首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In classical rift models, deformation is either uniformly distributed leading to symmetric fault bounded basins overlying stretched ductile lower crust (e.g. pure shear McKenzie model) or asymmetric and controlled by large scale detachment faulting (simple shear Wernicke model). In both cases rifting is considered as a mono-phase process and breakup is instantaneous resulting in the juxtaposition of continental and oceanic crust. The contact between these two types of crusts is often assumed to be sharp and marked by a first magnetic anomaly; and breakup is considered to be recorded as a major, basin wide unconformity, also referred to as breakup unconformity. These classical models, are currently challenged by new data from deep rifted margins that ask for a revision of these concepts. In this paper, we review the pertinent observations made along the Iberia-Newfoundland conjugate margins, which bear the most complete data set available from deep magma-poor margins. We reevaluate and discuss the polyphase nature of continental rifting, discuss the nature and significance of the different margin domains and show how they document extreme crustal thinning, retardation of subsidence and a complex transition into seafloor spreading. Although our study is limited to the Iberia-Newfoundland margins, comparisons with other margins suggest that the described evolution is probably more common and applicable for a large number of rifted margins. These new results have major implications for plate kinematic reconstructions and invite to rethink the terminology, the processes, and the concepts that have been used to describe continental rifting and breakup of the lithosphere.  相似文献   

2.
大陆解体与被动陆缘的演化   总被引:4,自引:1,他引:3  
火山型被动陆缘是大陆解体过程中形成的一类陆缘类型,其演化过程与活动陆缘一样复杂多变。随着近年来对大陆解体过程与被动陆缘演化的深入研究,对其沉积过程、岩浆活动以及变质作用研究都有了很大的进展。陆壳减薄解体的过程有许多不同的模式,不对称的简单剪切模式可能是火山型被动陆缘的成因,其机制是软流圈隆起的最大位置从剖面上看与地壳减薄最大位置不在一条垂线上,造成软流圈上升的岩浆在解体的大陆一侧形成火山型被动陆缘。被动陆缘的沉积建造由两套沉积物组成,一套是大陆解体的裂谷阶段所形成的陆相沉积物和双模式火山岩组合,另一套是稳定陆缘的复理石组合;岩浆作用中基性岩类反应了物质直接源于上地幔的主要特点,并有部分受到地壳混染的特征;变质作用中高温低压环境主要发生在裂谷作用阶段,其特点反映了大陆解体过程中随着时间的增温和减压过程,而拆离伸展阶段则被脆性变形所代替。  相似文献   

3.
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block.Geologic characters and spatial distributions of fve of these unconformities,which have resulted from different geological processes,have been studied.The unconformity beneath the Dahongyu Formation is interpreted as a breakup unconformity,representing the time of transition from continental rift to passive continental margin.The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fuctuations,leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands.The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting,whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event.It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.  相似文献   

4.
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block.Geologic characters and spatial distributions of fve of these unconformities,which have resulted from different geological processes,have been studied.The unconformity beneath the Dahongyu Formation is interpreted as a breakup unconformity,representing the time of transition from continental rift to passive continental margin.The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fuctuations,leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands.The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting,whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event.It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.  相似文献   

5.
Low‐temperature thermochronology (LTT) is commonly used to investigate onshore records of continental rifting and geomorphic evolution of passive continental margins. The SE Australian passive margin, like many others, has an elevated plateau separated from the coastal plain by an erosional escarpment, presumed to originate through Cretaceous rifting prior to Tasman Sea seafloor spreading. Previous LTT studies have focused on reconciling thermal histories with development of the present‐day topography. New apatite LTT data along an escarpment‐to‐coast transect define a classic “boomerang” (mean track length vs. fission‐track age), indicating variable overprinting of late‐Palaeozoic cooling ages by a younger, mid‐Cretaceous cooling event. Regionally, however, the boomerang trend diverges NNW away from the coast and crosses the escarpment, implying the underlying thermal history pre‐dates escarpment formation and is largely independent from post‐breakup landscape evolution. We suggest that Cretaceous cooling might relate to erosion of Permo‐Triassic sedimentary cover from a formerly more extensive Sydney Basin.  相似文献   

