首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The stromatic migmatites of Nelaug (Tvedestrand area, SouthernNorway) are investigated in detail. They show well developedlayers of leucosomes, mesosomes and melanosomes. It is establishedthat the mesosomes and leucosomes of these migmatites are differentfrom each other texturally, mineralogically, and chemically.Also combinations of leucosome plus adjacent melanosome portionsare chemically different from those of the mesosomes. Theseobservations do not agree with the findings of Mehnert (1971)and do not fit into his genetic model. The mesosome layers and the leucosome + melanosome combinationsare taken to represent the chemical compositions of the countryrock, a metagraywacke with relicts of primary rhythmic layering(Touret, 1965). The mineralogical composition of the layersvaries from granitic to tonalitic. Relict textures indicatethat the leucosome portions were initially occupied by layersof granitic composition relatively rich in K-feldspar, whereasthe mesosomes are the representatives of those metagraywackelayers which were relatively rich in plagioclase. An almostisochemical transformation of a paragneiss into the investigatedstromatic migmatite is established. Melting experiments performed at PH2O= 5 Kb yielded solidustemperatures of 640±7 °C for all layers. The Composition of plagioclases present in the different layersis explained by isochemical partial melting and in situ crystallization.The chemical, mineralogical, and textural findings support themodel of almost isochemical transformation already establishedfor the Arvika migmatites (Johannes & Gupta, 1982).  相似文献   

2.
W. Johannes  F. Holtz  P. M  ller 《Lithos》1995,35(3-4):139-152
The REE distributions in mesosomes, neosomes, leucosomes and melanosomes of four layered migmatites have been investigated. In one example (Arvika migmatites) the REE patterns in adjacent paragneisses, the presumed parent rock of the migmatites, were also determined. REE patterns of neosomes and mesosomes of Arvika migmatites are similar to the finegrained layers and coarse-grained layers, respectively, observed in the adjacent paragneiss. This is in agreement with the layer-by-layer paragneiss-migmatite transformation model.

The REE patterns of mesosomes and neosomes indicate that these lithologies may have been closed systems (for REE) during the formation of the migmatites. No indication of metasomatic reactions, melt segregation or injection could be detected. Within the neosomes, leucosomes are depleted and melanosomes enriched in REE contents. This is interpreted to be due to separation and concentration of accessory minerals (monazite, epidote, allanite, zircon, sphene, apatite, garnet) into the melanosomes. The behaviour of accessory minerals during migmatite formation is closely allied to that of biotite, which is also concentrated in the melanosomes.  相似文献   


3.
Metasediments of the Rantasalmi-Sulkava area (Finland) showprogressive regional metamorphism with migmatization. The metasedimentsare represented by various types of metapsammites (plagioclase-rich,quartz-rich, and layers of granitic compositions—somerich in microcline and others in plagioclase) and metapelites(dark and light layers). The migmatites of this area are of stromatic type. They consistof leucosomes, mesosomes, and light-coloured plagioclase-richlayers which do not fit the definition of leucosome. Melanosomes,which usually separate leucosomes and mesosomes in stromaticmigmatites, are almost absent. The leucosomes are of three types: (i) quartz-rich; (ii) cordierite-rich;and (iii) granitic. The quartz-rich leucosomes formed firstat subsolidus temperatures through recrystallization. The graniticleucosomes are considered to have developed via partial melting.The cordierite-rich leucosomes are formed—like the graniticones—at supersolidus conditions, but the role of partialmelting is not clear. The mesosomes are the metamorphic portions of the migmatiteswhich are not transformed into leucosomes. They include metapsammiticlayers and light-coloured metapelitic layers, both rich in plagioclase. Besides mineral reactions resulting in new assemblages duringregional metamorphism, the main process changing the protolithsinto migmatites is the conversion of some of the protolith layersinto leucosomes, through (as we believe) an almost isochemicalpartial melting. The migmatites of the Rantasalmi-Sulkava area differ from othermigmatites investigated by the authors in having two differentgenetic types of leucosomes: one formed via partial meltingand the other through subsolidus recrystallization as mentionedabove. The process of migmatization is described and modelledin three steps. Reprint requests to W. Johannes  相似文献   

