首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The large acoustic data set acquired during the Carambar cruises is composed of high resolution bathymetry, backscatter data and very‐high resolution seismic lines which allow for an overview of the morphology and sediment transfer processes from the shallow upper slope to the abyssal plain of a modern carbonate system: the north‐eastern slope of the Little Bahama Bank. Surficial distribution of the acoustic facies and echofacies reflects a wide variety of sedimentary processes along and across the slope. The western sector of the Little Bahama Bank is dominated by depositional processes whereas its eastern sector, which is incised in the lower slope by giant canyons, is affected by erosion and bypass processes. Datasets suggest that currents play an important role both in along‐slope sedimentary processes and in the abyssal plain. The Antilles Current appears to affect a large part of the middle and lower slopes. The absence of sizeable present‐day channel/levée complexes or lobes at the mouth of the canyon – revealed by the bathymetric map – indicates that the southward flowing Deep Western Boundary Current influences modern abyssal sediment deposition. Based on depositional processes and indicators of canyon maturity observed in facies distribution, the current study proposes that differential subsidence affects the eastern versus western part of the bank. The morphology of the Great Abaco Canyon and Little Abaco Canyon, which extend parallel to the platform, and the Little Bahama Bank slope appears to be related to the Great Abaco Fracture Zone.  相似文献   

2.
Sedimentary dynamics along carbonate slopes (Bahamas archipelago)   总被引:2,自引:0,他引:2       下载免费PDF全文
Hydroacoustic and sedimentological data in the Santaren Channel covering both the leeward slope of Great Bahama Bank and the windward slope of Cay Sal Bank allow new insights into carbonate platform slope sedimentation. The data document the interplay between depositional and erosive processes on both slopes through time and provide information on the current regime and its influence on the slope sedimentary processes. This study emphasizes the diversity and complexity of the slope morphology and the sediment distribution of the youngest high‐frequency sequence, which has developed since the last glacial maximum. The processes triggering slope failures and the formation of channels and gullies differ on both slopes. At the leeward slope of the Great Bahama Bank, extensive slope failures occurred primarily during sea‐level lowering following an interglacial. These slope failures created a slope morphology that channelizes the exported platform sediments during the subsequent highstand. At the windward slope of Cay Sal Bank, contour currents and the local tectonic regime are responsible for slope failures. During sea‐level lowstands, downwelling induces turbidity currents. The interaction of turbidity and contour currents leads to the formation of a system of furrows and slope‐parallel sediment ridges. The discovered heterogeneities in slope sedimentation improve the understanding of carbonate slope sedimentation and provide implications for sequence stratigraphic interpretation of carbonate platform slopes.  相似文献   

3.
New data collected along the slopes of Little and Great Bahama Bank and the abyssal plain of the Bahama Escarpment provides new insights about contour current‐related erosive structures and associated deposits. The Bahamian slope shows abundant evidence of bottom current activity such as furrows, comet‐like structures, sediment waves and drifts. At a seismic scale, large erosion surfaces and main periods of drift growth resulted from current acceleration related to plate tectonic processes and progressive opening and closure of gateways and long‐term palaeoclimate evolution. At present‐day, erosion features and contourite drifts are either related to relatively shallow currents (<1000 m water depth) or to deep currents (>2500 m water depth). It appears that the carbonate nature of the drifts does not impact the drift morphology at the resolution addressed in the present study. Classical drift morphologies defined in siliciclastic environments are found, such as mounded, plastered and separated drifts. In core, contourite sequences show a bi‐gradational trend that resembles classical contourite sequences in siliciclastic deposits showing a direct relationship with a change in current velocity at the sea floor. However, in a carbonate system the peak in grain size is associated with increased winnowing rather than increased sediment supply as in siliciclastic environments. In addition, the carbonate contourite sequence is usually thinner than in siliciclastics because of lower sediment supply rates. Little Bahama Bank and Great Bahama Bank contourites contain open‐ocean input and slope‐derived debris from glacial episodes. Inner platform, platform edge and open ocean pelagic input characterize the classical periplatform ooze during interglacials. In all studied examples, the drift composition depends on the sea floor topography surrounding the drift location and the type of sediment supply. Carbonate particles are derived from either the slope or the platform in slope and toe of slope drifts, very deep contourites have distant siliciclastic sources of sediment supply. The recent discovery of the importance of a large downslope gravitary system along Bahamian slopes suggests frequent interactions between downslope and along‐slope (contour currents) processes. The interlayering of mass flow deposits and contourites at a seismic scale or the presence of surface structures associated with both contour currents and mass flow processes shows that both processes act at the same location. Finally, contour currents have an important impact on the repartition of deep‐water coral mounds. Currents can actively interact with mounds as a nutrient and oxygen supplier or have a passive interaction, with mounds solely being obstacles orienting erosion and deposition.  相似文献   