6.
岩浆在被动大陆边缘的张-破裂过程中起到决定性作用.南海东北部陆缘发育厚度达10 km的下地壳高速体,其成因机制长期存在争议,影响了对南海东北部陆缘构造归属的界定.为了分析南海共轭陆缘的张破裂机制,本文调研了国内外最新研究进展,系统分析了南海南北陆缘的地壳结构和岩浆活动特点,提出:南海陆缘和海盆中发育有大量岩浆活动,但东西陆缘存在较大差异,底侵高速体东厚西薄,推测为同张裂成因.根据地壳结构与底侵岩浆的量,将被动陆缘划分为5个子类,南海陆缘东侧为多岩浆型,向西变为少岩浆型.东西差异除与伸展速率有关,可能还与东侧陆缘发生了板缘破裂,而西侧陆缘发生了板内破裂有关.   相似文献   

7.
Crustal architecture in formerly contiguous basement terranes in SE Australia, Tasmania and northern Victoria Land is a legacy of late Neoproterozoic–Cambrian subduction-related processes, culminating in formation of the Delamerian–Ross orogen. Structures of Delamerian–Ross age were subsequently reactivated during late Mesozoic–Cenozoic Gondwana breakup, strongly influencing the geometry of continental rifting and providing clues about the origins and configuration of the pre-existing basement structures. An ocean–continent transform boundary developed off western Tasmania follows the trace of an older Paleozoic strike-slip structure (Avoca–Sorell fault system) optimally oriented for reactivation during the final separation of Australia from Antarctica. This boundary cuts across rocks preserving an earlier record of arc–continent collision during the course of which continental crust was subducted to mantle depths and Cambrian mafic–ultramafic island arc rocks were thrust westwards over late Neoproterozoic–Cambrian passive margin sequences. Collision was accompanied by development of a foreland basin into which 520–600 Ma arc-derived detrital zircons were shed. Following a reversal in subduction polarity, and change to transcurrent motion along the Gondwana margin, Tasmania migrated northward along the proto-Avoca fault system before entering a subduction zone located along the Heathcote–Governor fault system, precipitating a second collision, south-vergent thrusting, and tectonic reworking of the already accreted Cambrian arc–forearc assemblages and underlying passive margin sequences.  相似文献   

8.
In the Desert Syncline of the southern Georgina Basin there is an Early and Middle Cambrian sequence unconformably overlying late Proterozoic sediments. Stratigraphic drilling and subsequent palaeontological studies have allowed the documentation of the sequence across the Proterozoic‐Cambrian unconformity. Earliest Cambrian green shales are bioturbated and contain distinctive acritarchs. These are overlain, probably unconformably, by sandstone with Diplocraterion burrows, in turn succeeded by archaeocyathan dolostone. Ordian and Templetonian (Middle Cambrian) shales and carbonates unconformably overlie the Early Cambrian sequence. The stratigraphic sequence is very similar to that in the Amadeus Basin and the Adelaide Geosyncline.  相似文献   

9.
南海大陆边缘盆地由于边界条件的差异,不仅形成了不同类型的陆缘盆地,如离散型、走滑伸展型和伸展挠曲复合型,而且这些盆地构造演化存在明显的非同步性。这些陆缘破裂过程与南海扩张作用过程呈现明显不一致性。研究表明,南海扩张时期南海南、北大陆边缘均形成了一系列裂陷盆地,然而,南海南部、北部大陆边缘盆地裂陷作用结束时间不同,北部大陆边缘盆地裂陷作用结束于23 Ma或21 Ma,而南部大陆边缘盆地裂陷作用结束于15.5 Ma,显然北部大陆边缘盆地裂陷结束时间明显早于南部大陆边缘盆地。南海扩张停止后,南海南、北部陆缘仍表现出明显差异,北部陆缘仍以伸展作用为主,晚中新世以来出现快速沉降幕,而南海南部陆缘则以挤压作用为主,且其挤压时间及强度呈现南早北晚的特点,即南部曾母盆地明显早于南薇西盆地和北康盆地。南海南、北大陆边缘盆地形成演化的差异性,特别是构造转型差异变化,为新生代南海扩张的迁移性提供了有力的佐证,可以推断南海不同期次海盆扩张可能存在向南的突然跃迁。因此,本次研究梳理出的南海不同陆缘盆地张裂伸展的非同步性可为南海洋盆扩张演化过程解释提供新的证据。  相似文献   