4.
D. L. Whitney  A. J. Irving 《Lithos》1994,32(3-4):173-192
Two types of stromatic leucosomes are identified in metasedimentary rocks from the Skagit migmatite complex, North Cascades, Washington state, U.S.A. Both types are trondhjemitic and appear similar in outcrop, but, although both contain low abundances of REE, one type consists of leucosomes that are relatively REE-enriched compared to the other, and contains (1) small (<0.8 mm), Fe-rich garnets that are compositionally and texturally different from mesosome and melanosome garnet; (2) Ti-rich minerals (rutile, titanite) that are not present in the groundmass of the associated mesosomes or melanosomes and (3) CO2-rich fluid inclusions in quartz. Leucosomes of the second type are REE-depleted compared to the first type, lack garnet and Ti-minerals, and contain only H2O-rich fluid inclusions. The first type of leucosome is interpreted to have formed by in situ partial melting accompanied, and perhaps initiated, by an influx of water-rich fluid during upper amphibolite facies metamorphism. These conclusions are based on estimates of metamorphic P-T-Xfluid conditions (9–10 kbar, > 700°C, water-rich fluid present), inferences about the origin of the above-listed mineralogical and fluid inclusion features, and modeling of leucosome trace element abundances. The second type of leucosome is interpreted to have formed entirely by subsolidus processes (e.g., metamorphic differentiation) because these leucosomes lack features consistent with an origin by partial melting.

K-poor (tonalitic/trondhjemitic) leucosomes associated with metasedimentary (biotite-bearing) source rocks may form by water-saturated partial melting or by subsolidus processes. Both general leucosome-forming mechanisms may operate at different times during upper amphibolite facies regional metamorphism. Partial melting may be initiated by syn-metamorphic magmatic activity if crystallizing plutons serve as external sources of the water-rich fluid necessary for ultrametamorphism in the middle crust during orogenesis. Large-scale migmatite complexes such as the Skagit migmatites may form at least in part in response to contact effects of plutonism associated with high-grade metamorphism, so, although migmatite complexes are a volumetrically substantial part of many orogenic belts, they may not themselves represent a significant original source of magma for larger-scale igneous bodies.  相似文献   


5.
Abstract This contribution discusses the formation of stromatic high-grade migmatites. Volume considerations require that most of the leucosome material is not added from outside the system. A segregation mechanism is necessary except in those cases where the protolith of the migmatite already had a banded structure. Although partial melting is most often advocated to provide the segregation mechanism, several arguments can be raised against high degrees of melting: mineral compositions and even zoning patterns are similar in both mesosomes and leucosomes; sufficient degrees of melting at reasonable temperatures require more than the available amounts of water; the leucosomes do not always approximate to a minimum melt composition; high degrees of melting cannot occur without an appreciable volume increase; etc. Diffusion works as a segregation mechanism at low temperatures. As diffusion rates increase exponentially with temperature diffusion must become still more important as a segregation mechanism at high temperatures. A model is suggested based on the diffusion of components in response to the gradient δσ/δx, where σ= 1/3∑3i=1 σi is the mean pressure. In homogeneously strained rocks, σ3 is larger in rock parts rich in incompetent phases than in rock parts depleted in incompetent phases. Accordingly, mechanically competent but chemically incompetent high-volume phases like quartz and feldspars stressed in micadominated parts of a rock (high σσ) migrate to parts of the rock that are depleted in mica (low σ¯). It is suggested that hornblende occurring in many leucosomes may be premigmatitic or early syn-migmatitic and due to its mechanical competency it initiates the segregation. Diffusion occurs along grain boundaries and is enhanced by small amounts of ‘intergranular fluid’;. At the best, semiquantitative estimates of diffusion rates and distances indicate that the process should work over geological times.  相似文献   

6.
Abstract Zircons have been studied from different layers of migmatites (from Arvika, western Sweden and Nelaug, southern Norway) and from a paragneiss (from Arvika) associated with one of the migmatites. The main purpose of the investigation is to establish whether or not information about zircons can help in the elucidation of the parentage and rock-forming processes of migmatites.
The elongation ratio of zircons from all layers is small and characteristic of sedimentary zircons. Further, the absence of characteristic colours and the growth trends of the zircons (indicated by the reduced major axes) observed in the various samples both support a sedimentary parentage for these rocks. The zircons of all layers exhibit secondary growth (overgrowth, outgrowth and multiple growth) due to metamorphism. Compared with the zircons from the paragneiss, those of the migmatite layers are more clouded and less rounded, some of them becoming opaque or even skeletal; this is especially true of the zircons from the leucosomes. These observations indicate an alteration of the original sedimentary zircons in the migmatite, especially in the leucosomes, in response to the migmatization process, previously interpreted as partial melting.  相似文献   

