首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spinel peridotite xenoliths from the Atsagin-Dush volcanic centre, SE Mongolia range from fertile lherzolites to clinopyroxene(cpx)-bearing harzburgites. The cpx-poor peridotites typically contain interstitial fine-grained material and silicate glass and abundant fluid inclusions in minerals, some have large vesicular melt pockets that apparently formed after primary clinopyroxene and spinel. No volatile-bearing minerals (amphibole, phlogopite, apatite, carbonate) have been found in any of the xenoliths. Fifteen peridotite xenoliths have been analysed for major and trace elements; whole-rock Sr isotope compositions and O isotope composition of all minerals were determined for 13 xenoliths. Trace element composition and Sr-Nd isotope compositions were also determined in 11 clinopyroxene and melt pocket separates. Regular variations of major and moderately incompatible trace elements (e.g. heavy-rare-earth elements) in the peridotite series are consistent with its formation as a result of variable degrees of melt extraction from a fertile lherzolite protolith. The Nd isotope compositions of LREE (light-rare-earth elements)-depleted clinopyroxenes indicate an old (≥ 1 billion years) depletion event. Clinopyroxene-rich lherzolites are commonly depleted in LREE and other incompatible trace elements whereas cpx-poor peridotites show metasomatic enrichment that can be related to the abundance of fine-grained interstitial material, glass and fluid inclusions in minerals. The absence of hydrous minerals, ubiquitous CO2-rich microinclusions in the enriched samples and negative anomalies of Nb, Hf, Zr, and Ti in primitive mantle-normalized trace element patterns of whole rocks and clinopyroxenes indicate that carbonate melts may have been responsible for the metasomatic enrichment. Low Cu and S contents and high δ34S values in whole-rock peridotites could be explained by interaction with oxidized fluids that may have been derived from subducted oceanic crust. The Sr-Nd isotope compositions of LREE-depleted clinopyroxenes plot either in the MORB (mid-ocean-ridge basalt) field or to the right of the mantle array, the latter may be due to enrichment in radiogenic Sr. The LREE-enriched clinopyroxenes and melt pockets plot in the ocean island-basalt field and have Sr-Nd isotope signatures consistent with derivation from a mixture of the DMM (depleted MORB mantle) and EM (enriched mantle) II sources. Received: 18 January 1996 / Accepted: 23 August 1996  相似文献   

2.
Garnet–spinel lherzolites from Antarctica and peridotites from Mongolia were fluid saturated, which is indicated by the presence of fluid inclusions in their minerals. Flows of reactive fluids caused extensive metasomatic alteration of mantle materials. The cryometric and Raman spectroscopic investigation of the Antarctic xenoliths showed that their fluid was a complex mixture of CO2, N2, H2S, and H2O with a density of up to 1.23 g/cm3. The entrapment of fluids was accompanied by the formation of clusters of numerous sulfide inclusions. The compositions of these inclusions correspond to a Ni-rich sulfide melt and a monosulfide solid solution. The partition coefficient of Ni between them (DNi mss/melt) ranges from 0.99 to 3.23, which suggests that the two-phase sulfide assemblages in the partly decrepitated inclusions equilibrated at 920–1060°C. In order to refine the initial P-T conditions of the development of the Antarctic peridotites, the results of our investigation were evaluated in the light of experimental data on (1) the stability field of the two-phase assemblage mss + sulfide melt, (2) the solidus of peridotite + 0.9CO2 + 0.1 H2O, and (3) isochores of 0.8CO2 + 0.2N2 fluid. The obtained parameters are close to 1270–1280°C and 2.2 GPa and lie near the SpGar boundary. The temperature of the existence of sulfide melt at a pressure of 2.2 GPa must be near 1300°C and corresponds to the boundary between the occurrence of carbon as CO2 fluid and carbonate (carbonate melt).  相似文献   