10.
The Adelaide Rift Complex is arguably one of the most complete and best studied Neoproterozoic to early Cambrian successions worldwide, preserving evidence of the breakup of Rodinia, two Cryogenian glaciations and the interglacial phase, and one of the best documented Ediacaran to early Cambrian biotic transitions. However, the complex and protracted tectono-sedimentary history of this 0.8–0.5 Ga province is still being debated. We present new and published UPb ages and Hf and O isotope data for detrital zircons from the Adelaide Rift Complex, representing the most complete assembly of such data for this succession. Deposition during initial mid-Tonia extension was largely sourced locally from rift shoulders. As the basin evolved from rift- to sag-phase following continental breakup in the Cryogenian the provenance regions extended to more distal late Mesoproterozoic terranes to west and northwest. New data from Sturtian Glacial Epoch deposits are consistent with termination of this event at 0.66 Ga, with most deposition during deglaciation. Uplift of the Musgrave region during the Ediacaran to early Cambrian Petermann Orogeny led to dominant sediment supply from that terrane at that time in the north. In the south, earliest Cambrian deposition followed local tectonism, initially revitalising local proximal basement sources. An abrupt change in provenance occurred at the base of the Cambrian Kanmantoo Group, the youngest sediment package in the south. Paleocurrent data indicates transports from the south, probably from formerly contiguous Antarctica, possibly reflecting the onset of convergent tectonics and deposition in a foreland basin, consistent with the near depositional age of the dominant detrital zircon population. Whilst several episodes of significant crustal reworking are identified in the Hf and O isotope data, many of the zircon TDM ages lie within 0.5 Ga of the UPb ages indicating that new additions from the mantle were common in the provenance regions.  相似文献   

11.
Rifts and passive margins often develop along old suture zones where colliding continents merged during earlier phases of the Wilson cycle. For example, the North Atlantic formed after continental break-up along sutures formed during the Caledonian and Variscan orogenies. Even though such tectonic inheritance is generally appreciated, causative physical mechanisms that affect the localization and evolution of rifts and passive margins are not well understood.We use thermo-mechanical modeling to assess the role of orogenic structures during rifting and continental breakup. Such inherited structures include: 1) Thickened crust, 2) eclogitized oceanic crust emplaced in the mantle lithosphere, and 3) mantle wedge of hydrated peridotite (serpentinite).Our models indicate that the presence of inherited structures not only defines the location of rifting upon extension, but also imposes a control on their structural and magmatic evolution. For example, rifts developing in thin initial crust can preserve large amounts of orogenic serpentinite. This facilitates rapid continental breakup, exhumation of hydrated mantle prior to the onset of magmatism. On the contrary, rifts in thicker crust develop more focused thinning in the mantle lithosphere rather than in the crust, and continental breakup is therefore preceded by magmatism. This implies that whether passive margins become magma-poor or magma-rich, respectively, is a function of pre-rift orogenic properties.The models show that structures of orogenic eclogite and hydrated mantle are partially preserved during rifting and are emplaced either at the base of the thinned crust or within the lithospheric mantle as dipping structures. The former provides an alternative interpretation of numerous observations of ‘lower crustal bodies’ which are often regarded as igneous bodies. The latter is consistent with dipping sub-Moho reflectors often observed in passive margins.  相似文献   