7.
CO2–CH4 fluid inclusions are present in anatectic layer-parallel leucosomes from graphite-bearing metasedimentary rocks in the Skagit migmatite complex, North Cascades, Washington. Petrological evidence and additional fluid inclusion observations indicate, however, that the Skagit Gneiss was infiltrated by a water-rich fluid during high-temperature metamorphism and migmatization. CO2-rich fluid inclusions have not been observed in Skagit metasedimentary mesosomes or melanosomes, meta-igneous migmatites, or unmigmatized rocks, and are absent from subsolidus leucosomes in metasedimentary migmatites. The observation that CO2-rich inclusions are present only in leucosomes interpreted to be anatectic based on independent mineralogical and chemical criteria suggests that their formation is related to migmatization by partial melting. Although some post-entrapment modification of fluid inclusion composition may have occurred during decompression and deformation, the generation of the CO2-rich fluid is attributed to water-saturated partial melting of graphitic metasedimentary rocks by a reaction such as biotite + plagioclase + quartz + graphite ± Al2SiO5+ water-rich fluid = garnet + melt + CO2–CH4. The presence of CO2-rich fluid inclusions in leucosomes may therefore be an indication that these leucosomes formed by anatexis. Based on the inferences that (1) an influx of fluid triggered partial melting, and (2) some episodes of fluid inclusion trapping are related to migmatization by anatexis, it is concluded that a free fluid was present at some time during high-temperature metamorphism. The infiltrating fluid was a water-rich fluid that may have been derived from nearby crystallizing plutons. Because partial melting took place at pressures of at least 5 kbar, abundant free fluid may have been present in the crust during orogenesis at depths of at least 15 km.  相似文献   

8.
深俯冲陆壳物质部分熔融产生的熔体,实验岩石学方面已有广泛报道,而天然初始熔体的组分却难以厘定。对此,本文从苏鲁超高压地体荣成混合岩中识别出了深俯冲花岗质陆壳部分熔融产生的天然初始熔体组成。野外露头显示,混合岩中主要矿物组成为钾长石+斜长石+石英的浅色熔体呈不连续的条带状与残余体互层产出,指示了原位或近源区的部分熔融特征。混合岩浅色体锆石CL图像呈明显的核-边结构,继承核部为扬子板块来源的岩浆锆石,形成时代为721±24Ma;新生边部CL图像具震荡环带结构,微量元素上REE呈明显左倾,具有Eu的负异常及Ce的正异常,低的Hf/Y和Th/U比值,具深熔锆石特征,指示形成于花岗质陆壳物质的部分熔融。边部U-Pb谐和年龄为225.9±2Ma,略晚于苏鲁超高压地体超高压峰期变质年龄,表明初始熔融发生在超高压地体折返早期。浅色熔体的全岩地球化学特征表明,主量元素上具有高SiO_2、K_2O及Na_2O含量,低的Fe_2O_3~T、MgO及CaO含量,A/CNK=1.02~1.04,呈弱过铝质亚碱性花岗岩的特征,这与实验岩石学中富硅陆壳物质部分熔融产生的熔体组分极为相近;微量元素上富集大离子亲石元素(如Rb、Ba、Pb等),亏损Nb、Ta、Ti等高场强元素,REE呈较为平坦的配分模式,具弱的Eu负异常并亏损Sr。本文通过上述对天然样品研究,厘定了深俯冲花岗质陆壳部分熔融及其初始熔体的组成,为理解大陆俯冲带壳幔相互作用提供了关键依据。  相似文献   

9.
What controls partial melting in migmatites?   总被引:4,自引:0,他引:4  
Abstract The layers of six stromatic migmatites from Northern, Western, and Central Europe display small but systematic chemical and mineralogical differences. At least five of these migmatites do not show any signs of largescale metamorphic differentiation, metasomatism, or segregation of melts. It is concluded, therefore, that the compositional layering observed in most of the investigated migmatites is due to compositional differences inherited from the parent rocks. Almost isochemical partial melting seems to be the most probable process transforming layered paragneisses, metavolcanics, or schists into migmatites.
The formation of neosomes is believed to be caused by higher amounts of partial melts formed due to higher amounts of water moving into these layers. The neosomes have less biotite and more K-feldspar, if K-feldspar is present at all, than the adjacent mesosomes. These differences are small but systematic and seem to control the access of different amounts of water to the various rock portions. Petrographical observations, chemical data, and theoretical considerations indicate a close relationship between rock composition, rock deformation, transport of water, partial melting, and formation of layered migmatites.  相似文献   

