首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of elevated pH, ionic strength, and temperature on sediments in the vadose zone are of primary importance in modeling contaminant transport and understanding the environmental impact of tank leakage at nuclear waste storage facilities like those of the Hanford site. This study was designed to investigate biotite dissolution under simulated high level waste (HLW) conditions and its impact on Cr(VI) reduction and immobilization. Biotite dissolution increased with NaOH concentrations in the range of 0.1 to 2 mol L-1. There was a corresponding release of K, Fe, Si, and Al to solution, with Si and Al showing a complex pattern due to the formation of secondary zeolite minerals. Dissolved Fe concentrations were an order of magnitude lower than the other elements, possibly due to the formation of green rust and Fe(OH)2. The reduction of Cr(VI) to Cr(III) also increased with increased NaOH concentration. A homogeneous reduction of chromate by Fe(II)aq released through biotite dissolution was probably the primary pathway responsible for this reaction. Greater ionic strengths increased biotite dissolution and consequently increased Fe(II)aq release and Cr(VI) removal. The results indicated that HLW would cause phyllosilicate dissolution and the formation of secondary precipitates that would have a major impact on radionuclide and contaminant transport in the vadose zone at the Hanford site.  相似文献   

2.
Biotite dissolution under conditions of high pH and high aluminum, sodium, and nitrate concentrations analogous to those found in tank wastes at the Hanford Site was investigated using continuously stirred flow-through reactors at 22 to 25 °C. Experiments were designed to simulate tank leaks into the Hanford vadose zone where Fe(II) from biotite is the dominant reducing agent available to immobilize certain contaminants. Both non-steady-state and steady-state dissolution kinetics were quantified; interest in non-steady-state kinetics derives from the inherently transitory nature of tank leaks. Biotite was conditioned in pH 8 solutions to simulate the alkaline environment of the Hanford sediment, and then reacted in pH 10-14 solutions, some including 0.055 M Al(NO3)3 and/or 2 M or 6 M NaNO3. Initial dissolution transients (intervals of rapid release rates that decay to slower steady-state rates) showed fast preferential release of K followed by near-stoichiometric release of Si, Al, and Mg, and slower release of Fe. Each increase in pH resulted in a second transient with the greatest amounts of Si, Al, and K released at pH 14, followed by pHs 13, 12, 11, and 10. Fe release also was highest at pH 14, but unchanging at pHs 10-13 within experimental error. Transient releases at high pH are attributed to dissolution of amphoteric secondary phases such as ferrihydrite that are inferred from saturation calculations and solid analyses to form during the conditioning interval. Transient release of Si was inhibited by the presence of 0.055 M Al(NO3)3; the effects of Al(NO3)3 and NaNO3 on the release rates of Al, Fe, Mg, and K were variable and generally outweighed by the effect of pH. Quasi-steady-state release rates were slowest at pH 11-12 (10−12.2 mol biotite m−2 s−1 for Si) and increased in either direction in pH away from this minimum (to 10−11.5 at pHs 8 and 14 for Si). Fe release rates at high pH were sufficient to account for observed Cr(VI) reduction at Hanford. The net release rates of the major framework cations, from which the biotite dissolution rate is inferred, may reflect the precipitation of secondary phases or the alteration of biotite to vermiculite. The most extensive solid-phase alterations were observed in Na-enriched solutions.  相似文献   