12.
位于印度板块北缘和雅鲁藏布江结合带之间的珠穆朗玛峰北坡地区,属于喜马拉雅造山带,是特提斯洋的重要组成部分。自奥陶纪至古近纪约5亿年期间发育一套基本连续的海相沉积,厚度达14 km,是研究特提斯洋形成演化的最佳地区。作者在对该区显生宙地层主干剖面和辅助剖面详细观察研究以及区域地质调查填图的基础上,将珠穆朗玛峰北坡地区显生宙沉积地层划分为海相、海陆过渡相和陆相3个沉积相组、15个沉积相和若干个沉积亚相。作者通过对该区沉积盆地的地层系统、沉积相、沉积特征的系统研究,将珠穆朗玛峰北坡地区显生宙沉积演化划分为6个阶段:1)奥陶纪-泥盆纪为稳定陆表海演化阶段;2)石炭纪-二叠纪为大陆裂谷盆地演化阶段;3)三叠纪-侏罗纪为被动大陆边缘盆地演化阶段;4)早中白垩世为前陆早期复理石盆地演化阶段;5)晚白垩世-古新世为前陆晚期磨拉石盆地演化阶段;6)古近纪-第四纪为造山隆升断陷盆地形成演化阶段。研究结果表明,珠穆朗玛峰北坡地区显生宙沉积盆地经历了由陆表海盆地-大陆裂谷盆地-被动大陆边缘盆地-前陆盆地-断陷盆地的演化过程。  相似文献   

13.
The continental margin orogenic systems of the western Americas are enormous features that formed along the Pacific margins of the North and South American plates during late Mesozoic through Cenozoic time. There has been considerable debate concerning their origin, and they are often compared with intra-oceanic fringing arc-trench systems more typical of the Australasian margins of the Pacific Ocean, in that both involve the subduction of oceanic lithosphere, often with similar convergent relative motion vectors. The onset of orogenesis in the two Cordilleras, as shown in reversal of sedimentary polarity from sources generally on the continent to sources along the Pacific margin, seems to date from shortly after emplacement of the oldest oceanic crust in that part of the Atlantic Ocaen east of each continent — i.e., about 170 Ma, or Middle Jurassic, in the case of the Central Atlantic, and about 135 to 100 Ma, or Early to mid-Cretaceous, in the case of the South Atlantic. These ages also seem to mark the onset of westward motion of the two continents over the Pacific Ocean basin and subsequent crustal thickening and uplift, with development of thrust belts, foreland basins, and foredeeps. Prior to this prolonged westward drift, both margins had been convergent for at least several hundred million years, but no massive mountain building had taken place. Instead, the margins were tectonically “neutral”, with typically submarine fringing arc-trench systems or shallow marine to continental margin arcs which stood “outboard” of shallow marine platformal shelves or basins whose main sedimentary polarity was from the continent. Although accretion of “suspect” terranes, high rates of convergence, and age of subducting lithosphere all may have influenced particularly local tectonic response and/or phases of orogenic activity in the two chains, the absolute motion of the two continental margins over the Pacific Ocean basin is considered to have been the dominant factor in Cordilleran tectonic evolution.  相似文献   

14.
The Levant Rift system is an elongated series of structural basins that extends for more than 1000 km from the northern Red Sea to southern Anatolia. The system consists of three major segments, the Jordan Rift in the south, El Gharb–Kara-Su Rift in the north, and the Lebanese Fault splay in between. The rifted parts of this structural system are accompanied by intensively uplifted margins that mirror-image the basinal pattern, namely, the deeper the basin—the higher its margins, and vice versa. Uplifts also occur along the fault splay section. The Jordan Rift comprises axial basins that diminish in size from the south northwards, and are separated from each other by shallow threshold zones along the axis of the rift, where the margins are also subdued. The Lebanese Fault splay consists of five faults that emerge from the northern edge of the Jordan Rift and trend like a fan between the north and the northeast. One of these faults connects the Jordan and El Gharb–Kara-Su rifts. The Levant Rift and its uplifted margins started to develop in the middle-late Miocene, and most of the structural development occurred in the Plio-Pleistocene.The Levant Rift system is characterized by its oblique displacement, and evidence for both dip-slip and strike-slip displacement was measured on its faults. Earthquakes also indicate that same mixed pattern, some of them show strike-slip offset, and others normal. It is generally conceded that the amount of normal offset along the boundary faults of the Rift system reaches 8–10 km, but the lateral displacement is disputed, and offsets ranging from 11 to 107 km were suggested. Assessment of the available data led us to suggest that the sinistral offset along the Levant Rift system is approximately 10–20 km. The similarity between the vertical and the lateral displacements, the basin and threshold structural pattern of the Rift, model experiments in oblique rifting, as well as the significant tectonic resemblance to the Red Sea and the East African rifts, indicate that the Levant Rift is the product of continental breakup, and it is probably an emerging oceanic spreading center.  相似文献   