10.
Migmatitic orthogneisses in the Muskoka domain, southwesternGrenville Province, Ontario, formed during the Ottawan stage(c. 1080–1050 Ma) of the Grenvillian orogeny. Stromaticmigmatites are volumetrically dominant, comprising granodioriticgneisses with 2–5 cm thick granitic leucosomes, locallyrimmed by thin melanosomes, that constitute 20–30 vol.%, and locally 40–50 vol. %, of the outcrops. Patch migmatitesin dioritic gneisses form large (>10 m) pinch-and-swell structureswithin the stromatic migmatites, and consist of decimetre-scale,irregular patches of granitic leucosome, surrounded by medium-grainedhornblende–plagioclase melanosomes interpreted as restite.The patches connect to larger networks of zoned pegmatite dykes.Petrographic and geochemical evidence suggests that the patchleucosomes formed by 20–40% fluid-present, equilibriummelting of the dioritic gneiss, followed by feldspar-dominatedcrystallization. The dyke networks may have resulted from hydraulicfracturing, probably when the melts reached water saturationduring crystallization. Field and geochemical data from thestromatic migmatites suggest a similar petrogenesis to the patchmigmatites, but with significant additions of externally derivedmelts, indicating that they acted as conduits for melts derivedfrom deeper structural levels within the orogen. We hypothesizethat the Muskoka domain represents a transfer zone for meltsmigrating to higher structural levels during Grenvillian deformation. KEY WORDS: migmatite geochemistry; partial melting; melt crystallization; melt transport; Grenville orogen  相似文献   

11.
Open‐system behaviour through fluid influx and melt loss can produce a variety of migmatite morphologies and mineral assemblages from the same protolith composition. This is shown by different types of granulite facies migmatite from the contact aureole of the Ceret gabbro–diorite stock in the Roc de Frausa Massif (eastern Pyrenees). Patch, stromatic and schollen migmatites are identified in the inner contact aureole, whereas schollen migmatites and residual melanosomes are found as xenoliths inside the gabbro–diorite. Patch and schollen migmatites record D1 and D2 structures in folded melanosome and mostly preserve the high‐T D2 in granular or weakly foliated leucosome. Stromatic migmatites and residual melanosomes only preserve D2. The assemblage quartz–garnet–biotite–sillimanite–cordierite±K‐feldspar–plagioclase is present in patch and schollen migmatites, whereas stromatic migmatites and residual melanosomes contain a sub‐assemblage with no sillimanite and/or K‐feldspar. A decrease in X Fe (molar Fe/(Fe + Mg)) in garnet, biotite and cordierite is observed from patch migmatites through schollen and stromatic migmatites to residual melanosomes. Whole‐rock compositions of patch, schollen and stromatic migmatites are similar to those of non‐migmatitic rocks from the surrounding area. These metasedimentary rocks are interpreted as the protoliths of the migmatites. A decrease in the silica content of migmatites from 63 to 40 wt% SiO2 is accompanied by an increase in Al2O3 and MgO+FeO and by a depletion in alkalis. Thermodynamic modelling in the NCKFMASHTO system for the different types of migmatite provides peak metamorphic conditions ~7–8 kbar and 840 °C. A nearly isothermal decompression history down to 5.5 kbar was followed by isobaric cooling from 840 °C through 690 °C to lower temperatures. The preservation of granulite facies assemblages and the variation in mineral assemblages and chemical composition can be modelled by ongoing H2O‐fluxed melting accompanied by melt loss. The fluids were probably released by the crystallizing gabbro–diorite, infiltrating the metasedimentary rocks and fluxing melting. Release of fluids and melt loss were probably favoured by coeval deformation (D2). The amount of melt remaining in the system varied considerably among the different types of migmatite. The whole‐rock compositions of the samples, the modelled compositions of melts at the solidus at 5.5 kbar and the residues show a good correlation.  相似文献   

12.
The migmatites from Punta Sirenella (NE Sardinia) are layered rocks containing 3–5 vol.% of centimeter-sized stromatic leucosomes which are mainly trondhjemitic and only rarely granitic in composition. They underwent three deformation phases, from D1 to D3. The D1 deformation shows a top to the NW shear component followed by a top to the NE/SE component along the XZ plane of the S2 schistosity. Migmatization started early, during the compressional and crustal thickening stage of Variscan orogeny and was still in progress during the following extensional stage of unroofing and exhumation.