4.
Carbonate environments inhabit the realm of the surface, intermediate and deep currents of the ocean circulation where they produce and continuously deliver material which is potentially deposited into contourite drifts. In the tropical realm, fine‐grained particles produced in shallow water and transported off‐bank by tidal, wind‐driven, and cascading density currents are a major source for transport and deposition by currents. Sediment production is especially high during interglacial times when sea level is high and is greatly reduced during glacial times of sea‐level lowstands. Reduced sedimentation on carbonate contourite drifts leads to early marine cementation and hardened surfaces, which are often reworked when current strength increases. As a result, reworked lithoclasts are a common component in carbonate drifts. In areas of temperate and cool water carbonates, currents are able to flow across carbonate producing areas and incorporate sediment directly to the current. The entrained skeletal carbonate particles have variable bulk density and shapes that lower the prediction of transport rates in energy‐based transport models, as well as prediction of current velocity based on grain size. All types of contourite drifts known in clastic environments are found in carbonate environments, but three additional drift types occur in carbonates because of local sources and current flow diversion in the complicated topography inherent to carbonate systems. The periplatform drift is a carbonate‐specific plastered drift that is nearly exclusively made of periplatform ooze. Its geometry is built by the interaction of along‐slope currents and downslope currents, which deliver sediment from the adjacent shallow‐water carbonate realm to the contour current via a line source. Because the periplatform drift is plastered on the slopes of the platforms it is also subject to mass gravity flow and large slope failures. At platform edges, a special type of patch drift develops. These hemiconal platform‐edge drifts also contain exclusively periplatform ooze but their geometry is controlled by the current around the corner of the platform. At the north‐western end of Little and Great Bahama Bank are platform‐edge drifts that are over 100 km long and up to 600 m thick. A special type of channel‐related drift forms when passages between carbonate buildups or channels within a platform open into deeper water. A current flowing in these channels will entrain material shed from the sediment producing areas. At the channel mouth, the sediment‐charged current deposits its sediment load into the deeper basin. With continuous flow, a submarine delta drift is built that progrades into the deep water. The strongly focused current forming the delta drift, is able to rework coarse skeletal grains and clasts, making this type of carbonate drift the coarsest drift type.  相似文献   

5.
Carbonate platforms spanning intervals of global change provide an opportunity to identify causal links between the evolution of marine environment and depositional architecture. This study investigates the controls on platform geometry across the Palaeozoic to Mesozoic transition and yields new stratigraphic and palaeoenvironmental constraints on the Great Bank of Guizhou, a latest Permian to earliest Late Triassic isolated carbonate platform in the Nanpanjiang Basin of south China. Reconstruction of platform architecture was achieved by integrating field mapping, petrography, biostratigraphy, satellite imagery analysis and δ13C chemostratigraphy. In contrast to previous interpretations, this study indicates that: (i) the Great Bank of Guizhou transitioned during Early Triassic time from a low-relief bank to a platform with high relief above the basin floor (up to 600 m) and steep slope angles (preserved up to 50°); and (ii) the oldest-known platform-margin reef of the Mesozoic Era grew along steep, prograding clinoforms in an outer-margin to lower-slope environment. Increasing platform relief during Early Triassic time was caused by limited sediment delivery to the basin margin and a high rate of accommodation creation driven by Indosinian convergence. The steep upper Olenekian (upper Lower Triassic) slope is dominated by well-cemented grainstone, suggesting that high carbonate saturation states led to syndepositional or rapid post-depositional sediment stabilization. Latest Spathian reef initiation coincided with global cooling following Early Triassic global warmth. The first Triassic framework-building metazoans on the Great Bank of Guizhou were small calcareous sponges restricted to deeper water settings, but early Mesozoic reef builders were volumetrically dominated by Tubiphytes, a fossil genus of uncertain taxonomic affinity. In aggregate, the stratigraphic architecture of the Great Bank of Guizhou records sedimentary response to long-term environmental and biological recovery from the end-Permian mass extinction, highlighting the close connections among marine chemistry, marine ecosystems and carbonate depositional systems.  相似文献   