3.
Sorption of Cs to micaceous subsurface sediments from the Hanford site, USA   总被引:1,自引:0,他引:1  
The sorption of Cs+ was investigated over a large concentration range (10−9−10−2 mol/L) on subsurface sediments from a United States nuclear materials site (Hanford) where high-level nuclear wastes (HLW) have been accidentally released to the vadose zone. The sediment sorbs large amounts of radiocesium, but expedited migration has been observed when HLW (a NaNO3 brine) is the carrier. Cs+ sorption was measured on homoionic sediments (Na+, K+, Ca2+) with electrolyte concentrations ranging from 0.01 to 1.0 mol/L. In Na+ electrolyte, concentrations were extended to near saturation with NaNO3(s) (7.0 mol/L). The sediment contained nonexpansible (biotite, muscovite) and expansible (vermiculite, smectite) phyllosilicates. The sorption data were interpreted according to the frayed edge-planar site conceptual model. A four-parameter, two-site (high- and low-affinity) numeric ion exchange model was effective in describing the sorption data. The high-affinity sites were ascribed to wedge zones on the micas where particle edges have partially expanded due to the removal of interlayer cations during weathering, and the low-affinity ones to planar sites on the expansible clays. The electrolyte cations competed with Cs+ for both high- and low-affinity sites according to the trend K+ >> Na+ ≥ Ca2+. At high salt concentration, Cs+ adsorption occurred only on high-affinity sites. Na+ was an effective competitor for the high-affinity sites at high salt concentrations. In select experiments, silver-thiourea (AgTU) was used as a blocking agent to further isolate and characterize the high-affinity sites, but the method was found to be problematic. Mica particles were handpicked from the sediment, contacted with Cs+(aq), and analyzed by electron microprobe to identify phases and features important to Cs+ sorption. The microprobe study implied that biotite was the primary contributor of high-affinity sites because of its weathered periphery. The poly-phase sediment exhibited close similarity in ion selectivity to illite, which has been well studied, although its proportion of high-affinity sites relative to the cation exchange capacity (CEC) was lower than that of illite. Important insights are provided on how Na+ in HLW and indigenous K+ displaced from the sediments may act to expedite the migration of strongly sorbing Cs+ in subsurface environments.  相似文献   

4.
During the manufacturing of chromate salts (1972–1992) large quantities of Chromite Ore Processing Residue (COPR) were released into a decantation pond east of the former chemical plant of Porto-Romano (Durres, Albania), giving rise to yellow colored pond sediments. These Cr(VI) bearing sediments were deposited upon Quaternary silty-clay lagoonal sediments rich in iron oxides and organic matter. The pH values in these lagoonal sediments vary around 6.6, while in the pond sediments, it is mainly acidic (due to the presence of the sulfur stock piles in the area and the release of the H2SO4 from the activity of the former chemical plant), varying between 1.4 and 3.8. Continuous leaching of the COPR waste resulted in yellow-colored surface water runoff. The prediction of pH changes in the different types of sediments based upon acid/base neutralizing capacity (ANC/BNC) jointly with the quantitative data on release of heavy metals and especially Cr is considered an important advantage of the pHstat leaching test if compared to conventional leaching procedures. Thus, factors controlling the leaching of Cr(VI), Cr(III), Ca, Al, Fe, Mg from the COPR were investigated by means of pHstat batch leaching tests and mineralogical analysis. Moreover, mathematical and geochemical modeling complemented the study. The COPR in the area contain very high concentrations of chromium 24,409 mg/kg, which mainly occurs as Cr(III) (75–90%) as well as Cr(VI) (25–10%). The leaching of Cr(VI) occurs in all the range (2–10) of the tested pH values, however, it decreases under acidic conditions. Beside some reduction of Cr(VI) to Cr(III), the Cr(VI) content of the leachtes remains relatively high in the acidic environment, while the limning of Cr(VI) pond sediments will increase the release of the latter specie. The leaching of the Cr(III) occurs strictly under acidic conditions, whereby limning of these sediments will give rise to the lower solubility of Cr(III). The key mineral phases responsible for the fast release of the Cr(VI) are: the chromate salts (i.e. sodium chromate and sodium dichromate), while sparingly soluble chromatite (CaCrO4) and hashemite (BaCrO4) release Cr(VI) very slowly. Thus, pH and mineral solubility have been identified as key factors in the retention and the release of the hexavalent CrO4 2− and Cr2O7 from the COPR-rich pond sediments.  相似文献   