3.
The paper discusses the results of mineralogical and petrographic studies of spinel lherzolite xenoliths and clinopyroxene megacrysts in basalt from the Jixia region related to the central zone of Cenozoic basaltic magmatism of southeastern China. Spinel lherzolite is predominantly composed of olivine (Fo89.6–90.4), orthopyroxene (Mg# = 90.6–92.7), clinopyroxene (Mg# = 90.3–91.9), and chrome spinel (Cr# = 6.59–14.0). According to the geochemical characteristics, basalt of the Jixia region is similar to OIB with asthenospheric material as a source. The following equilibrium temperatures and pressures were obtained for spinel peridotite: 890–1269°C and 10.4–14.8 kbar. Mg# of olivine and Cr# of chrome spinel are close to the values in rocks of the enriched mantle. It is evident from analysis of the textural peculiarities of spinel lherzolite that basaltic melt interacted with mantle rocks at the xenolith capture stage. Based on an analysis of the P–T conditions of the formation of spinel peridotite and clinopyroxene megacrysts, we show that mantle xenoliths were captured in the course of basaltic magma intrusion at a significantly lower depth than the area of partial melting. However, capture of mantle xenoliths was preceded by low-degree partial melting at an earlier stage.  相似文献   

4.
The late-stage basanite (~12–1 Ma) of the NNW-SSE extending Gharyan Cenozoic volcanics (Northern West Libya) contains numerous fresh lherzolite xenoliths. These xenoliths display magmatic protogranular and porphyroclastic textures. Chemistry of olivine (forsterite content –90–91, NiO = 0.26–0.39 wt %), orthopyroxene (Mg# = 0.91–0.92, Cr# = 0.03–0.07, Al2O3 = 3.64–4.43 wt %), clinopyroxene ((Wo45.59–48.61, En45.89–48.80, Fs4.47–5.81), Mg# = 0.82–0.92, Al2O3 = 5.14–6.58 wt % and Cr2O3 = 0.5–0.95 wt %) and spinel (hercynite–picotite–Al-rich chromite spinels with Cr# = 0.08–0.11) refer to the fertile nature of Gharyan peridotites. Mantle source region was close to the primitive composition with low degrees of melting and depletion in melt (1.5% in average). However, it underwent metasomatism as illustrated by formation of secondary clinopyroxene (Wo37.96–44.77, En47.44–54.18, Fs7.59–8.03) with high contents of Na2O, and enrichment of the Al-spinel in TiO2. The estimated pre-eruptive temperature ranges from 1066 to 837°C. Despite the Gharyan peridotite is similar to mantle components in many districts in Saharan belt of North Africa, it represents juvenile mantle source with minor refractory residues. This compositional heterogeneity is mainly attributed to the local effect of the interaction of the Gharyan mantle with the host basanite magma that may be related to the Cenozoic rifting of the Pan-African basement.  相似文献   

5.
We performed partial melting experiments at 1 and 1.5 GPa, and 1180–1400 °C, to investigate the melting under mantle conditions of an olivine-websterite (GV10), which represents a natural proxy of secondary (or stage 2) pyroxenite. Its subsolidus mineralogy consists of clinopyroxene, orthopyroxene, olivine and spinel (+garnet at 1.5 GPa). Solidus temperature is located between 1180 and 1200 °C at 1 GPa, and between 1230 and 1250 °C at 1.5 GPa. Orthopyroxene (±garnet), spinel and clinopyroxene are progressively consumed by melting reactions to produce olivine and melt. High coefficient of orthopyroxene in the melting reaction results in relatively high SiO2 content of low melt fractions. After orthopyroxene exhaustion, melt composition is controlled by the composition of coexisting clinopyroxene. At increasing melt fraction, CaO content of melt increases, whereas Na2O, Al2O3 and TiO2 behave as incompatible elements. Low Na2O contents reflect high partition coefficient of Na between clinopyroxene and melt (\(D_{{{\text{Na}}_{ 2} {\text{O}}}}^{{{\text{cpx}}/{\text{liquid}}}}\)). Melting of GV10 produces Quartz- to Hyperstene-normative basaltic melts that differ from peridotitic melts only in terms of lower Na2O and higher CaO contents. We model the partial melting of mantle sources made of different mixing of secondary pyroxenite and fertile lherzolite in the context of adiabatic oceanic mantle upwelling. At low potential temperatures (T P < 1310 °C), low-degree melt fractions from secondary pyroxenite react with surrounding peridotite producing orthopyroxene-rich reaction zones (or refertilized peridotite) and refractory clinopyroxene-rich residues. At higher T P (1310–1430 °C), simultaneous melting of pyroxenite and peridotite produces mixed melts with major element compositions matching those of primitive MORBs. This reinforces the notion that secondary pyroxenite may be potential hidden components in MORB mantle source.  相似文献   