6.
In this paper we show that the development of the sediment architecture at the leeward toe-of-slope of Great Bahama Bank (Ocean Drilling Project Leg 166, Bahama Transect) during the last 6 Ma is not only a response to sea-level fluctuations, but also to major paleo-oceanographic and climatic changes. A major sequence boundary close to the Miocene/Pliocene boundary (dated at 5.6-5.4 Ma) is interpreted to reflect a major sea-level drop that was followed by a sea-level rise, which led to the re-flooding of the Mediterranean Sea at the end of the Messinian and increasing sea-surface temperatures at Great Bahama Bank. Distinct erosional horizons occurred during the Pliocene (dated at 4.6 and 3.3-3.6 Ma) related to sea-level change and the intensification of the Gulf Stream when the emergence of the Isthmus of Panama reached a critical threshold. The Gulf Stream brings warm, saline and nutrient-poor waters to the Bahamas. Starting at the Early-Late Pliocene boundary at 3.6 Ma this paleo-oceanographic reorganization in combination with enhanced sea-level fluctuations associated with the Late Pliocene main intensification in Northern Hemisphere Glaciation (since 3.2 Ma) led to (1) a gradual change from a ramp-type to a flat-topped type morphology, and (2) a change from a skeletal to a non-skeletal-dominated sedimentary system (mainly peloidal). Increased sea-level fluctuations during the second half of the Pleistocene led to an intensified high stand-shedding depositional pattern within the surrounding basins.  相似文献   

7.
Middle Pleistocene to Holocene sediment variations observed in a 26 metre long core taken during a cruise of the RV Marion Dufresne are presented. Core MD992202 was retrieved from the northern slope of Little Bahama Bank and provides an excellent example for sedimentation processes in a mid‐slope depositional environment. The sediment composition indicates sea‐level related deposition processes for the past 375 000 years (marine isotope stages 1 to 11). The sediments consist of: (i) periplatform ooze (fine‐grained particles of shallow‐water and pelagic origin) with moderate variations in carbonate content, carbonate mineralogy and grain‐size; and (ii) coarser intervals with cemented debris consisting of massive, poorly sorted, mud‐supported or clast‐supported deposits with an increased high‐magnesium calcite content. During interglacial stages (marine isotope stages 1, 5, 7, 9 and 11) periplatform oozes (i) are characterized by higher aragonite contents, finer grain‐size and higher organic contents, whereas during glacial stages (marine isotope stages 2 to 4, 6, 8 and 10), increased low‐magnesium and high‐magnesium calcite values, coarser grain‐size and lower organic contents are recorded. These glacial to interglacial differences in mineralogy, grain‐size distribution and organic content clearly show the impact of climatically controlled sea‐level fluctuations on the sedimentation patterns of the northern slope of Little Bahama Bank. The coarser deposits (ii) occur mainly at the transitions from glacial to interglacial and interglacial to glacial stages, and are interpreted as redeposition events, indicating a direct link between sediment properties (changes in mineralogy, grain‐size distribution, variations in organic contents) and sea‐level fluctuations. Changes in hydrostatic pressure and the wave base position during sea‐level changes are proposed to have triggered these large‐scale sediment redepositions.  相似文献   