5.
Caustic high level radioactive waste induces mineral weathering reactions that can influence the fate of radionuclides released in the vicinity of leaking storage tanks. The uptake and release of CsI and SrII were studied in batch reactors of 2:1 layer-type silicates—illite (Il), vermiculite (Vm) and montmorillonite (Mt)—under geochemical conditions characteristic of leaking tank waste at the Hanford Site in WA (0.05 m AlT, 2 m Na+, 1 m NO3, pH ∼14, Cs and Sr present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10−5 to 10−3 mol kg−1. Clay mineral type affected the rates of (i) hydroxide promoted dissolution of Si, Al and Fe, (ii) precipitation of secondary solids and (iii) uptake of Cs and Sr. Initial Si release to solution followed the order Mt > Vm > Il. An abrupt decrease in soluble Si and/or Al after 33 d for Mt and Vm systems, and after 190 d for Il suspensions was concurrent with accumulation of secondary aluminosilicate precipitates. Strontium uptake exceeded that of Cs in both rate and extent, although sorbed Cs was generally more recalcitrant to subsequent desorption and dissolution. After 369 d reaction time, reacted Il, Vm and Mt solids retained up to 17, 47 and 14 mmol kg−1 (0.18, 0.24 and 0.02 μmol m−2) of Cs, and 0, 27 and 22 mmol kg−1 (0, 0.14 and 0.03 μmol m−2) Sr, respectively, which were not removed in subsequent Mg exchange or oxalic acid dissolution reactions. Solubility of Al and Si decreased with initial Cs and Sr concentration in Mt and Il, but not in Vm. High co-contaminant sorption to the Vm clay, therefore, appears to diminish the influence of those ions on mineral transformation rates.  相似文献   

6.
7.
Adsorption of Cr(VI) on γ-alumina was investigated as a function of ionic strength (0.001, 0.01 and 0.1 M NaNO3), pH (4-10), Cr(VI) concentration (10−4 or 10−5 M with 5 g/L solid) and pCO2 (0, atmospheric, 2.5%). Cr(VI) sorption is significant at low pH and decreases with increasing pH, with 50% of the Cr(VI) adsorbed between pH ∼6.5 and 8. Adsorption varies little with ionic strength or pCO2 under most of the studied conditions. However, at low pH under high ionic strength and especially at high ionic strength and high pCO2, Cr(VI) sorption on γ-alumina is suppressed. The adsorption edge data were used to parameterize constant capacitance (CCM), diffuse double layer (DLM) and triple layer (TLM) surface complexation models. None of the models entirely captures the full range of observed adsorption dependence on ionic strength and sorbate/sorbent ratio. The best fits to the full dataset are produced by the CCM, mostly because it has ionic-strength dependent stability constants. The more sophisticated TLM, which requires the most fitting parameters, does not produce better fits than the simpler CCM or DLM approaches for the conditions tested in this study.  相似文献   

8.
Over 1.6 million liters of radioactive, high-temperature, Al-rich, alkaline and saline high-level waste (HLW) fluids were accidentally discharged from tank leaks onto the sediments at the Hanford Site, Washington. In order to better understand processes that might occur during the migration of HLW through sediments and to estimate their extents, we studied the effects of Al-rich, alkaline and saline solutions on soil mineral dissolution and precipitation during reactive transport. Metal- and glass-free systems were used to conduct miscible-displacement experiments at 50 °C under CO2 and O2 free conditions. Results showed significant release of Si, K, Al, Fe, Ca, Mg, and Ba into the aqueous phase. The transport-controlled release of these elements was time dependent as evidenced by its extent varying with the fluid residence time. Silica initial dissolution rates (6.08 × 10-11 and 5.38 × 10-13 mol m-2 s-1) increased with base concentration, decreased with Al concentration, and decreased with fluid residence time. Aluminum precipitation rates varied in the range from 0.44 to 1.07 × 10-6 mol s-1 and were faster in these column experiments than in previous batch studies. The initial rate constant of Al precipitation reaction was 0.07 h-1 (half-life of 9.9 h at about 3 PV); it increased up to 0.137 h-1 (half-life of 5.1 h at about 20 PV). The precipitates identified with SEM and suggested from the modeling results were mainly NO3-cancrinite. SEM analyses also indicated the formation of sodalite when Al was not present in the leaching solution. In addition, results from modeling suggested the precipitation of brucite, goethite and gibbsite; the latter may precipitate in the presence of high Al concentrations. Aqueous and solid phase transformations caused by base-induced dissolution and subsequent secondary phases precipitation should be important determinants of the fate of contaminants and radionuclides in the vadose zone under alkaline and saline conditions.  相似文献   