6.
Anhydrous partial melting experiments, at 10 to 30 kbar from solidus to near liquidus temperature, have been performed on an iron-rich martian mantle composition, DW. The DW subsolidus assemblage from 5 kbar to at least 24 kbar is a spinel lherzolite. At 25 kbar garnet is stable at the solidus along with spinel. The clinopyroxene stable on the DW solidus at and above 10 kbar is a pigeonitic clinopyroxene. Pigeonitic clinopyroxene is the first phase to melt out of the spinel lherzolite assemblage at less than 20°C above the solidus. Spinel melts out of the assemblage about 50°C above the solidus followed by a 150° to 200°C temperature interval where melts are in equilibrium with orthopyroxene and olivine. The temperature interval over which pigeonitic clinopyroxene melts out of an iron-rich spinel lherzolite assemblage is smaller than the temperature interval over which augite melts out of an iron-poor spinel lherzolite assemblage. The dominant solidus assemblage in the source regions of the Tharsis plateau, and for a large percentage of the martian mantle, is a spinel lherzolite.  相似文献   

7.
Spinel lherzolite xenoliths from Tertiary basaltic host magmas at Allyn River, eastern Australia reveal two distinct petrographic and geochemical types. One group is distinguished by xenoliths with undeformed, equilibrated microstructures and interstitial melt patches; The second group shows deformation and contains abundant fluid inclusions but no melt patches. Trace-element signatures of clinopyroxene in these xenoliths provide evidence for metasomatism by a silicate agent with hydrous component and by a carbonate-rich agent respectively.

Melt patches in the undeformed xenoliths contain secondary minerals including clinopyroxene, olivine, feldspar, Mg- and Ca-rich carbonate, apatite, ilmenite and spinel. They are interpreted to represent volatile-rich melt captured shortly prior to entrainment in the host basalt. Sulfide globules, now recrystallised to discrete sulfide phases but inferred to be molten at lithospheric mantle T and P, are closely associated with the melt patches. The close association between sulfide and highly mobile, volatile-bearing fluid has important implications for the mobility of Re and Os, the use of their isotopes in dating mantle events, and the possible effect of volatile-bearing metasomatic agents on their composition.  相似文献   


8.
The behavior of trace elements under conditions of partial melting of granitoid rocks has been studied. The element’s partition coefficients between minerals and the melt Dimin/melt depends, in the first place, on the composition of the primary melt. In biotite the HREE Di are a little below 1, while those of LREE, especially Di for Ce, are 1–3 orders of magnitude less. This leads to an efficient differentiation of REEs in anatexic melts especially when biotite is the main mineral phase of restite. On the contrary, there are feldspars, the Di of which cannot provide such a magnitude of differentiation. Unlike garnets and pyroxenes, whose stability in restite permits enrichment of anatexic melts produced in migmatization zones with Nb, Ti, and Cr, the presence of biotite in restite causes depletion of melts with those elements as well as with Rb. Feldspars, under conditions of their fractional crystallization or during differentiation of an anatexic melt, deplete the latter with Sr, Ba, and Rb, but enrich it with Nb, Ti, Cr, Y, Zr, and V.  相似文献   