8.
The Galicia Interior Basin (GIB; NW Iberian Peninsula) is located near a critical transition between the subtropical (temperate) and subpolar (cold) gyres of the North Atlantic. It therefore witnesses oceanographic changes driven by global climatic events. This study reports on the recent (latest Pleistocene) sedimentary, palaeoceanographic and palaeoclimatic history of the basin. We integrated analysis of deep‐sea sediment cores retrieved from an E–W transect across the GIB. The analysis indicated three types of sedimentary processes recording glacial (Marine Isotope Stage 2–4) and deglacial events: along‐slope bottom currents (forming contourite deposits), pelagic and hemipelagic sedimentation, and gravitational dislocation. Variation in depositional patterns and sedimentation rates indicate distinctive transport (along‐slope and down‐slope) and depositional processes. These in turn reflect climatic and oceanographic drivers. We interpret changes in sea level from core evidence showing changes in sediment supply. The cores exhibited conspicuous sedimentary evidence of Heinrich events (HEs). The stratigraphic intervals associated with HEs showed significant lateral variation. We suggest that the lateral variation may result from the development of an oceanographic boundary between surface water masses with different temperature and salinity parameters or changes in surface currents which may have introduced relatively warmer water into the GIB during the last glacial period.  相似文献   

9.
Cold‐water coral mound morphology and development are thought to be controlled primarily by current regime. This study, however, reveals a general lack of correlation between prevailing bottom current direction and mound morphology (i.e. footprint shape and orientation), as well as current strength and mound size (i.e. footprint area and height). These findings are based on quantitative analyses of a high‐resolution geophysical dataset collected with an Autonomous Underwater Vehicle from three cold‐water coral mound sites at the toe of slope of Great Bahama Bank. The three sites (80 km2 total) have an average of 14 mounds km?2, indicating that the Great Bahama Bank slope is a major coral mound region. At all three sites living coral colonies are observed on the surface of the mounds, documenting active mound growth. Morphometric analysis shows that mounds at these sites vary significantly in height (1 to 83 m), area (81 to 6 00 000 m2), shape (mound aspect ratio 0·1 to 1) and orientation (mound longest axis 0 to 180°). The Autonomous Underwater Vehicle measured bottom current data depict a north–south flowing current that reverses approximately every six hours. The tidal nature of this current and its intermittent deviations during reversals are interpreted to contribute to the observed mound complexity. An additional factor contributing to the variability in mound morphometrics is the sediment deposition rate that varies among and within sites. At most locations sedimentation rate lags slightly behind mound growth rate, causing mounds to develop into large structures. Where sedimentation rates are higher than mound growth rates, sediment partially or completely buries mounds. The spatial distribution and alignment of mounds can also be related to gravity mass deposits, as indicated by geomorphological features (for example, slope failure and linear topographic highs) in the three‐dimensional bathymetry. In summary, variability in sedimentation rates, current regime and underlying topography produce extraordinarily high variability in the distribution, development and morphology of coral mounds on the Great Bahama Bank slope.  相似文献   

10.
Isolated carbonate platforms occur throughout geological history, and commonly exhibit considerable spatial variability. To evaluate the controls on the nature of sediment accumulation across the expansive, shallow platform tops, this study systematically compares and contrasts patterns in surface sediments from several shallow (<10 m) Holocene Bahamian examples. Remote‐sensing data, field observations, petrographic characterization and quantitative grain‐size analyses reveal the spatial patterns of sediment accumulation on Crooked–Acklins Platform and the Berry Islands Bank. Integration of these data with synoptic observations of waves, tides and currents, along with regional geochemical data, provides a means to explore the factors that influence platform‐scale sedimentary patterns. These data illustrate that the platform interiors of both Crooked–Acklins Platform and Berry Islands Bank are blanketed with medium to coarse sand size sediment. Peloids are most common in the interior of Crooked–Acklins Platform, whereas the Berry Islands Bank includes more abundant composite grains. In both areas, very little mud is present, with surface sediments averaging <2% mud. Comparison of these results with published data from Little Bahama Bank, Great Bahama Bank and Caicos Platform suggest that, contrary to previous interpretations, the presence of open margins and/or brisk winds are not necessary for the occurrence of a platform top with little mud. Although the muddy sediment fraction of the interior can be suspended by elevated wave energy, wind‐generated current speeds in protected platform interiors are relatively low. Instead, in parts of the platform interiors, transport and winnowing of fines is enhanced greatly by tidal currents, which carry suspended sediments off the shallow platforms, even if shielded by islands. Beyond physical influences, however, regional geochemical compilations suggest that the Bahamian tides supply highly supersaturated waters rich in dissolved oxygen to these platform interiors. This exchange is interpreted to facilitate favourable conditions for calcium carbonate precipitation in the form of ooids, marine cements and hardened peloids across vast expanses of the platform interiors. Such fundamental controls on Holocene platform‐scale sediment dynamics are likely to have influenced carbonate systems through the geological record.  相似文献   

