larger warm anomalies developing in the thermocline. These responses are robust for each member of the ensemble, and have now been identified by a number of freshwater forcing studies using coupled OAGCMs. The model responses to freshwater forcing are generally smaller in magnitude, but have the same direction, as paleoclimate data from the Younger Dryas suggest. In certain cases, however, the model responses and the paleoclimate data directly contradict one another. Discrepancies between the model simulations and the paleoclimate data could be due to a number of factors, including inaccuracies in the freshwater forcing, inappropriate boundary conditions, and uncertainties in the interpretation of the paleoclimate data. Despite these discrepancies, it is clear from our results that abrupt climate changes in the high latitude North Atlantic have the potential to significantly impact tropical climate. This warrants further model experimentation into the role of freshwater forcing in driving climate change.  相似文献   

8.
Extreme precipitation events in the upper Yangtze River Valley (YRV) have recently become an increasingly important focus in China because they often cause droughts and floods. Unfortunately, little is known about the climate processes responsible for these events. This paper investigates factors favorable to frequent extreme precipitation events in the upper YRV. Our results reveal that a weakened South China Sea summer monsoon trough, intensified Eurasian-Pacific blocking highs, an intensified South Asian High, a southward subtropical westerly jet and an intensified Western North Pacific Subtropical High (WNPSH) increase atmospheric instability and enhance the convergence of moisture over the upper YRV, which result in more extreme precipitation events. The snow depth over the eastern Tibetan Plateau (TP) in winter and sea surface temperature anomalies (SSTAs) over three key regions in summer are important external forcing factors in the atmospheric circulation anomalies. Deep snow on the Tibetan Plateau in winter can weaken the subsequent East Asian summer monsoon circulation above by increasing the soil moisture content in summer and weakening the land–sea thermal contrast over East Asia. The positive SSTA in the western North Pacific may affect southwestward extension of the WNPSH and the blocking high over northeastern Asia by arousing the East Asian-Pacific pattern. The positive SSTA in the North Atlantic can affect extreme precipitation event frequency in the upper YRV via a wave train pattern along the westerly jet between the North Atlantic and East Asia. A tripolar pattern from west to east over the Indian Ocean can strengthen moisture transport by enhancing Somali cross-equatorial flow.  相似文献   

9.
 The Younger Dryas (YD, dated between 12.7–11.6 ky BP in the GRIP ice core, Central Greenland) is a distinct cold period in the North Atlantic region during the last deglaciation. A popular, but controversial hypothesis to explain the cooling is a reduction of the Atlantic thermohaline circulation (THC) and associated northward heat flux as triggered by glacial meltwater. Recently, a CH4-based synchronization of GRIP δ18O and Byrd CO2 records (West Antarctica) indicated that the concentration of atmospheric CO2 (COatm 2) rose steadily during the YD, suggesting a minor influence of the THC on COatm 2 at that time. Here we show that the COatm 2 change in a zonally averaged, circulation-biogeochemistry ocean model when THC is collapsed by freshwater flux anomaly is consistent with the Byrd record. Cooling in the North Atlantic has a small effect on COatm 2 in this model, because it is spatially limited and compensated by far-field changes such as a warming in the Southern Ocean. The modelled Southern Ocean warming is in agreement with the anti-phase evolution of isotopic temperature records from GRIP (Northern Hemisphere) and from Byrd and Vostok (East Antarctica) during the YD. δ13C depletion and PO4 enrichment are predicted at depth in the North Atlantic, but not in the Southern Ocean. This could explain a part of the controversy about the intensity of the THC during the YD. Potential weaknesses in our interpretation of the Byrd CO2 record in terms of THC changes are discussed. Received: 27 May 1998 / Accepted: 5 November 1998  相似文献   

10.
张洁  董敏  吴统文  辛晓歌 《大气科学》2021,45(1):181-194
基于NCEP/NCAR、日本气象厅的JRA55以及欧洲中期预报中心(ECMWF)最新发布的ERA5三套逐日再分析资料数据,考察国家气候中心中等分辨率(约110 km)的气候系统模式BCC-CSM2-MR和单独大气模式BCC-AGCM3-MR对北半球中高纬度阻塞高压(阻高)的模拟能力。再分析数据分析结果表明:“北大西洋—欧洲地区”以及“北太平洋中部地区”分别为北半球阻高发生的最高频及次高频区域;冬春季为阻高高发季节,夏秋季阻高频率减少至冬春季的一半左右;ERA5再分析资料中各个季节的阻高频率均高于另两套资料结果,尤其在北太平洋地区。模拟评估结果显示,单独大气模式BCC-AGCM3-MR对北半球中高纬度阻高发生频率、空间分布和季节变化特征均有较好的模拟能力,其主要偏差表现为冬春欧亚大陆特别是乌拉尔山地区阻高频率偏高,而北大西洋地区阻高频率偏低;春季北太平洋阻高频率偏低。这与模式北半球高纬度地区500 hPa位势高度场气候态偏差有关。BCC-CSM2-MR耦合模式的阻高模拟偏差总体与大气模式类似。但耦合模式中冬季欧亚大陆特别是乌拉尔山地区阻高频率减小、北太平洋春季阻高频率增大,模拟偏差减小。同时,耦合模式能够再现夏季北太平洋东西阻高频率双峰值特征。因此,海气耦合过程有助于改善对欧亚及北太平洋地区阻高频率模拟。阻高频率年际变率受到气候系统内部变率不确定性的较大影响,这也是制约阻高预测水平的重要因素。  相似文献   