9.
Interaction between natural pargasite [Prg, SiO2 = 43.89 wt %, FeO/(FeO + MgO) = 0.35, (Na + K)A = 0.51] and H2O–NaCl fluid, whose composition (NaCl mole fraction) varied within the range X NaCl = NaCl/(NaCl + H2O) = 0–0.45, was experimentally studied in an internally heated apparatus at 900°C and 500 MPa. Natural pargasite begins to melt at a temperature 120–150°C lower than its synthetic analogue. In the presence of pure H2O, the subliquidus mineral assemblage involves amphibole Hbl 1, whose composition is closely similar to the starting Prg, clinopyroxene Cpx, calcic plagioclase Pl, and minor amounts of hercynite-magnetite spinel. With increasing X NaCl, the subliquidus assemblage systematically changed: calcic plagioclase disappeared and more Fe- rich amphibole Hbl 2 appeared at X NaCl = 0.07; Cpx disappeared at X NaCl = 0.14; and appearance of Na-Phl compositionally close to wonesite and almost complete disappearance of Hbl 1 was observed at X NaCl = 0.31. The composition of the melt also changed: its Na2O gradually increased (from 1.5 to 9–10 wt %), and CaO and SiO2 decreased(from 8.6 to 2 wt % and from 64 to 60 wt %, respectively, in recalculation to the anhydrous basis); at X NaCl ≥ 0.35, the melt was transformed from quartz- to nepheline-normative. The maximum Cl concentration of 1.2 wt % was measured in the melt poorest in SiO2. The experimental products contained spherical objects less than 10 μm in diameter that consisted of material that precipitated from the quenched fluid. These particles are richer than the melt in SiO2 (62–80 wt %) and poorer in Al2O3 (11–19 wt %) in experiments with X NaCl ≤ 0.24, but the differences between the compositions of the melt and particles decreased with increasing XNaCl. The relatively high concentrations of aluminosilicate material in the fluid is most likely explained by the high solubility of the melt in the fluid phase, with the formation in the fluid aqueous Si, Al–Si, Na–Al–Si, and other polymeric species. It is suggested that interaction of host rocks with such fluids, rich in granitic components, might be responsible for granitization (charnockitization) of mafic, and, particularly, ultramafic rocks described in the literature.  相似文献   

10.
Titanomagnetite–melt partitioning of Mg, Mn, Al, Ti, Sc, V, Co, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Hf and Ta was investigated experimentally as a function of oxygen fugacity (fO2) and temperature (T) in an andesitic–dacitic bulk-chemical compositional range. In these bulk systems, at constant T, there are strong increases in the titanomagnetite–melt partitioning of the divalent cations (Mg2+, Mn2+, Co2+, Ni2+, Zn2+) and Cu2+/Cu+ with increasing fO2 between 0.2 and 3.7 log units above the fayalite–magnetite–quartz buffer. This is attributed to a coupling between magnetite crystallisation and melt composition. Although melt structure has been invoked to explain the patterns of mineral–melt partitioning of divalent cations, a more rigorous justification of magnetite–melt partitioning can be derived from thermodynamic principles, which accounts for much of the supposed influence ascribed to melt structure. The presence of magnetite-rich spinel in equilibrium with melt over a range of fO2 implies a reciprocal relationship between a(Fe2+O) and a(Fe3+O1.5) in the melt. We show that this relationship accounts for the observed dependence of titanomagnetite–melt partitioning of divalent cations with fO2 in magnetite-rich spinel. As a result of this, titanomagnetite–melt partitioning of divalent cations is indirectly sensitive to changes in fO2 in silicic, but less so in mafic bulk systems.  相似文献   