The trondhjemitic leucosomes, mainly consisting of quartz, plagioclase, biotite ± garnet ± kyanite ± fibrolite, retrograde muscovite and rare K-feldspar, are locally bordered by millimeter-sized biotite-rich melanosomes. The rare granitic leucosomes differ from trondhjemitic ones only in the increase in modal content of K-feldspar, up to 25%. Partial melting started in the kyanite field at about 700–720 °C and 0.8–0.9 GPa, and was followed by re-equilibration at 650–670 °C and 0.4–0.6 GPa, producing fibrolite–biotite intergrowth and coarse-grained muscovite.

The leucosomes have higher SiO2, CaO, Na2O, Sr and lower Al2O3, Fe2O3, MgO, TiO2, K2O, P2O5, Rb, Ba, Cr, V, Zr, Nb, Zn and REE content with respect to proximal hosts and pelitic metagreywackes. Sporadic anomalous high content of calcium and ferromagnesian elements in some leucosomes is due to entrainment of significant amounts of restitic plagioclase, biotite and accessory phases. The rare granitic leucosomes reveal peritectic K-feldspar produced by muscovite-dehydration melting. Most leucosomes show low REE content, moderately fractionated REE patterns and marked positive Eu anomaly. Proximal hosts and pelitic metagraywackes are characterized by higher REE content, more fractionated REE patterns and slightly negative Eu anomaly.

The trondhjemitic leucosomes were generated by H2O-fluxed melting at 700 °C of a greywacke to pelitic–greywacke metasedimentary source-rock. The disequilibrium melting process is the most reliable melting model for Punta Sirenella leucosomes.  相似文献   


13.
为了深入认识华夏地块早古生代陆内造山作用相应的地壳再造过程,本文选取粤西福湖岭混合岩进行了详细的岩相学以及锆石U-Pb年代学研究。根据混合岩化程度,粤西福湖岭混合岩剖面由上而下可以分为3部分:混合岩化沉积变质岩、条带状混合岩和混合花岗岩。根据岩性与岩相学特征,福湖岭混合岩又可分为古成体、暗色体和浅色体。LA-ICP-MS锆石U-Pb定年结果及与区域上基底变质岩资料的对比研究表明,福湖岭混合岩的原岩(古成体)是形成于新元古代的变质沉积岩。粤西福湖岭混合岩的形成时代为441~435 Ma,是华夏地块早古生代陆内造山事件的重要产物。  相似文献   

14.
Migmatitic rocks developed in metagraywackes during the Variscan orogeny in the Aiguilles-Rouges Massif (western Alps). Partial melting took place 320 Ma ago in a 500 m-wide vertical shear zone. Three leucosome types have been recognised on the basis of size and morphology: (1) large leucosomes > 2 cm wide and > 40 cm long lacking mafic selvage, but containing cm-scale mafic enclaves; (2) same as 1 but with thick mafic selvage (melanosome); (3) small leucosomes < 2 cm and < 40 cm) with thin dark selvages (stromatic migmatites). Types 1 + 2 have mineralogical and chemical compositions in keeping with partial melting experiments. But Type 3 leucosomes have identical plagioclase composition (An19–28) to neighbouring mesosome, both in terms of major- and trace-elements. Moreover, whole-rock REE concentrations in Type 3 leucosomes are only slightly lower than those in the mesosomes, unlike predicted by partial melting experiments. The main chemical differences between all leucosome types can be related to the coupled effect of melt segregation and late chemical reequilibration.