9.
Time-resolved U(VI) laser fluorescence spectra (TRLFS) were recorded for a series of natural uranium-silicate minerals including boltwoodite, uranophane, soddyite, kasolite, sklodowskite, cuprosklodowskite, haiweeite, and weeksite, a synthetic boltwoodite, and four U(VI)-contaminated Hanford vadose zone sediments. Lowering the sample temperature from RT to ∼ 5.5 K significantly enhanced the fluorescence intensity and spectral resolution of both the minerals and sediments, offering improved possibilities for identifying uranyl species in environmental samples. At 5.5 K, all of the uranyl silicates showed unique, well-resolved fluorescence spectra. The symmetric O = U = O stretching frequency, as determined from the peak spacing of the vibronic bands in the emission spectra, were between 705 to 823 cm−1 for the uranyl silicates. These were lower than those reported for uranyl phosphate, carbonate, or oxy-hydroxides. The fluorescence emission spectra of all four sediment samples were similar to each other. Their spectra shifted minimally at different time delays or upon contact with basic Na/Ca-carbonate electrolyte solutions that dissolved up to 60% of the precipitated U(VI) pool. The well-resolved vibronic peaks in the fluorescence spectra of the sediments indicated that the major fluorescence species was a crystalline uranyl mineral phase, while the peak spacing of the vibronic bands pointed to the likely presence of uranyl silicate. Although an exact match was not found between the U(VI) fluorescence spectra of the sediments with that of any individual uranyl silicates, the major spectral characteristics indicated that the sediment U(VI) was a uranophane-type solid (uranophane, boltwoodite) or soddyite, as was concluded from microprobe, EXAFS, and solubility analyses.  相似文献   

10.
Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ∼7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 μM, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and β charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in controlling U(VI) mobility in low-temperature geochemical environments over a wide pH range (∼5-9), even at the partial pressure of carbon dioxide of ambient air (pCO2 = 10−3.45 atm).  相似文献   

11.
Microscopic and spectroscopic studies were conducted to assess mineral transformation processes in aqueous suspensions of illite (Il), vermiculite (Vm) and montmorillonite (Mt) that were subjected to weathering in a simulated high-level radioactive tank waste leachate (0.05 m AlT, 2 m Na+, 1 m NO3, pH ∼14, Cs+ and Sr2+ present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10−5 to 10 mol kg. Incongruent clay dissolution resulted in an accumulation of secondary aluminosilicate precipitates identified as nitrate-sodalite, nitrate-cancrinite and zeolite X, by molecular spectroscopy and electron microscopy (XRD, IR, NMR, SEM-EDS and TEM-EDS). Contaminant fate was dependent on competing uptake to parent clays and weathering products. TEM-EDS results indicated that high Il affinity for Cs was due to adsorption at frayed edge sites. The Il system also comprised Sr-rich aluminous precipitates after 369 d reaction time. In Mt systems, Cs and Sr were co-precipitated into increasingly recalcitrant spheroidal precipitates over the course of the experiment, whereas contaminant association with montmorillonite platelets was less prevalent. In contrast, Cs and Sr were found in association with weathered Vm particles despite the formation of spheroidal aluminosilicate precipitates that were comparable to those formed from Mt dissolution.  相似文献   

12.
Optical microscopy, confocal Raman micro-spectrometry, X-ray photoelectron micro-spectroscopy (XPS) and synchrotron based micro-X-ray fluorescence (XRF), micro-X-ray absorption near edge spectroscopy (XANES) and micro-extended X-ray absorption fine structure (EXAFS) were used to investigate the reduction of aqueous Cr(VI) by pyrite. Special emphasis was placed on the characterisation of the solid phase formed during the reaction process. Cr(III) and Fe(III) species were identified by XPS analyses in addition to non-oxidised pyrite. Optical microscopy images and the corresponding Raman spectra reveal a strong heterogeneity of the samples with three different types of zones. (i) Reflective areas with Eg and Ag Raman wavenumbers relative to non-oxidised pyrite are the most frequently observed. (ii) Orange areas that display a drift of the Eg and Ag pyrite vibration modes of −3 and −6 cm−1, respectively. Such areas are only observed in the presence of Cr(VI) but are not specifically due to this oxidant. (iii) Bluish areas with vibration modes relative to a corundum-like structure that can be assigned to a solid solution Fe2−xCrxO3, x varying between 0.2 and 1.5. The heterogeneity in the spatial distribution of chromium observed by optical microscopy and associated Raman microspectroscopy is confirmed by μ-XRF. In agreement with both solution and XPS analyses, these spectroscopies clearly confirm that chromium is in the trivalent state. XANES spectra in the iron K-edge pre-edge region obtained in rich chromium areas reveal the presence of ferric ion thus revealing a systematic association between Cr(III) and Fe(III). In agreement with Raman analyses, Cr K-edge EXAFS can be interpreted as corresponding to Cr atoms involved in a substituted-type hematite structure Fe2−xCrxO3.  相似文献   