11.
The processes of differentiation in the magmatic chamber of the Ioko-Dovyren layered dunite-troctolite-gabbro-gabbronorite massif were simulated using the COMAGMAT-3.5 software package, which is based on the convection-accumulation model for the crystallization of magmatic intrusions. The initial magma composition was assumed to be equal to the weighted mean composition of the rocks composing the intrusion (wt %: 43.92 SiO2, 9.72 Al2O3, 10.53 FeO, 27.88 MgO, 6.99 CaO, 0.59 Na2O, 0.07 K2O, and 0.11 TiO2). The results obtained by simulating the crystallization of this composition within a pressure range of 0–10 kbar indicate that the crystallization sequence determined for the rocks Ol + ChrOl+ Pl+ ChrOl + Pl+ CPx → ± Ol + Pl+ CPx + LowCaPx in an anhydrous system takes place under pressures of 0–2 kbar. A series of simulations for a system closed with respect to oxygen yielded estimates for the phase and chemical composition of the emplaced magma and the parameters of the optimum model, which reproduces accurately enough the geochemical structure of the Ioko-Dovyren intrusion: the naturally occurring distributions of minerals and components in its vertical section. The correlation coefficients between the concentrations of oxides determined in the rocks and calculated within the model are \(r_{MgO,Al_2 O_3 ,CaO} \) ≥ 0.9 and \(r_{FeO,SiO_2 ,Na_2 O} \) ≥ 0.6. The simulated phase composition of the magma during its emplacement corresponded to melt + olivine (Fo 89). The crystallinity of the parental magma was determined to have been equal to approximately 40 vol % at an assumed cumulus density of 90% near the lower contact and 70% near the upper one. The temperature of the magma during its emplacement was close to 1340°C at a pressure of 1 kbar. In the model, plagioclase and clinopyroxene appear on the liquidus at T?1255°C at T?1210°C, respectively, and the crystallization sequence of cumulus minerals corresponds to that observed in nature. The liquid phase (melt) of the parental magma during its emplacement had the following composition (wt %): 45.95 SiO2, 15.93 Al2 O3, 14.49 MgO, 10.88 FeO, 11.46 CaO, 0.97 Na2O, 0.11 K2O, and 0.18 TiO2. Our results confirm the plausibility of the hypothesis that the inner structure of the Ioko-Dovyren intrusion was formed by the emplacement and differentiation of a single magma portion with no less than 40 vol % crystallinity.  相似文献   

12.
For petrological calculations, including geothermobarometry and the calculation of phase diagrams (for example, PT petrogenetic grids and pseudosections), it is necessary to be able to express the activity–composition (ax) relations of minerals, melt and fluid in multicomponent systems. Although the symmetric formalism—a macroscopic regular model approach to ax relations—is an easy-to-formulate, general way of doing this, the energetic relationships are a symmetric function of composition. We allow asymmetric energetics to be accommodated via a simple extension to the symmetric formalism which turns it into a macroscopic van Laar formulation. We term this the asymmetric formalism (ASF). In the symmetric formalism, the ax relations are specified by an interaction energy for each of the constituent binaries amongst the independent set of end members used to represent the phase. In the asymmetric formalism, there is additionally a "size parameter" for each of the end members in the independent set, with size parameter differences between end members accounting for asymmetry. In the case of fluid mixtures, for example, H2O–CO2, the volumes of the end members as a function of pressure and temperature serve as the size parameters, providing an excellent fit to the ax relations. In the case of minerals and silicate liquid, the size parameters are empirical parameters to be determined along with the interaction energies as part of the calibration of the ax relations. In this way, we determine the ax relations for feldspars in the systems KAlSi3O8–NaAlSi3O8 and KAlSi3O8–NaAlSi3O8–CaAl2Si2O8, for carbonates in the system CaCO3–MgCO3, for melt in the melting relationships involving forsterite, protoenstatite and cristobalite in the system Mg2SiO4–SiO2, as well as for fluids in the system H2O–CO2. In each case the ax relations allow the corresponding, experimentally determined phase diagrams to be reproduced faithfully. The asymmetric formalism provides a powerful and flexible way of handling ax relations of complex phases in multicomponent systems for petrological calculations.  相似文献   