Mineral assemblages and thermodynamic modelling on bulk-rock composition restrict partial melting to  650 °C at 400 MPa. The large volume of leucosome (20 vol.%) thus generated requires addition of 1 wt.% external water. Restriction of extensive migmatization to the shear zone, without melting of neighbouring metapelites, also points to external fluid circulation within the shear zone as the cause of melting.  相似文献   


15.
Partial melting of ultrahigh‐pressure (UHP) metamorphic rocks is common during collisional orogenesis and post‐collisional reworking, indicating that determining the timing and processes involved in this partial melting can provide insights into the tectonic evolution of collisional orogens. This study presents the results of a combined whole‐rock geochemical and zirconological study of migmatites from the Sulu orogen in eastern China. These data provide evidence of multiple episodes of crustal anatexis and geochemical differentiation within the UHP metamorphic rocks. The leucosomes contain higher concentrations of Ba and K and lower concentrations of the rare earth elements (REE), Th and Y, than associated melanosomes and granitic gneisses. The leucosomes also have homogenous Sr–Nd–O isotopic compositions that are similar to proximal (i.e. within the same outcrop) melanosomes, suggesting that the anatectic melts were generated by the partial melting of source rocks that are located within individual outcrops. The migmatites contain zircons with six different types of domains that can be categorized using differences in structures, trace element compositions, and U–Pb ages. Group I domains are relict magmatic zircons that yield middle Neoproterozoic U–Pb ages and contain high REE concentrations. Group II domains represent newly grown metamorphic zircons that formed at 230 ± 1 Ma during the collisional orogenesis. Groups III, IV, V, and VI zircons are newly grown anatectic zircons that formed at 222 ± 2 Ma, 215 ± 1 Ma, 177 ± 2 Ma, and 152 ± 2 Ma, respectively. The metamorphic zircons have higher Th/U and lower (Yb/Gd)N values, flat heavy REE (HREE) patterns with no significantly negative Eu anomalies relative to the anatectic zircons, which are characterized by low Th/U ratios, steep HREE patterns, and negative Eu anomalies. The first two episodes of crustal anatexis occurred during the Late Triassic at c. 222 Ma and c. 215 Ma as a result of phengite breakdown. The other two episodes of anatexis occurred during the Jurassic period at c. 177 Ma and c. 152 Ma and were associated with extensional collapse of the collision‐thickened orogen. The majority of Triassic anatectic zircons and all of the Jurassic zircons are located within the leucosomes, whereas the melanosomes are dominated by Triassic metamorphic zircons, suggesting that the leucosomes within the migmatites record more episodes of crustal anatexis. Both metamorphic and anatectic zircons have elevated εHf(t) values compared with relict magmatic zircon cores, suggesting that these zircons contain non‐zircon Hf derived from material with more radiogenic Hf isotope compositions. Therefore, the Sulu and Dabie orogens experienced different episodes of reworking during the exhumation and post‐collisional stages.  相似文献   

16.
M.I. Holloway  F. Bussy 《Lithos》2008,102(3-4):616-639
Low pressure partial melting of basanitic and ankaramitic dykes gave rise to unusual, zebra-like migmatites, in the contact aureole of a layered pyroxenite–gabbro intrusion, in the root zone of an ocean island (Basal Complex, Fuerteventura, Canary Islands). These migmatites are characterised by a dense network of closely spaced, millimetre-wide leucocratic segregations. Their mineralogy consists of plagioclase (An32–36), diopside, biotite, oxides (magnetite, ilmenite), +/− amphibole, dominated by plagioclase in the leucosome and diopside in the melanosome. The melanosome is almost completely recrystallised, with the preservation of large, relict igneous diopside phenocrysts in dyke centres. Comparison of whole-rock and mineral major- and trace-element data allowed us to assess the redistribution of elements between different mineral phases and generations during contact metamorphism and partial melting.

Dykes within and outside the thermal aureole behaved like closed chemical systems. Nevertheless, Zr, Hf, Y and REEs were internally redistributed, as deduced by comparing the trace element contents of the various diopside generations. Neocrystallised diopside – in the melanosome, leucosome and as epitaxial phenocryst rims – from the migmatite zone, are all enriched in Zr, Hf, Y and REEs compared to relict phenocrysts. This has been assigned to the liberation of trace elements on the breakdown of enriched primary minerals, kaersutite and sphene, on entering the thermal aureole. Major and trace element compositions of minerals in migmatite melanosomes and leucosomes are almost identical, pointing to a syn- or post-solidus reequilibration on the cooling of the migmatite terrain i.e. mineral–melt equilibria were reset to mineral–mineral equilibria.  相似文献   