15.
We interpreted marine seismic profiles in conjunction with swath bathymetric and magnetic data to investigate rifting to breakup processes at the eastern Korean margin that led to the separation of the southwestern Japan Arc. The eastern Korean margin is rimmed by fundamental elements of rift architecture comprising a seaward succession of a rift basin and an uplifted rift flank passing into the slope, typical of a passive continental margin. In the northern part, rifting occurred in the Korea Plateau that is a continental fragment extended and partially segmented from the Korean Peninsula. Two distinguished rift basins (Onnuri and Bandal Basins) in the Korea Plateau are bounded by major synthetic and smaller antithetic faults, creating wide and considerably symmetric profiles. The large-offset border fault zones of these basins have convex dip slopes and demonstrate a zig-zag arrangement along strike. In contrast, the southern margin is engraved along its length with a single narrow rift basin (Hupo Basin) that is an elongated asymmetric half-graben. Analysis of rift fault patterns suggests that rifting at the Korean margin was primarily controlled by normal faulting resulting from extension rather than strike-slip deformation. Two extension directions for rifting are recognized: the Onnuri and Hupo Basins were rifted in the east-west direction; the Bandal Basin in the east–west and northwest–southeast directions, suggesting two rift stages. We interpret that the east–west direction represents initial rifting at the inner margin; while the Japan Basin widened, rifting propagated southeastward repeatedly from the Japan Basin toward the Korean margin but could not penetrate the strong continental lithosphere of the Korean Shield and changed the direction to the south, resulting in east–west extension to create the rift basins at the Korean margin. The northwest–southeast direction probably represents the direction of rifting orthogonal to the inferred line of breakup along the base of the slope of the Korea Plateau; after breakup the southwestern Japan Arc separated in the southeast direction, indicating a response to tensional tectonics associated with the subduction of the Pacific Plate in the northwest direction. No significant volcanism was involved in initial rifting. In contrast, the inception of sea floor spreading documents a pronounced volcanic phase which appears to reflect asthenospheric upwelling as well as rift-induced convection particularly in the narrow southern margin. We suggest that structural and igneous evolution of the Korean margin, although it is in a back-arc setting, can be explained by the processes occurring at the passive continental margin with magmatism influenced by asthenospheric upwelling.  相似文献   

16.
李勇  苏德辰  董顺利  颜照坤  贺佩  闫亮 《岩石学报》2011,27(8):2413-2422
晚三叠世龙门山前陆盆地是在扬子板块西缘被动大陆边缘的基础上由印支造山运动而形成的,盆地中地层充填厚度巨大,包括晚三叠世卡尼期至瑞提期的马鞍塘组、小塘子组和须家河组,持续时间达20Myr,显示为1个以不整合面为界的构造层序。位于晚三叠世龙门山前陆盆地构造层序与下伏古生代-中三叠世被动大陆边缘构造层序之间的不整合面属于龙门山前陆盆地的底部不整合面,标志了扬子板块西缘从被动大陆边缘盆地到前陆盆地的转换。该底部不整合面位于晚三叠世马鞍塘组与中三叠世雷口坡组之间,显示为平行不整合面或角度不整合面,在接触面上发育冲蚀坑、古喀斯特溶沟、溶洞、溶岩角砾、古风化壳的褐铁矿、黏土层及石英、燧石细砾岩等底砾岩。该不整合面向南东方向不断地切削下伏地层,且均发育岩溶风化面,上覆的晚三叠世地层沿不整合面向南东超覆,显示了从整合面到不整合面的变化过程,并随着逆冲楔的推进向南东方向迁移,其超覆线、侵蚀带和相带的走向线与龙门山冲断带的走向大致平行。底部不整合面显示为典型的前陆挠曲不整合面,标志着龙门山前陆盆地的形成和扬子板块西缘挠曲下降和淹没过程,底部为古喀斯特作用面,下部为碳酸盐缓坡和海绵礁建造,上部为进积过程中形成的三角洲沉积物,具有向上变粗的垂向结构,表明底部不整合面和前缘隆起的抬升是扬子板块西缘构造负载的挠曲变形的产物,显示了在卡尼期松潘-甘孜残留洋盆的迅速闭合和逆冲构造负载向扬子板块的推进过程。本次在对晚三叠世龙门山前陆盆地底部不整合面的风化壳、残留厚度、地层缺失、剥蚀厚度、地层超覆等研究的基础上,计算了底部不整合面迁移速率、前缘隆起迁移速率、地层上超速率和前缘隆起的剥蚀速率,并与逆冲楔推进速率进行了对比,结果表明,底部不整合面迁移速率、前缘隆起的迁移速率、地层上超速率均介于3~18mm·a-1之间,其与逆冲楔推进速率(5~15mm·a-1)相似,因此,可用底部不整合面迁移速率、前缘隆起的迁移速率和地层上超速率代表逆冲楔推进速率。但是前缘隆起的剥蚀速率很小,介于0.02~0.08mm·a-1之间,仅为逆冲楔推进速率的1/100。  相似文献   