11.
The Santaren Drift between the Great Bahama Bank and Cay Sal Bank (Bahamas) is closely linked to the development of the Gulf Stream and its shape and geometry record the local to global oceanographic, climatic and tectonic events since the Miocene. High‐resolution multichannel seismic data from the Santaren Channel allow detailed insight into the growth phases of the contourite drift, and by using the stratigraphic information from Ocean Drilling Program Site 1006 to infer its sedimentation rates. The results bring new understanding to this region and to interpretation of carbonate drifts. The data document that the signatures of a bottom current flow in the Santaren Channel initiated about 12·3 Ma, as indicated by the first occurrence of sheeted drifts and moat development at the northern part of the Santaren Channel. Narrowing and steepening of moat flanks as well as the pronounced upslope migration of the moat reflects a sustained current acceleration of the bottom currents until 5·5 Ma, associated with a transformation into mounded elongated drifts. Between 5·5 Ma and 3·1 Ma, bottom current intensity reached its maximum probably caused by the final closure of the Central American Seaway. The last 3·1 Myr were characterized by a marked increase in volume through flow reaching a maximum during the past 900 kyr. Drift growth was driven by the combined sources of export from the shallow‐water carbonate factory and by pelagic rain. The Middle Miocene channel‐related sheeted drift of the inner Santaren Channel is characterized by low accumulation rates, but a rapid increase of accumulation rates occurred during the Early Pliocene. The contourite drift buildup was disturbed by minor erosional phases with narrow moats in the Late Pliocene due to increasing bottom‐current velocities forced by strengthened Atlantic Ocean ventilation. The Early Pleistocene was dominated by increased periplatform sedimentation and margin progradation facilitated by a reduction in along‐slope current flow speed and a concurrent widening and flattening of the moats.  相似文献   

12.
Core, logging and high-resolution seismic data from ODP Leg 166 were used to analyse deposits of the Neogene (Miocene–Lower Pliocene) Bahamian outer carbonate ramp. Ramp sediments are cyclic alternations of light- and dark-grey wackestones/packstones with interbedded calciturbidite packages and minor slumps. Cyclicity was driven by high-frequency sea-level changes. Light-grey layers containing shallow-water bioclasts were formed when the ramp exported material, whereas the dark-grey layers are dominantly pelagic. Calciturbidites are arranged into mounded lobes with feeder channels. Internal bedding of the lobes shows a north-directed shingling as a result of the asymmetrical growth of these bodies. Calciturbidite packages occur below and above sequence boundaries, indicating that turbidite shedding occurred during third-order sea-level highstands and lowstands. Highstand turbidites contain shallow-water components, such as green algal debris and epiphytic foraminifera, whereas lowstand turbidites are dominated by abraded bioclastic detritus. Gravity flow depocentres shifted from an outer ramp position during the early Miocene to a basin floor setting during the late Miocene to early Pliocene. This change was triggered by an intensification of the strength of bottom currents during the Tortonian, which was also responsible for shaping the convex morphology of the outer ramp. The Miocene and Lower Pliocene of the leeward flank of Great Bahama Bank provides an example of the poorly known depositional setting of the outer part of distally steepened carbonate ramps. The contrast between its sedimentary patterns and the well-known Upper Pliocene–Quaternary slope facies associations of the flat-topped Great Bahama Bank shows the strong control that the morphology of a carbonate platform exerts on the depositional architecture of the adjacent slope and base-of-slope successions.  相似文献   