13.
A suite of mainly spinel peridotite and subordinate pyroxenite xenoliths and megacrysts were studied in detail, enabling us to characterize upper mantle conditions and processes beneath the modern North American–Eurasian continental plate boundary. The samples were collected from 37-Ma-old basanites cropping out in the Main Collision Belt of the Chersky Range, Yakutia Republic (Russian Far East). The spinel lherzolites reflect a mantle sequence, equilibrated at temperatures of 890–1,025 °C at pressures of 1.1–2 GPa, with melt extraction estimated to be around 2–6 %. The spinel harzburgites are characterized by lower P–T equilibration conditions and estimated melt extraction up to 12 %. Minor cryptic metasomatic processes are recorded in the clinopyroxene trace elements, revealing that percolating hydrous fluid-rich melts and basaltic melts affected the peridotites. One of the lherzolites preserves a unique melt droplet with primary dolomite in perfect phase contact with Na-rich aluminosilicate glass and sodalite. On the basis of the well-constrained P–T frame of the xenolith suite, as well as the rigorously documented melt extraction and metasomatic history of this upper mantle section, we discuss how a carbonated silicate melt infiltrated the lherzolite at depth and differentiated into an immiscible carbonate and silicate liquid shortly before the xenolith was transported to the surface by the host basalt. Decreasing temperatures triggered crystallization of primary dolomite from the carbonate melt fraction and sodalite as well as quenched glass from the Na-rich aluminosilicate melt fraction. Rapid entrainment and transport to the Earth’s surface prevented decarbonatization processes as well as reaction phenomena with the host lherzolite, preserving this exceptional snapshot of upper mantle carbonatization and liquid immiscibility.  相似文献   

14.
Petrologic examination of coronites from the Bergen Arcs Complex in Norway revealed that garnet crowns formed due to clinopyroxene interaction with matrix plagioclase and spinel during the Grenville granulite-facies metamorphism (at T ~ 960°C and P = 1.3 GPa). Along with this, the rocks show evidence of reactions related to superimposed Caledonian eclogite-facies metamorphism. These are microscopic coronas consisting of omphacite, kyanite, corundum, amphibole, and biotite. The rims formed under aqueous conditions with potassium introduction ata T ~ 710–730°C and P ~ 1.3–1.5 GPa. Local occurrence of eclogite metamorphism found at a great distance (>100 m) from shear zones of the eclogite metamorphic stage indicates that the whole eclogite succession and not only its local sites (shear zones) were heated to the eclogite-metamorphism temperature.  相似文献   

15.
In a number of industries (ferrous and nonferrous metallurgy, glass-making and silicate-producing technologies), interaction between refractory materials with melts results in sequences of reaction zonation (reaction columns) that show all principal features of diffusion-controlled metasomatic zoning. However, in contrast to the latter, reaction melt is generated together with crystalline phases in the rear zones of the columns. This melt is neither mechanically displaced melt that affects the refractory materials, nor produced by melting. The process generating this melt is most adequately defined as replacement by melt. The principal characteristics of the zoning are discussed below with reference to the corrosion of chromite–periclase refractory materials with melted slag in nickel-producing metallurgy. Similarities between the relations observed under different conditions and in different systems and the evolutionary dynamics of the process, specifics of melt generation and changes in its composition in the zones are demonstrated below with the use of data on other technologies and their experimental modeling. The mechanism of melt replacement is applicable to describing natural reaction processes of magma interaction with host rocks (magmatic replacement), with the following unobvious implications. (1) It is reasonable to expect that the minerals of the rocks should host melt inclusions. (2) It is reasonable to expect that certain minerals should be found in two distinct populations: (i) those in equilibrium with melt in the reaction column and (ii) those crystallizing from the cooling melt. (3) Two or more zones of the column can consist of the same minerals, but their proportions should be different. (4) Plastic deformations in the rear zones of the column (magmatic replacement) should be associated with brittle ones in the pristine host rocks and frontal (metasomatic) zones. (5) In contrast to the rocks of metasomatic columns, the material of magmatic-replacement zones can flow through fractures cutting across the host metasomatic rocks and thereby intersect the outer metasomatic zones.  相似文献   