13.
The risk of groundwater contamination by chromate at a former chromite ore processing industrial site in Rivera (Switzerland) was assessed by determining subsoil Cr(VI) concentrations and tracking naturally occurring Cr(VI) reduction with Cr isotopes. Using a hot alkaline extraction procedure, a total Cr(VI) contamination of several 1000 kg was estimated. Jarosite, KFe3((SO4)x(CrO4)1−x)2(OH)6, and chromatite (CaCrO4) were identified as Cr(VI) bearing mineral phases using XRD, both limiting groundwater Cr(VI) concentrations. To track assumed Cr(VI) reduction at field scale δ53Cr values of contaminated subsoil samples in addition to groundwater δ53Cr data are used for the first time. The measurements showed a fractionation of groundwater δ53Cr values towards positive values and subsoil δ53Cr towards negative values confirming reduction of soluble Cr(VI) to insoluble Cr(III). Using a Rayleigh fractionation model, a current Cr(VI) reduction efficiency of approximately 31% along a 120 m long flow path was estimated at an average linear groundwater velocity of 3.3 m/d. Groundwater and subsoil δ53Cr values were compared with a site specific Rayleigh fractionation model proposing that subsoil δ53Cr values can possibly be used to track previous higher Cr(VI) reduction efficiency during the period of industrial activity. The findings strongly favor monitored natural attenuation to be part of the required site remediation measures.  相似文献   

14.
《Applied Geochemistry》2005,20(7):1357-1367
Cancrinite, sodalite, and zeolite A have been found to form upon contacting hyperalkaline simulated tank waste (STW) with vadose zone sediments from the Hanford Reservation. Here, soluble silica and STW are used to study mineral formation and transformation. Two Hanford sediment fractions (diameters <50 and >50 μm instead of soluble silica) are also used as silica sources for comparison. A series of batch experiments at 50 °C and 25 days duration were conducted by reacting 0.026 mol/kg soluble Si with 6 different STW solutions. The STW solutions differed in NaOH and Al concentrations. Cancrinite, sodalite, and zeolite A formed when soluble Si was used as the Si source. The minerals were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and 27Al and 29Si magic-angle spinning nuclear magnetic resonance (MAS-NMR). Larger NaOH and Al concentrations favored formation of the more compact structures of cancrinite and sodalite. At larger NaOH concentration more Al for Si substitution occurred in the tetrahedral sites. A greater Al(4)/Al(6) ratio in the solids was found for the higher Si/Al ratio solutions based on NMR results. Mixtures of cancrinite and sodalite were characterized by particles with lepispheric morphology. At low Al concentration, increasing NaOH resulted in distinct hexagonal, prismatic particles common to crystalline cancrinite. At low Al/Si ratio, the characteristic cubic morphology of zeolite was observed in addition to cancrinite and sodalite.  相似文献   

15.
Chromium(VI) concentrations in excess of the California Maximum Contaminant Level (MCL) of 50 μg/L occur naturally in alkaline, oxic ground-water in alluvial aquifers in the western Mojave Desert, southern California. The highest concentrations were measured in aquifers eroded from mafic rock, but Cr(VI) as high as 27 μg/L was measured in aquifers eroded from granitic rock. Chromium(VI) concentrations did not exceed 5 μg/L at pH < 7.5 regardless of geology. δ53Cr values in native ground-water ranged from 0.7 to 5.1‰ and values were fractionated relative to the average δ53Cr composition of 0‰ in the earth’s crust. Positive δ53Cr values of 1.2 and 2.3‰ were measured in ground-water recharge areas having low Cr concentrations, consistent with the addition of Cr(VI) that was fractionated on mineral surfaces prior to entering solution. δ53Cr values, although variable, did not consistently increase or decrease with increasing Cr concentrations as ground-water flowed down gradient through more oxic portions of the aquifer. However, increasing δ53Cr values were observed as dissolved O2 concentrations decreased, and Cr(VI) was reduced to Cr(III), and subsequently removed from solution. As a result, the highest δ53Cr values were measured in water from deep wells, and wells in discharge areas near dry lakes at the downgradient end of long flow paths through alluvial aquifers. δ53Cr values at an industrial site overlying mafic alluvium having high natural background Cr(VI) concentrations ranged from −0.1 to 3.2‰. Near zero δ53Cr values at the site were the result of anthropogenic Cr. However, mixing with native ground-water and fractionation of Cr within the plume increased δ53Cr values at the site. Although δ53Cr was not necessarily diagnostic of anthropogenic Cr, it was possible to identify the extent of anthropogenic Cr at the site on the basis of the δ53Cr values in conjunction with major-ion data, and the δ18O and δD composition of water from wells.  相似文献   