13.
Research on colluvial depositional systems has recently emphasized periglacial and high‐altitude settings, and the relations between Quaternary slope stratigraphy and climate change. This article examines the role of variable slope morphology, surface hydrology and microclimate in controlling colluvial sedimentation along a coastal tract of the hyperarid Atacama Desert in northern Chile. Direct accessibility of active surfaces is accompanied by uninterrupted stratigraphic exposures along the base of slopes, allowing direct comparisons between surface processes and the resulting sedimentary record. Four slope sectors are identified, based on differences in morphology and processes over active surfaces. Colluvial sedimentation is controlled by complex interactions of slope gradients and profiles, exposure to dominant winds, and potential runoff pathways, which vary considerably between different sectors. Major differences are evident between these hyperarid deposits and slope sedimentation in periglacial and temperate settings, including the complete absence of pedogenic activity and clay minerals; the volume of aeolian deposits and their role in controlling processes which redistribute sediment downslope, extending colluvial aprons; and the occurrence of runoff processes only where favoured by particular topographic configurations. Depositional surfaces range from steep talus cones, to debris‐flow‐dominated and aeolian‐dominated colluvial aprons, to an aeolian ramp subject to reworking by mass flows and flash floods. Consequently, facies associations and architectures at outcrop are highly variable and highlight the importance of spatial variations in slope morphology and processes in producing distinct, coeval colluvial stratigraphies within a single environmental context. Discrepancies between active processes and the corresponding stratigraphic signatures are also evident in some sectors; for example, preservation of alluvial and aeolian facies in stratigraphic sections does not always reflect the dominant processes over active slopes. Together with the spatial variability in processes and deposits along these slopes, this suggests that caution is required when extracting palaeoenvironmental information from analyses of colluvial successions.  相似文献   

14.
Sandy sedimentary rocks rich in detrital matrix (>10% silt/clay) have long been recognized in the ancient sedimentary record, and nowhere more commonly than in deep‐marine turbidite systems. Despite this, their depositional mechanisms remain poorly understood, in part because these rocks, which are enriched in fine‐grained sediment, are often poorly exposed in outcrop or are confined to observation in core. Matrix‐rich strata in the Neoproterozoic Windermere Supergroup, in contrast, are very well‐exposed and show systematic changes in lithofacies over distances of several tens to a few hundreds of metres along‐strike. Notably, these strata are observed in both basin floor and continental slope deposits, suggesting that their occurrence and systematic lithological arrangement is related to mechanistic, rather than palaeogeographic, controls. Specifically, the facies transect consists of structureless, clayey sandstone that transforms along‐strike to a two‐layer deposit with the development of an upper, planar‐based, markedly more matrix‐rich layer. Further along‐strike, the basal clayey sandstone thins and eventually pinches out, leaving only the (upper) sandy claystone layer, which in turn thins along‐strike and then pinches out. These systematic changes in lithology, but more specifically the distribution of clay, is interpreted to form a depositional continuum related to particle settling in a horizontally advecting, high concentration particle suspension formed along the margins of an avulsion‐related high‐energy turbulent suspension.  相似文献   

15.
Daihai Lake, a modern lacustrine rift basin, located in Inner Mongolia, North China, serves as an important modern analog for understanding deltaic depositional processes in an active rift setting. Two of the deltas (Yuanzigou delta and Bulianghe delta) on the margins of Daihai Lake were surveyed to compare and contrast stacking patterns using aerial photographs, field trenching and sediment sampling. Shallow cores and trench data collected from the margins of Daihai Lake indicate that a variety of depositional processes have been active since Daihai Lake formed. Two 3-D sedimentation models which employ chronostratigraphic correlation technique were generated. The chronostratigraphic sedimentation models predict and represent the architectures and sand-body continuity of sediments. Stratigraphical coincidence of the broad sheeted drifts and channel erosion suggests a coupling between downslope and alongslope processes. Distributary mouth bars are prevalent in the front of deltas on steeper slopes due to the dominance of down-slope flows. On the contrary, the along-slope currents favor the development of distal bar deposits with sheeted sandbodies on gentle depositional slopes. This study provides an insight into the architecture of complex sedimentary facies associated with highlighting key differences between downslope flows and alongslope currents. The distribution of sand within these deltas is of particular interests, with applications in understanding the architecture of hydrocarbon reservoirs formed in lacustrine rift basin.  相似文献   