11.
The origin and bifurcation structure of abrupt millennial-scale climate transitions under steady external solar forcing and in the absence of atmospheric synoptic variability is studied by means of a global coupled model of intermediate complexity. We show that the origin of Dansgaard-Oeschger type oscillations in the model is caused by the weaker northward oceanic heat transport in the Atlantic basin. This is in agreement with previous studies realized with much simpler models, based on highly idealized geometries and simplified physics. The existence of abrupt millennial-scale climate transitions during glacial times can therefore be interpreted as a consequence of the weakening of the negative temperature-advection feedback. This is confirmed through a series of numerical experiments designed to explore the sensitivity of the bifurcation structure of the Atlantic meridional overturning circulation to increased atmospheric CO2 levels under glacial boundary conditions. Contrasting with the cold, stadial, phases of millennial oscillations, we also show the emergence of strong interdecadal variability in the North Atlantic sector during warm interstadials. The instability driving these interdecadal-interstadial oscillations is shown to be identical to that found in ocean-only models forced by fixed surface buoyancy fluxes, that is, a large-scale baroclinic instability developing in the vicinity of the western boundary current in the North Atlantic. Comparisons with modern observations further suggest a physical mechanism similar to that driving the 30–40?years time scale associated with the Atlantic multidecadal oscillation.  相似文献   

12.
The future changes of atmospheric blocking over the Euro-Atlantic sector, diagnosed from an ensemble of 17 global-climate simulations obtained with the ECHAM5/MPI-OM model, are shown to be largely explainable from the change of the 500 hPa mean zonal circulation and its variance. The reduction of the blocking frequency over the Atlantic and the increased frequency of easterly upper-level flow poleward of 60°N are well explained by the changes of mean zonal circulation. In winter and autumn an additional downstream shift of the frequency maximum is simulated. This is also seen in a subset of the CMIP5 models with RCP8.5. To explain this downstream shift requires the inclusion of the changing variance. It is suggested that the increased downstream variance is caused by the stronger, more eastward extending future jet, which promotes Rossby wave breaking and blocking to occur further downstream. The same relation between jet-strength and central-blocking longitude is found in the variability of the current climate.  相似文献   

13.
The representation of the wintertime North Atlantic Oscillation (NAO) and its relationship with atmospheric blocking and the Atlantic jet stream is investigated in a set of CMIP5 models. It is shown that some state-of-the-art climate models are unable to correctly simulate the physical processes connected to the NAO. This is especially true for models with a strongly underestimated frequency of high-latitude blocking over Greenland. In these models the first empirical orthogonal function (EOF1) of the Euro-Atlantic sector can represent at least three different categories of dominant modes of variability associated with different prevalent regions of blocking occurrence and jet stream displacements. It is therefore possible to show that such “biased NAOs” are connected with different dynamical processes with respect to the canonical NAO seen in observations. Since the NAO is a widely used concept in scientific community, the consequent “dynamical misinterpretation” of the NAO that can result when climate models are analyzed may have important implications for the NAO-related studies. This may be especially relevant for the ones involving climate scenarios, since these modeled NAOs may react differently to greenhouse gas forcing.  相似文献   

14.
利用1983~2011年降水量、环流和海温的再分析资料,探讨了东亚北部地区夏季水汽输送的年代际变化特征,并分析了前冬北大西洋海温对东亚北部地区夏季水汽输送与大气环流的可能影响。研究结果表明,20世纪90年代末期东亚北部地区夏季整层水汽与降水年代际的变化特征相一致,整层水汽通量的年代际变化主要是由于纬向水汽输送异常作用的结果。东亚北部地区(35°~55°N,90°~145°E)西边界的水汽输送通量由多变少,东边界的水汽输送通量由少变多特征则直接导致了该地区降水由偏多转为偏少的年代际变化。就外强迫海温角度来说,前冬北大西洋海温跟东亚北部地区夏季500 hPa高度场、850 hPa风场和850 hPa比湿均显著相关。同时,在20世纪90年代中后期前冬北大西洋海温也表现出由偏低向偏高转变的年代际变化特征,且由于海温自身的记忆性前冬的海温异常一直延续到夏季。并在夏季激发出横跨北大西洋和欧亚大陆中高纬度地区的大西洋-欧亚(AEA)遥相关结构,并进一步影响东亚北部地区夏季水汽输送。  相似文献   