16.
The effect of caustic NaNO3 solutions on the sorption of 137Cs to a Hanford site micaceous subsurface sediment was investigated as a function of base exposure time (up to 168 d), temperature (10°C or 50°C), and NaOH concentration (0.1 mol/L to 3 mol/L). At 10°C and 0.1 M NaOH, the slow evolution of [Al]aq was in stark contrast to the rapid increase and subsequent loss of [Al]aq observed at 50°C (regardless of base concentration). Exposure to 0.1 M NaOH at 10°C for up to 168 d exhibited little if any measurable effect on sediment mineralogy, Cs+ sorption, or Cs+ selectivity; sorption was well described with a two-site ion exchange model modified to include enthalpy effects. At 50°C, dissolution of phyllosilicate minerals increased with [OH]. A zeolite (tetranatrolite; Na2Al2Si3O10·2H2O) precipitated in 0.1 M NaOH after about 7 days, while an unnamed mineral phase (Na14Al12Si13O51·6H2O) precipitated after 4 and 2 days of exposure to 1 M and 3 M NaOH solutions, respectively. Short-term (16 h) Cs+ sorption isotherms (10−9-10−2 mol/L) were measured on sediment after exposure to 0.1 M NaOH for 56, 112, and 168 days at 50°C. There was a trend toward slightly lower conditional equilibrium exchange constants (Δlog NaCsKc ∼ 0.25) over the entire range of surface coverage, and a slight loss of high affinity sites (15%) after 168 days of pretreatment with 0.1 M base solution. Cs+ sorption to sediment over longer times was also measured at 50°C in the presence of NaOH (0.1 M, 1 M, and 3 M NaOH) at Cs+ concentrations selected to probe a range of adsorption densities. Model simulations of Cs+ sorption to the sediment in the presence of 0.1 M NaOH for 112 days slightly under-predicted sorption at the lower Cs+ adsorption densities. At the higher adsorption densities, model simulations under-predicted sorption by 57%. This under-prediction was surmised to be the result of tetranatrolite precipitation, and subsequent slow Na → Cs exchange. At higher OH concentrations, Cs+ sorption in the presence of base for 112 days was unexpectedly equal to, or greater than that expected for pristine sediment. The precipitation of secondary phases, coupled with the fairly unique mica distribution and quantity across all size-fractions in the Hanford sediment, appears to mitigate the impact of base dissolution on Cs+ sorption.  相似文献   

17.
A numerical model was applied to investigate and to quantify biogeochemical processes and methane turnover in gas hydrate-bearing surface sediments from a cold vent site situated at Hydrate Ridge, an accretionary structure located in the Cascadia Margin subduction zone. Steady state simulations were carried out to obtain a comprehensive overview on the activity in these sediments which are covered with bacterial mats and are affected by strong fluid flow from below. The model results underline the dominance of advective fluid flow that forces a large inflow of methane from below (869 μmol cm−2 a−1) inducing high oxidation rates in the surface layers. Anaerobic methane oxidation is the major process, proceeding at a depth-integrated rate of 870 μmol cm−2 a−1. A significant fraction (14%) of bicarbonate produced by anaerobic methane oxidation is removed from the fluids by precipitation of authigenic aragonite and calcite. The total rate of carbonate precipitation (120 μmol cm−2 a−1) allows for the build-up of a massive carbonate layer with a thickness of 1 m over a period of 20,000 years. Aragonite is the major carbonate mineral formed by anaerobic methane oxidation if the flow velocity of methane-charge fluids is high enough (≥10 cm a−1) to maintain super-saturation with respect to this highly soluble carbonate phase. It precipitates much faster within the studied surface sediments than previously observed in abiotic laboratory experiments, suggesting microbial catalysis. The investigated station is characterized by high carbon and oxygen turnover rates (≈1000 μmol cm−2 a−1) that are well beyond the rates observed at other continental slope sites not affected by fluid venting. This underlines the strong impact of fluid venting on the benthic system, even though the flow velocity of 10 cm a−1 derived by the model is relative low compared to fluid flow rates found at other cold vent sites. Non-steady state simulations using measured fluid flow velocities as forcing demonstrate a rapid respond of the sediments within a few days to changes in advective flow. Moreover, they reveal that efficient methane oxidation in these sediments prevents methane outflow into the bottom water over a wide range of fluid flow velocities (<80 cm a−1). Only at flow rates exceeding approximately 100 cm a−1, does dissolved methane break through the sediment surface to induce large fluxes of up to 5000 μmol CH4 cm2 a−1 into the overlying bottom water.  相似文献   