16.
Shelf‐edge deltas play a critical role in shelf‐margin accretion and deepwater sediment delivery, yet much remains to be understood about the detailed linkage between shelf edge and slope sedimentation. The shelf edge separates the flat‐lying shelf from steeper slope regions, and is observable in seismic data and continuous outcrops; however, it is commonly obscured in non‐continuous outcrops. Defining this zone is essential because it segregates areas dominated by shelf currents from those governed by gravity‐driven processes. Understanding this linkage is paramount for predicting and characterizing associated deepwater reservoirs. In the Tanqua Karoo Basin, the Permian Kookfontein Formation shelf‐slope clinothems are well‐exposed for 21 km along depositional strike and dip. Two independent methods identified the shelf‐edge position, indicating that it is defined by: (i) a transition from predominantly shelf‐current to gravitational deposits; (ii) an increase in soft‐sediment deformation; (iii) a significant gradient increase; and (iv) clinothem thickening. A quantitative approach was used to assess the impact of process‐regime variability along the shelf edge on downslope sedimentation. Facies proportions were quantified from sedimentary logs and photographic panels, and integrated with mapped key surfaces to construct a stratigraphic grid. Spatial variability in facies proportions highlights two types of shelf‐edge depositional zones within the same shelf‐edge delta. Where deposition occurred in fluvial‐dominated zones, the slope is sand rich, channelized with channels widening downslope, and rich in collapse features. Where deltaic deposits indicate considerable tidal reworking, the deposits are thin and pinch‐out close to the shelf edge, and the slope is sand poor and lacks channelization. Amplification of tidal energy, and decrease in fluvial drive on the shelf, coincides with a decrease in mouth bar and shelf‐edge collapse, and a lack of channelization on the slope. This analysis suggests that process‐regime variability along the shelf edge exercised significant control on shelf‐edge progradation, slope channelization and deepwater sediment delivery.  相似文献   

17.
ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike‐slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand‐shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre‐scale depositional cyclicity occurs in most facies associations, except in the platform‐margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block‐tilting effect) caused large‐scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity‐flow deposits. Another strong tectonic episode caused further platform collapse in the early Frasnian (at the top of sequence S6), leading to large‐scale breccia release and the death of the stromatoporoid buildups. Siliceous facies (banded cherts and siliceous shales) were then deposited extensively in the basin centre as a result of the influx of hydrothermal fluids. The platform‐margin sand‐shoal/bank system, possibly with gullies on the slope, persisted into the latest Frasnian until the restoration of microbial buildups. Four sequences (S6–S9), characterized by abundant sand‐shoal deposits on the margin and gravity‐flow and hemipelagic deposits on the slope, are distinguished in the Frasnian strata. Smaller‐scale depositional cyclicity is evident in all facies associations across the platform–slope–basin transect. The distinctive depositional architecture and evolution of this Yangdi Platform are interpreted as having been controlled mainly by regional tectonics with contributions from eustasy, environmental factors, oceanographic setting, biotic and sedimentary fabrics.  相似文献   

18.
As the product of a variety of sediment sources and sedimentation (and re‐sedimentation) and erosion processes, the geomorphology and sedimentology of carbonate slopes are highly variable. The purpose of this study is to describe sub‐bottom profiles and side‐scan sonar, multibeam and optical data acquired by an autonomous underwater vehicle to explore variability in geomorphological and sedimentological character of the present‐day platform‐marginal, uppermost slope environments (< 240 m water depth) on the north, open‐ocean facing flank of Little Bahama Bank, Bahamas. Although at time scales of greater than 100 ka this margin is progradational, the data illustrate a complex juxtaposition of erosional and depositional processes and features. Erosion is evidenced by two prominent escarpments (70 m and 120 m) that expose eroded, bedded rocky outcrops. These escarpments are interpreted to represent relict features, related to past sea‐level positions, although they still may be shedding debris. Aside from erosional remnants, sedimentation and active transport is indicated by several features, including active bedforms (especially above the 70 m escarpment, but ripples occur to depths of ca 200 m), several mass transport complexes that overlie and cover the lower escarpment, gravity flow deposits and rare slump features. Similarly, a thick (up to 20 m) onlapping sediment wedge, interpreted to be Holocene in age, suggests lateral accretion of the slope by more than 75 m in this period. Data illustrate that this open‐ocean margin is distinct from windward margins in the Bahamas, which typically include near‐vertical walls of erosion or bypass, flanked downdip by rubble and talus, and leeward margins, which have onlapping muddy wedges, but that lack marked terraces or escarpments. Collectively, the results provide perspectives into the nature and controls on complex geomorphological patterns of erosion and deposition in Holocene uppermost slope systems, concepts potentially applicable to ancient analogues.  相似文献   