15.
The atmospheric circulation response to decadal fluctuations of the Atlantic meridional overturning circulation (MOC) in the IPSL climate model is investigated using the associated sea surface temperature signature. A SST anomaly is prescribed in sensitivity experiments with the atmospheric component of the IPSL model coupled to a slab ocean. The prescribed SST anomaly in the North Atlantic is the surface signature of the MOC influence on the atmosphere detected in the coupled simulation. It follows a maximum of the MOC by a few years and resembles the model Atlantic multidecadal oscillation. It is mainly characterized by a warming of the North Atlantic south of Iceland, and a cooling of the Nordic Seas. There are substantial seasonal variations in the geopotential height response to the prescribed SST anomaly, with an East Atlantic Pattern-like response in summer and a North Atlantic oscillation-like signal in winter. In summer, the response of the atmosphere is global in scale, resembling the climatic impact detected in the coupled simulation, albeit with a weaker amplitude. The zonally asymmetric or eddy part of the response is characterized by a trough over warm SST associated with changes in the stationary waves. A diagnostic analysis with daily data emphasizes the role of transient-eddy forcing in shaping and maintaining the equilibrium response. We show that in response to an intensified MOC, the North Atlantic storm tracks are enhanced and shifted northward during summer, consistent with a strengthening of the westerlies. However the anomalous response is weak, which suggests a statistically significant but rather modest influence of the extratropical SST on the atmosphere. The winter response to the MOC-induced North Atlantic warming is an intensification of the subtropical jet and a southward shift of the Atlantic storm track activity, resulting in an equatorward shift of the polar jet. Although the SST anomaly is only prescribed in the Atlantic ocean, significant impacts are found globally, indicating that the Atlantic ocean can drive a large scale atmospheric variability at decadal timescales. The atmospheric response is highly non-linear in both seasons and is consistent with the strong interaction between transient eddies and the mean flow. This study emphasizes that decadal fluctuations of the MOC can affect the storm tracks in both seasons and lead to weak but significant dynamical changes in the atmosphere.  相似文献   

16.
The role of a reduction in the Atlantic meridional overturning and that of a persistently negative North Atlantic Oscillation in explaining the coldness of the European Little Ice Age (LIA) has been assessed in two sets of numerical experiments. These experiments are performed using an intermediate complexity climate model and a full complexity GCM. The reduction in the Meridional Overturning Circulation (MOC) of ca. 25% is triggered by a conventional fresh-water hosing set-up. A persistently negative NAO winter circulation, at NAO-index value ?0.5, is imposed using recently developed data-assimilation techniques applicable on paleoclimatic timescales. The hosing experiments lead to a reduction in oceanic meridional heat transport and cooler sea-surface temperatures. Next to a direct cooling effect on European climate, the change in ocean surface temperatures feedback on the atmospheric circulation modifying European climate significantly. The data-assimilation experiments showed a reduction of winter temperatures over parts of Europe, but there is little persistence into the summer season. The output of all model experiments are compared to reconstructions of winter and summer temperature based on the available temperature data for the LIA period. This demonstrates that the hypothesis of a persistently negative NAO as an explanation for the European LIA does not hold. The hosing experiments do not clearly support the hypothesis that a reduction in the MOC is the primary driver of LIA climate change. However, a reduction in the Atlantic overturning might have been a cause of the European LIA climate, depending on whether there is a strong enough feedback on the atmospheric circulation.  相似文献   

17.
利用联邦德国汉堡大学气象研究所大气环流模式的气候模拟的结果,就模式中我国气候对北太平洋海温异常的响应进行了分析,目的在于研究我国气候的成因。我国气候对海温的敏感性试验由异常算程和对照算程组成。异常算程是在北太平洋多年平均海温场上迭加一个“东温西凉”型的异常值,而对照算程中则为多年平均海温场。试验结果指出,1月300百帕上青藏高原两侧的南北两支急流大大增强,Hadley环流减弱,500百帕环流和850百帕温度场出现类似冷冬的形势,即经向环流加强,南北温度梯度加大,我国大部分地区的1月气温降低。但湿度场对北太平洋海温异常的响应甚弱,这与通常的看法一致,即冬季我国干旱主要是由于蒙古干冷高压频频入侵造成的。  相似文献   