16.
Data obtained on the compositions of rock-forming minerals from the Kivakka layered intrusion indicate that the #Fe of olivine increases up the vertical section of the intrusion, and the #Mg of the pyroxenes and the anorthite contents of the plagioclase simultaneously decrease, which reflects the fractionation of the parental melt. Emphasis is placed onto the compositional variability of minerals in the layered unit. A method is developed for the reliable calculation of the composition of pyroxenes before their exoslution (separately for ortho-and clinopyroxene). The composition of minerals in the zone of intercalating melano-, meso-, and leucocratic norites remains practically unchanged, which is generally consistent with the results of mathematical simulations: compositional variations of the bronzite (#Mg) and plagioclase (An content) during the crystallization of the bronzite-plagioclase cotectic were no greater than 5 mol %. The variations in the concentrations of trace elements in the cumulus and intercumulus clinopyroxene occurred to be the most informative. It was determined that the Cr concentration in the cumulus augite is statistically significantly lower than that in the intercumulus augite, which is at variance with fractionation laws and led us to suggest that the rocks with cumulus pyroxenes were formed by a melt with a higher degree of fractionation than those of the intercumulus melts of the adjacent layers.  相似文献   

17.
Peridotite xenoliths found in Cenozoic alkali basalts of northern Victoria Land, Antarctica, vary from fertile spinel-lherzolite to harzburgite. They often contain glass-bearing pockets formed after primary pyroxenes and spinel. Few samples are composite and consist of depleted spinel lherzolite crosscut by amphibole veins and/or lherzolite in contact with poikilitic wehrlite. Peridotite xenoliths are characterized by negative Al2O3–Mg# and TiO2–Mg# covariations of clino- and orthopyroxenes, low to intermediate HREE concentrations in clinopyroxene, negative Cr–Al trend in spinel, suggesting variable degrees of partial melting. Metasomatic overprint is evidenced by trace element enrichment in clinopyroxene and sporadic increase of Ti–Fetot. Preferential Nb, Zr, Sr enrichments in clinopyroxene associated with high Ti–Fetot contents constrain the metasomatic agent to be an alkaline basic melt. In composite xenoliths, clinopyroxene REE contents increase next to the veins suggesting metasomatic diffusion of incompatible element. Oxygen isotope data indicate disequilibrium conditions among clinopyroxene, olivine and orthopyroxene. The highest δ18O values are observed in minerals of the amphibole-bearing xenolith. The δ18Ocpx correlations with clinopyroxene modal abundance and geochemical parameters (e.g. Mg# and Cr#) suggest a possible influence of partial melting on oxygen isotope composition. Thermobarometric estimates define a geotherm of 80°C/GPa for the refractory lithosphere of NVL, in a pressure range between 1 and 2.5 GPa. Clinopyroxene microlites of melt pockets provide P–T data close to the anhydrous peridotite solidus and confirm that they originated from heating and decompression during transport in the host magma. All these geothermometric data constrain the mantle potential temperature to values of 1250–1350°C, consistent with the occurrence of mantle decompressional melting in a transtensive tectonic regime for the Ross Sea region.  相似文献   