18.
19.
Hyperalkaline and saline radioactive waste fluids with elevated temperatures from S-SX high-level waste tank farm at Hanford, WA, USA accidentally leaked into sediments beneath the tanks, initiating a series of geochemical processes and reactions whose significance and extent was unknown. Among the most important processes was the dissolution of soil minerals and precipitation of stable secondary phases. The objective of this investigation was to study the release of Fe into the aqueous phase upon dissolution of Fe-bearing soil minerals, and the subsequent formation of Fe-rich precipitates. Batch reactors were used to conduct experiments at 50 °C using solutions similar in composition to the waste fluids. Results clearly showed that, similarly to Si and Al, Fe was released from the dissolution of soil minerals (most likely phyllosilicates such as biotite, smectite and chlorite). The extent of Fe release increased with base concentration and decreased with Al concentration in the contacting solution. The maximum apparent rate of Fe release (0.566 × 10−13 mol m−2 s−1) was measured in the treatment with no Al and a concentration of 4.32 mol L−1 NaOH in the contact solution. Results from electron microscopy indicated that while Si and Al precipitated together to form feldspathoids in the groups of cancrinite and/or sodalite, Fe precipitation followed a different pathway leading to the formation of hematite and goethite. The newly formed Fe oxy-hydroxides may increase the sorption capacity of the sediments, promote surface mediated reactions such as precipitation and heterogeneous redox reactions, and affect the phase distribution of contaminants and radionuclides.  相似文献   

20.
《Applied Geochemistry》2005,20(1):193-205
Sorption and precipitation of Co(II) in simplified model systems related to the Hanford site high-level nuclear waste tank leakage were investigated through solution studies, geochemical modeling, and X-ray absorption fine structure (XAFS) spectroscopy. Studies of Co(II) sorption to pristine Hanford sediments (ERDF and Sub), which consist predominantly of quartz, plagioclase, and alkali feldspar, show an adsorption edge centered at pH  8.0 for both sediments studied, with sorption >99% above pH  9.0. Aqueous SiO2 resulting from dissolution of the sediments increased in concentration with increasing pH, though the systems remained undersaturated with respect to quartz. XAFS studies of Co(II) sorption to both sediment samples reveal the oxidation of Co(II) to Co(III), likely by dissolved O2, although this oxidation was incomplete in the Sub sediment samples. The authors propose that Fe(II) species, either in aqueous solution or at mineral surfaces, partially inhibited Co(II) oxidation in the Sub sediment samples, as these sediments contain significantly higher quantities of Fe(II)-bearing minerals which likely partially dissolved under the high-pH solution conditions. In alkaline solutions, Al precipitated as bayerite, gibbsite, or a mixture of the two at pH > 7; an amorphous gel formed at pH values less than 7. Aqueous Co concentrations were well below the solubility of known Co-bearing phases at low pH, suggesting that Co was removed from solution through an adsorption mechanism. At higher pH values, Co concentrations closely matched the solubility of a Co-bearing hydrotalcite-like solid. XAFS spectra of Co(II) sorbed to Al-hydroxide precipitates are similar to previously reported spectra for such hydrotalcite-like phases. The precipitation processes observed in this study can significantly reduce the environmental hazard posed by 60Co in the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号