19.
The source of whitings on the Great Bahama Bank and their relationship to major changes in the chemistry of Bank waters have been among the longest and most hotly debated topics in carbonate geochemistry. In this paper, we demonstrate that the reaction kinetics of calcite with Bank waters for a given saturation state are similar to, but somewhat slower (2 to 3 times) than with Gulf Stream water. The interpretation of the reaction kinetics of suspended Bank sediment with Bank water requires that the precipitating phase be about twice as soluble as aragonite. Good agreement at equivalent saturation states was found between experimental precipitation rates and those calculated for the rate of change of Bank water chemistry in the region of whitings. These results indicate that the dominant mode of carbonate removal is via precipitation on resuspended sediments rather than the rapid pseudo-homogeneous precipitation of calcium carbonate in the water column resulting in the formation of a whiting. Estimates indicate that single aragonite needles may be resuspended many times over a period of decades during which they experience repeated overgrowth. A major portion (>98%) of suspended calcium carbonate is outside the visually dramatic whitings. Thus, as visually spectacular as they are, whitings do not represent a short-term locally massive precipitation of carbonate on the Great Bahama Bank, nor are they even likely to be the dominant sites of carbonate removal in this region. Although future refinements are needed that include seafloor processes, we have at this point arrived at a mechanistic kinetic model that provides a reasonably quantitative explanation for the hydrochemistry of the carbonate system on the northern Great Bahama Bank.  相似文献   

20.
Depositional slope systems along continental margins contain a record of sediment transfer from shallow‐water to deep‐water environments and represent an important area for natural resource exploration. However, well‐preserved outcrops of large‐scale depositional slopes with seismic‐scale exposures and tectonically intact stratigraphy are uncommon. Outcrop characterization of smaller‐scale depositional slope systems (i.e. < 700 m of undecompacted shelf‐to‐basin relief) has led to increased understanding of stratigraphic packaging of prograding slopes. Detailed stacking patterns of facies and sedimentary body architecture for larger‐scale slope systems, however, remain understudied. The Cretaceous Tres Pasos Formation of the Magallanes Basin, southern Chile, presents a unique opportunity to evaluate the stratigraphic evolution of such a slope system from an outcrop perspective. Inherited tectonic relief from a precursor oceanic basin phase created shelf‐to‐basin bathymetry comparable with continental margin systems (~1000 m). Sedimentological and architectural data from the Tres Pasos Formation at Cerro Divisadero reveal a record of continental margin‐scale depositional slope progradation and aggradation. Slope progradation is manifested as a vertical pattern exhibiting increasing amounts of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The well‐exposed, seismic‐scale outcrop is characterized by four 20 to 70 m thick sandstone‐rich successions, separated by mudstone‐rich intervals of comparable thickness (40 to 90 m). Sedimentary body geometry, facies distribution, internal bedding architecture, sandstone richness and degree of amalgamation were analysed in detail across a continuous 2·5 km long transect parallel to depositional dip. Deposition in the lower section (Units 1 and 2) was dominated by poorly channellized to unconfined sand‐laden flows and accumulation of mud‐rich mass transport deposits, which is interpreted as representing a base of slope to lower slope setting. Evidence for channellization and indicators of bypass of coarse‐grained turbidity currents are more common in the upper part of the > 600 m thick succession (Units 3 and 4), which is interpreted as reflecting increased gradient conditions as the system accreted basinward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号