18.
In the study authors analyzed the interannual relationship between the Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) and the tropical Indian Ocean (TIO) precipitation in boreal winter for the period 1979–2009. A significant simultaneous teleconnection between them is found. After removing the El Niño/Southern Oscillation and Indian Ocean dipole signals, the AO/NAO and the TIO precipitation (0°–10°S, 60°–80°E) yield a correlation of +0.56, which is also consistent with the AO/NAO-outgoing longwave radiation correlation of ?0.61. The atmospheric and oceanic features in association with the AO/NAO-precipitation links are investigated. During positive AO/NAO winter, the Rossby wave guided by westerlies tends to trigger persistent positive geopotential heights in upper troposphere over about 20°–30°N and 55°–70°E, which is accompanied by a stronger Middle East jet stream. Meanwhile, there are anomalous downward air motions, strengthening the air pressure in mid-lower troposphere. The enhanced Arabian High brings anomalous northern winds over the northern Indian Ocean. As a result the anomalous crossing-equator air-flow enhances the intertropical convergence zone (ITCZ). On the other hand, the anomalous Ekman transport convergence by the wind stress curl over the central TIO deepens the thermocline. Both the enhanced ITCZ and the anomalous upper ocean heat content favor in situ precipitation in the central TIO. The AO/NAO-TIO precipitation co-variations in the IPCC AR4 historical climate simulation (1850–1999) of Bergen Climate Model version 2 were investigated. The Indian Ocean precipitation anomalies (particularly the convective precipitation along the ITCZ), in conjunction with the corresponding surface winds and 200 hPa anticyclonic atmospheric circulation and upper ocean heat contents were well reproduced in simulation. The similarity between the observation and simulation support the physical robustness of the AO/NAO-TIO precipitation links.  相似文献   

19.
The present paper selects the northern winter of December 1995–February 1996 for a case study on the impact of sea surface temperature (SST) anomalies on the atmospheric circulation over the North Atlantic and Western Europe. In the Atlantic, the selected winter was characterized by positive SST anomalies over the northern subtropics and east of Newfoundland, and negative anomalies along the US coast. A weak La Niña event developed in the Pacific. The North Atlantic Oscillation (NAO) index was low, precipitation over the Iberian Peninsula and northern Africa was anomalously high, and precipitation over northern Europe was anomalously low. The method of study consists of assessing the sensitivity of ensemble simulations by the UCLA atmospheric general circulation model (UCLA AGCM) to SST anomalies from the observation, which are prescribed either in the World Oceans, the Atlantic Ocean only, or the subtropical North Atlantic only. The results obtained are compared with a control run that uses global, time-varying climatological SST. The ensemble simulations with global and Atlantic-only SST anomalies both produce results that resemble the observations over the North Atlantic and Western Europe. It is suggested that the anomalous behavior of the atmosphere in the selected winter over those regions, therefore, was primarily determined by conditions within the Atlantic basin. The simulated fields in the tropical North Atlantic show anomalous upward motion and lower (upper) level convergence (divergence) in the atmosphere overlying the positive SST anomalies. Consistently, the subtropical jet intensifies and its core moves equatorward, and precipitation increases over northern Africa and southern Europe. The results also suggest that the SST anomalies in the tropical North Atlantic only do not suffice to produce the atmospheric anomalies observed in the basin during the selected winter. The extratropical SST anomalies would provide a key contribution through increased transient eddy activity, which causes an extension of the subtropical jet eastward from the coast of North America.  相似文献   

20.
The temporal and spatial variability of winter total cloud cover in southern Europe and the Mediterranean region and its connection to the synoptic-scale features of the general atmospheric circulation are examined for the period 1950–2005, by using the diagnostic and intrinsic NCEP/NCAR Reanalysis data sets. At first, S-mode factor analysis is applied to the time series of winter cloud cover, revealing five factors that correspond to the main modes of inter-annual variability of cloudiness. The linkage between each of the five factors and the atmospheric circulation is examined by constructing the 500 hPa and 1,000 hPa geopotential height anomaly patterns that correspond to the highest/lowest factor scores. Then, k-means cluster analysis is applied to the factor scores time series, classifying the 56 years into six distinct clusters that describe the main modes of spatial distribution of cloudiness. Eventually, canonical correlation analysis is applied to the factor scores time series of: (1) 500 and 1,000 hPa geopotential heights over Europe and the North Atlantic Ocean and (2) total cloud cover over southern Europe and the Mediterranean, in order to define the main centers of action in the middle and the lower troposphere that control winter cloudiness variability in the various sub-regions of the area under study. Three statistically significant canonical pairs are revealed, defining the main modes of atmospheric circulation forcing on cloudiness variability. North Atlantic oscillation and European blocking activity modulate the highest percentage of cloudiness variability. A statistically significant negative trend of winter cloudiness is found for central and southern Europe and the Mediterranean region. This negative trend is associated with the corresponding positive trends in NAO and European blocking activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号