17.
Making a distinction between partial melting and subsolidus segregation in amphibolite facies migmatites is difficult. The only significant melting reactions at lowpressures, either vapour saturated or muscovite dehydration melting, do not produce melanocratic peritectic phases. If protoliths are Si-rich and K-poor, then peritectic sillimanite and K-feldspar will form in scarce amounts, and may be lost by retrograde rehydration. The Roded migmatites of southern Israel (northernmost Arabian Nubian Shield) formed at P = 4.5 ± 1 kbar and T ≤ 700 °C and include Si-rich, K-poor paragneissic paleosome and trondhjemitic leucosomes. The lack of K-feldspar in leucosomes was taken as evidence for the non-anatectic origin of the Roded migmatites (Gutkin and Eyal, Isr J Earth Sci 47:117, 1998). It is shown here that although the Roded migmatites experienced significant post-peak deformation and recrystallization, microstructural evidence for partial melting is retained. Based on these microstructures, coupled with pseudosection modelling, indicators of anatexis in retrograded migmatites are established. Phase diagram modelling of neosomes shows the onset of muscovite dehydration melting at 4.5 kbar and 660 °C, forming peritectic sillimanite and K-feldspar. Adjacent non-melted paleosomes lack muscovite and would thus not melt by this reaction. Vapour saturation was not attained, as it would have formed cordierite that does not exist. Furthermore, vapour saturation would not allow peritectic K-feldspar to form, however K-feldspar is ubiquitous in melanosomes. Direct petrographic evidence for anatexis is rare and includes euhedral plagioclase phenocrysts in leucosomes and quartz-filled embayments in corroded plagioclase at leucosome-melanosome interfaces. In deformed and recrystallized rocks muscovite dehydration melting is inferred by: (1) lenticular K-feldspar enclosed by biotite in melanosomes, (2) abundant myrmekite in leucosomes, (3) muscovite–quartz symplectites after sillimanite in melanosomes and associated with myrmekite in leucosomes. While peritectic K-feldspar formed in melanosomes by muscovite dehydration melting reaction, K-feldspar crystallizing from granitic melt in adjacent leucosome was myrmekitized. Excess potassium was used in rehydration of sillimanite to muscovite.  相似文献   

18.
Abstract In the northeastern part of the Grenville Province, along the gulf of St Lawrence, cordierite is widespread in the migmatites of Baie Jacques Cartier (BJC) and Baie des Ha! Ha! (BHH). In the BJC area, rafts of mesosome occur in a pervasive network of leucosome consisting of cordierite-bearing pegmatite. In BHH, however, the mesosome and leucosome are well segregated and locally separated by thin biotite –hornblende melanosomes. Leucosomes in the BJC area record the highest temperatures (oxide thermometry = 900°C), whereas leucosomes of BHH and mesosomes of both areas indicate peak temperatures around 800°C (oxide thermometry; biotite–garnet thermometry with fluorine-rich biotite). Peak pressures were constrained at 720 MPa using the Ilm-Sil–Qtz–Grt–Rt (GRAIL) equilibrium. The area is thought to have undergone extensive melting under relatively modest pressures. The highest temperatures recorded in the BJC area are probably related to a pervasive impregnation of this terrane by aluminous granitic melts. Most post-peak P–T estimates for the mesosomes fall on a nearly isobaric, clockwise, P–T path (0.6 MPa/°C) with the exception of the high-temperature leucosomes of BJC, which fall about 100°C away from this path; this is additional evidence for the external origin of these leucosomes. The ultimate source of heat that generated the migmatites is thus though to be an underlying plutonic complex (anorthosite?).  相似文献   