18.
 Investigations of peridotite xenolith suites have identified a compositional trend from lherzolite to magnesian wehrlite in which clinopyroxene increases at the expense of orthopyroxene and aluminous spinel, and in which apatite may be a minor phase. Previous studies have shown that this trend in mineralogy and chemical composition may result from reaction between sodic dolomitic carbonatite melt and lherzolite at pressures around 1.7 to 2 GPa. This reaction results in decarbonation of the carbonatite melt, releasing CO2-rich fluid. In this study, we have experimentally reversed the decarbonation reaction by taking two natural wehrlite compositions and reacting them with CO2 at a pressure of 2.2 GPa and temperatures from 900 to 1150° C. Starting materials were pargasite-bearing wehrlites, one with minor apatite (composition 71001*) and one without apatite (composition 70965*). At lower temperatures (900° C) the products were apatite+pargasite+magnesite harzburgite for runs using composition 71001*, and pargasite+dolomite lherzolite for runs using composition 70965*. At and above 1000° C, carbonatite melt with harzburgite residue (olivine+orthopyroxene+spinel) and with lherzolite residue (olivine+orthopyroxene+clinopyroxene+ spinel) were produced respectively. Phase compositions in reactants and products are consistent with the documented carbonatite/lherzolite reactions, and also permit estimation of the carbonatite melt compositions. In both cases the melts are sodic dolomitic carbonatites. The study supports the hypothesis of a significant role for ephemeral, sodic dolomitic melts in causing metasomatic changes in the lithosphere at P≤2 GPa. The compositions of wehrlites imply fluxes of CO2, released by metasomatic reactions, which are locally very large at around 5 wt% CO2. Received: 15 December 1995/Accepted: 14 February 1996  相似文献   

19.
Experimental studies in the system Fe,Ni–olivine–carbonate–S (P = 6.3 GPa, T = 1050–1550°C, t = 40–60 h) aimed at modeling of the interaction of subducted carbonates and sulfur with rocks of the silicate mantle and at investigation of the likely mechanism of the formation of mantle sulfides were performed. It is shown that an association of olivine + orthopyroxene + magnesite + pyrite coexisting with a sulfur melt/fluid with dissolved Fe, Ni, and O is formed at T ≤ 1250°C. An association of low-Fe olivine, orthopyroxene, and magnesite and two immiscible melts of the carbonate and S–Fe–Ni–O compositions are formed at T ≥ 1350°C. It is shown that the reduced S-bearing fluids may transform silicates and carbonates, extract metals from the solid-phase matrix, and provide conditions for generation of sulfide melts.  相似文献   

20.
We studied the petrography, mineralogy, and geochemistry of the Paleoproterozoic (2.06 Ga) granites of the Katugin massif (Stanovoy suture zone), which hosts the combined rare-metal Katugin deposit. Three groups of granites were distinguished: (1) biotite (Bt) and biotite–riebeckite (Bt–Rbk) granites of the western block of the massif; (2) biotite–arfvedsonite (Bt–Arf) granites of the eastern block; and (3) arfvedsonite (Arf), aegirine–arfvedsonite (Aeg–Arf), and aegirine (Aeg) granites of the eastern block. The Bt and Bt–Rbk granites of the first group are mainly metaluminous and peraluminous rocks with rather high CaO contents and the minimum F contents among the granites described here. It was suggested that the granites of this group could be derived from a source dominated by crustal rocks with a small addition of mantle materials. These granites probably crystallized from a metaluminous–peraluminous melt with elevated CaO and moderate F contents. Melts of such compositions are least favorable for the crystallization of ore minerals. The Bt–Arf granites of the second group are mainly peralkaline and show high contents of CaO and Y and low contents of Na2O and F. A mixed mantle–crust source was proposed for the Bt–Arf granites. The initial melt of the Bt–Arf granites could have a peralkaline composition with elevated CaO content and moderate to high F content. The Arf, Aeg–Arf, and Aeg granites of the third group are enriched in ore mineral and were classified as peralkaline granites with very low CaO contents, elevated Na2O and F contents, and usually very high contents of Zr, Hf, Nb, and Ta. Based on the geochemical and isotopic data, it was supposed that the source of the granites of the third group could be derivatives of basaltic magmas produced in an OIB-type source with a minor addition of crustal material to the magma generation zone. It was suggested that the primary melt of this granite group could be a peralkaline CaO-poor and F-rich silicic melt, which is most favorable for the crystallization of ore minerals. Based on the analysis of the geochemical characteristics of the three granite groups and their relationships within the Katugin massif, a qualitative model of its formation was proposed. According to this model, the Bt and Bt–Rbk granites of the western block crystallized first, followed by the Bt–Arf granites of the eastern block and, eventually, the Arf, Aeg–Arf, and Aeg granites enriched in ore minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号