17.
R. Varne  J.D. Foden 《Tectonophysics》1987,140(2-4):275-295
In western Tasmania, small Precambrian regions are surrounded by a ramifying system of troughs filled with Cambrian sedimentary and volcanic rocks, and ophiolite complexes. The volcanic associations include a rift-related olivine tholeiite association, dacite-rhyolite and andesite associations, and a low-Ti, high-Mg andesite-tholeiite ophiolite association, and may have formed during a long-lived period of crustal thinning, punctuated by episodes of crustal rupturing, magmatism, and small scale rifting. Such extensional tectonism could occur in an active continental margin associated with strike-slip faulting of regional scale, and the volcanic associations may together constitute an igneous assemblage characteristic of magmatism in a transcurrent tectonic regime within an active continental margin undergoing break-up.

The western Tasmanian Cambrian palaeogeography and volcanism preserve a transitional stage between the Late Proterozoic Kanmantoo regime of sedimentary basins with little volcanism developed at the rifting margin of the Proterozoic craton, and the tectonic regime of the Palaeozoic Lachlan Fold Belt where the Cambrian volcanic rocks are dominated by island-arc associations and the rift-related olivine tholeiite association is absent. Eastern Australian lithosphere may have grown by the insertion of newly-formed igneous complexes within the stretched and rifted continental margin, as well as by the accretion of “terrenes” and the addition of packets of subduction complexes which developed off-shore.  相似文献   


18.
中元古代时期的五台山南缘是华北克拉通北部的燕辽裂隙槽与南部的晋豫陕裂隙槽之间的交接地带。在该地区中元古界由常州沟组潮坪沉积体系碎屑岩地层和高于庄组潮坪沉积体系碳酸盐岩地层组成,常州沟组与下伏的早元古界滹沱群为角度不整合接触,高于庄组与上覆的寒武系之间为地层间断时间超过1000 Ma的平行不连续面;残留不全的元古界不但成为前寒武纪层序地层学划分的典型代表,而且成为窥视早期来自南部裂陷槽向北海侵以及晚期来自燕辽裂陷槽向南海侵的宝贵的物质记录,并且成为重新审视晋豫陕裂陷槽与燕辽裂陷槽的争议较大的地层对比的关键地层记录。对山西五台沉积状剖面中元古界沉积序列及其所表征的层序地层学特征的观察和描述,为今后的进一步研究提供了有用的线索,因而具有重要意义。  相似文献   