19.
Anatexis of metapelitic rocks at the Bandelierkop Quarry (BQ) locality in the Southern Marginal Zone of the Limpopo Belt occurred via muscovite and biotite breakdown reactions which, in order of increasing temperature, can be modelled as: (1) Muscovite + quartz + plagioclase = sillimanite + melt; (2) Biotite + sillimanite + quartz + plagioclase = garnet + melt; (3) Biotite + quartz + plagioclase = orthopyroxene ± cordierite ± garnet + melt. Reactions 1 and 2 produced stromatic leucosomes, which underwent solid‐state deformation before the formation of undeformed nebulitic leucosomes by reaction 3. The zircon U–Pb ages for both leucosomes are within error identical. Thus, the melt or magma formed by the first two reactions segregated and formed mechanically solid stromatic veins whilst temperature was increasing. As might be predicted from the deformational history and sequence of melting reactions, the compositions of the stromatic leucosomes depart markedly from those of melts from metapelitic sources. Despite having similar Si contents to melts, the leucosomes are strongly K‐depleted, have Ca:Na ratios similar to the residua from which their magmas segregated and are characterized by a strong positive Eu anomaly, whilst the associated residua has no pronounced Eu anomaly. In addition, within the leucosomes and their wall rocks, peritectic garnet and orthopyroxene are very well preserved. This collective evidence suggests that melt loss from the stromatic leucosome structures whilst the rocks were still undergoing heating is the dominant process that shaped the chemistry of these leucosomes and produced solid leucosomes. Two alternative scenarios are evaluated as generalized petrogenetic models for producing Si‐rich, yet markedly K‐depleted and Ca‐enriched leucosomes from metapelitic sources. The first process involves the mechanical concentration of entrained peritectic plagioclase and garnet in the leucosomes. In this scenario, the volume of quartz in the leucosome must reflect the remaining melt fraction with resultant positive correlation between Si and K in the leucosomes. No such correlation exists in the BQ leucosomes and in similar leucosomes from elsewhere. Consequently, we suggest disequilibrium congruent melting of plagioclase in the source and consequential crystallization of peritectic plagioclase in the melt transfer and accumulation structures rather than at the sites of biotite melting. This induces co‐precipitation of quartz in the structures by increasing SiO2 content of the melt. This process is characterized by an absence of plagioclase‐induced fractionation of Eu on melting, and the formation of Eu‐enriched, quartz + plagioclase + garnet leucosomes. From these findings, we argue that melt leaves the source rapidly and that the leucosomes form incrementally as melt or magma leaving the source dumps its disequilibrium Ca load, as well as quartz and entrained ferromagnesian peritectic minerals, in sites of magma accumulation and escape. This is consistent with evidence from S‐type granites suggesting rapid magma transfer from source to high level plutons. These findings also suggest that leucosomes of this type should be regarded as constituting part of the residuum from partial melting.  相似文献   

20.
Intrusion-related migmatites comprise a substantial part of the high-grade part of the southern Damara orogen, Namibia which is dominated by Al-rich metasedimentary rocks and various granites. Migmatites consist of melanosomes with biotite+sillimanite+garnet+cordierite+hercynite and leucosomes are garnet- and cordierite-bearing. Metamorphic grade throughout the area is in the upper amphibolite to lower granulite facies (5–6 kbar at 730–750 °C). Field evidence, petrographic observations, chemical data and mass balance calculations suggest that intrusion of granitic magmas and concomitant partial melting of metasedimentary units were the main processes for the generation of the migmatites. The intruding melts were significantly modified by magma mixing with in situ partial melts, accumulation of mainly feldspar and contamination with garnet from the wall rocks. However, it is suggested that these melts originally represented disequilibrium melts from a metasedimentary protolith. The occurrence of LILE-, HFSE- and LREE-enriched and -depleted residues within the leucosomes implies that both quartzo-feldspathic and pelitic rocks were subjected to partial melting. Isotope ratios of the leucosomes are rather constant (143Nd/144Nd (500 Ma): 0.511718–0.511754, ε Nd (500 Ma): ?3.54 to ?5.11) and Sr (87Sr/86Sr (500 Ma): 0.714119–0.714686), the metasedimentary units have rather constant Nd isotope ratios (143Nd/144Nd (500 Ma): 0.511622–0.511789, ε Nd (500 Ma): ?3.70 to ?6.93) but variable Sr isotope ratios Sr (87Sr/86Sr (500 Ma): 0.713527–0.722268). The most restitic melanosome MEL 4 has a Sr isotopic composition of 87Sr/86Sr (500 Ma): 0.729380. Oxygen isotopes do not mirror the proposed contamination process, due to the equally high δ18O contents of metasediments and crustal melts. However, the most LILE-depleted residue MEL 4 shows the lowest δ18O value (<10). Mass balance calculations suggest high degrees of partial melting (20–40%). It is concluded that partial melting was promoted by heat transfer and release of a fluid phase from the intruding granites. High degrees of partial melting can be reached as long as the available H2O, derived from the crystallization of the intruding granites, is efficiently recycled within the rock volume. Due to the limited amounts of in situ melting, it seems likely that such regional migmatite terranes are not the sources for large intrusive granite bodies. The high geothermal gradient inferred from the metamorphic conditions was probably caused by exhumation of deep crustal rocks and contemporaneous intrusion of huge masses of granitoid magmas. The Davetsaub area represents an example of migmatites formed at moderate pressures and high temperatures, and illustrates some of the reactions that may modify leucosome compositions. The area provides constraints on melting processes operating in high-grade metasedimentary rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号