19.
Modern Tethyan, Mediterranean, and Pacific analogues are considered for several Appalachian, Caledonian, and Variscan terranes (Carolina, West and East Avalonia, Oaxaquia, Chortis, Maya, Suwannee, and Cadomia) that originated along the northern margin of Neoproterozoic Gondwana. These terranes record a protracted geological history that includes: (1) 1 Ga (Carolina, Avalonia, Oaxaquia, Chortis, and Suwannee) or 2 Ga (Cadomia) basement; (2) 750–600 Ma arc magmatism that diachronously switched to rift magmatism between 590 and 540 Ma, accompanied by development of rift basins and core complexes, in the absence of collisional orogenesis; (3) latest Neoproterozoic–Cambrian separation of Avalonia and Carolina from Gondwana leading to faunal endemism and the development of bordering passive margins; (4) Ordovician transport of Avalonia and Carolina across Iapetus terminating in Late Ordovician–Early Silurian accretion to the eastern Laurentian margin followed by dispersion along this margin; (5) Siluro-Devonian transfer of Cadomia across the Rheic Ocean; and (6) Permo-Carboniferous transfer of Oaxaquia, Chortis, Maya, and Suwannee during the amalgamation of Pangea. Three potential models are provided by more recent tectonic analogues: (1) an “accordion” model based on the orthogonal opening and closing of Alpine Tethys and the Mediterranean; (2) a “bulldozer” model based on forward-modelling of Australia during which oceanic plateaus are dispersed along the Australian plate margin; and (3) a “Baja” model based on the Pacific margin of North America where the diachronous replacement of subduction by transform faulting as a result of ridge–trench collision has been followed by rifting and the transfer of Baja California to the Pacific Plate. Future transport and accretion along the western Laurentian margin may mimic that of Baja British Columbia. Present geological data for Avalonia and Carolina favour a transition from a “Baja” model to a “bulldozer” model. By analogy with the eastern Pacific, we name the oceanic plates off northern Gondwana: Merlin (≡Farallon), Morgana (≡Pacific), and Mordred (≡Kula). If Neoproterozoic subduction was towards Gondwana, application of this combined model requires a total rotation of East Avalonia and Carolina through 180° either during separation (using a western Transverse Ranges model), during accretion (using a Baja British Columbia “train wreck” model), or during dispersion (using an Australia “bulldozer” model). On the other hand, Siluro-Devonian orthogonal transfer (“accordion” model) from northern Africa to southern Laurussia followed by a Carboniferous “Baja” model appears to best fit the existing data for Cadomia. Finally, Oaxaquia, Chortis, Maya, and Suwannee appear to have been transported along the margin of Gondwana until it collided with southern Laurentia on whose margin they were stranded following the breakup of Pangea. Forward modeling of a closing Mediterranean followed by breakup on the African margin may provide a modern analogue. These actualistic models differ in their dictates on the initial distribution of the peri-Gondwanan terranes and can be tested by comparing features of the modern analogues with their ancient tectonic counterparts.  相似文献   

20.
A. S. Baluev 《Geotectonics》2006,40(3):183-196
The nearly parallel northwest-trending Onega-Kandalaksha, Kerets-Leshukonsky, and Barents paleorift zones located in the northeastern part of the East European Platform are interpreted as a common structural assemblage that was formed in the Middle-Late Riphean as a result of horizontal extension of the continental margin. Therefore, it is reasonable to combine these paleorift structural features into the common White Sea Rift System instead of subdividing them into two or more systems as done previously. The White Sea Rift System originated owing to the breakup of the ancient Paleopangea supercontinent 1300–1240 Ma ago. The latter event occurred as a result of the divergence of the Baltia and Laurentia continental plates that most probably was caused by mantle spreading within the hot equatorial belt of the Earth. The diffuse rifting of that time occurred in the form of near-parallel rifts developing progressively from the inner part of the continental plate toward its margin. A pericratonic sedimentary basin eventually formed at the passive margin of Baltia as a system of roughly parallel rift zones. The geologic and geophysical data show that the passive margin of the East European Platform formed in the Riphean, a phenomenon that corresponds with a model of large-scale extension of the lithosphere after the stage of early ocean-floor spreading. In the course of this process, the brittle upper crust was detached from the ductile lower crust. The geodynamic regime of the Riphean passive margin of the East European Platform probably was similar to the regime of the present-day Atlantic-type passive margins. The White Sea Rift System differs from the transverse Mid-Russian Paleorift System both in origin and age. The Mid-Russian Paleorift System is considered to have formed in the Late Riphean as a result of transtension along a mobile zone in the ancient basement. The lithosphere of northeastern Fennoscandia has experienced horizontal extension since the Middle Riphean, a phenomenon that is closely related to the evolution of the White Sea Rift System, i.e., to the formation of the passive margin of the Baltia continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号