首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examine the underlying structure of high resolution temporal rainfall by comparing the observed series with surrogate series generated by a invertible nonlinear transformation of a linear process. We document that the scaling properties and long range magnitude correlations of high resolution temporal rainfall series are inconsistent with an inherently linear model, but are consistent with the nonlinear structure of a multiplicative cascade model. This is in contrast to current studies that have reported for spatial rainfall a lack of evidence for a nonlinear underlying structure. The proposed analysis methodologies, which consider two-point correlation statistics and also do not rely on higher order statistical moments, are shown to provide increased discriminatory power as compared to standard moment-based analysis.  相似文献   

2.
The simulation of long time series of rainfall rates at short time steps remains an important issue for various applications in hydrology. Among the various types of simulation models, random multiplicative cascade models (RMC models) appear as an appealing solution which displays the advantages to be parameter parsimonious and linked to the multifractal theory. This paper deals with the calibration and validation of RMC models. More precisely, it discusses the limits of the scaling exponent function method often used to calibrate RMC models, and presents an hydrological validation of calibrated RMC models. A 8-year time series of 1-min rainfall rates is used for the calibration and the validation of the tested models. The paper is organized in three parts. In the first part, the scaling invariance properties of the studied rainfall series is shown using various methods (q-moments, PDMS, autocovariance structure) and a RMC model is calibrated on the basis of the rainfall data scaling exponent function. A detailed analysis of the obtained results reveals that the shape of the scaling exponent function, and hence the values of the calibrated parameters of the RMC model, are highly sensitive to sampling fluctuation and may also be biased. In the second part, the origin of the sensivity to sampling fluctuation and of the bias is studied in detail and a modified Jackknife estimator is tested to reduce the bias. Finally, two hydrological applications are proposed to validate two candidate RMC models: a canonical model based on a log-Poisson random generator, and a basic micro-canonical model based on a uniform random generator. It is tested in this third part if the models reproduce faithfully the statistical distribution of rainfall characteristics on which they have not been calibrated. The results obtained for two validation tests are relatively satisfactory but also show that the temporal structure of the measured rainfall time series at small time steps is not well reproduced by the two selected simple random cascade models.  相似文献   

3.
Great emphasis is being placed on the use of rainfall intensity data at short time intervals to accurately model the dynamics of modern cropping systems, runoff, erosion and pollutant transport. However, rainfall data are often readily available at more aggregated level of time scale and measurements of rainfall intensity at higher resolution are available only at limited stations. A distribution approach is a good compromise between fine-scale (e.g. sub-daily) models and coarse-scale (e.g. daily) rainfall data, because the use of rainfall intensity distribution could substantially improve hydrological models. In the distribution approach, the cumulative distribution function of rainfall intensity is employed to represent the effect of the within-day temporal variability of rainfall and a disaggregation model (i.e. a model disaggregates time series into sets of higher solution) is used to estimate distribution parameters from the daily average effective precipitation. Scaling problems in hydrologic applications often occur at both space and time dimensions and temporal scaling effects on hydrologic responses may exhibit great spatial variability. Transferring disaggregation model parameter values from one station to an arbitrary position is prone to error, thus a satisfactory alternative is to employ spatial interpolation between stations. This study investigates the spatial interpolation of the probability-based disaggregation model. Rainfall intensity observations are represented as a two-parameter lognormal distribution and methods are developed to estimate distribution parameters from either high-resolution rainfall data or coarse-scale precipitation information such as effective intensity rates. Model parameters are spatially interpolated by kriging to obtain the rainfall intensity distribution when only daily totals are available. The method was applied to 56 pluviometer stations in Western Australia. Two goodness-of-fit statistics were used to evaluate the skill—daily and quantile coefficient of efficiency between simulations and observations. Simulations based on cross-validation show that kriging performed better than other two spatial interpolation approaches (B-splines and thin-plate splines).  相似文献   

4.
《水文科学杂志》2013,58(5):917-935
Abstract

For urban drainage and urban flood modelling applications, fine spatial and temporal rainfall resolution is required. Simulation methods are developed to overcome the problem of data limitations. Although temporal resolution higher than 10–20 minutes is not well suited for detailed rainfall—runoff modelling for urban drainage networks, in the absence of monitored data, longer time intervals can be used for master planning or similar purposes. A methodology is presented for temporal disaggregation and spatial distribution of hourly rainfall fields, tested on observations for a 10-year period at 16 raingauges in the urban catchment of Dalmuir (UK). Daily rainfall time series are simulated with a generalized linear model (GLM). Next, using a single-site disaggregation model, the daily data of the central gauge in the catchment are downscaled to an hourly time scale. This hourly pattern is then applied linearly in space to disaggregate the daily data into hourly rainfall at all sites. Finally, the spatial rainfall field is obtained using inverse distance weighting (IDW) to interpolate the data over the whole catchment. Results are satisfactory: at individual sites within the region the simulated data preserve properties that match the observed statistics to an acceptable level for practical purposes.  相似文献   

5.
Spatial distribution of rainfall trends in Sicily (1921-2000)   总被引:7,自引:0,他引:7  
The feared global climate change could have important effects on various environmental variables including rainfall in many countries around the world. Changes in precipitation regime directly affect water resources management, agriculture, hydrology and ecosystems. For this reason it is important to investigate the changes in the spatial and temporal rainfall pattern in order to improve water management strategies.In this study a non-parametric statistical method (Mann-Kendall rank correlation method) is employed in order to verify the existence of trend in annual, seasonal and monthly rainfall and the distribution of the rainfall during the year. This test is applied to about 250 rain gauge stations in Sicily (Italy) after a series of procedures finalized to the estimation of missing records and to the verification of data consistency.In order to understand the regional pattern of precipitation in Sicily, the detected trends are spatially interpolated using spatial analysis techniques in a GIS environment.The results show the existence of a generalized negative trend for the entire region.  相似文献   

6.
High-resolution temporal rainfall data sequences serve as inputs for a range of applications in planning, design and management of small (especially urban) water resources systems, including continuous flow simulation and evaluation of alternate policies for environmental impact assessment. However, such data are often not available, since their measurements are costly and time-consuming. One alternative to obtain high-resolution data is to try to derive them from available low-resolution information through a disaggregation procedure. This study evaluates a random cascade approach for generation of high-resolution rainfall data at a point location. The approach is based on the concept of scaling in rainfall, or, relating the properties associated with the rainfall process at one temporal scale to a finer-resolution scale. The procedure involves two steps: (1) identification of the presence of scaling behavior in the rainfall process; and (2) generation of synthetic data possessing same/similar scaling properties of the observed rainfall data. The scaling identification is made using a statistical moment scaling function, and the log–Poisson distribution is assumed to generate the synthetic rainfall data. The effectiveness of the approach is tested on the rainfall data observed at the Sydney Observatory Hill, Sydney, Australia. Rainfall data corresponding to four different successively doubled resolutions (daily, 12, 6, and 3 h) are studied, and disaggregation of data is attempted only between these successively doubled resolutions. The results indicate the presence of multi-scaling behavior in the rainfall data. The synthetic data generated using the log–Poisson distribution are found to exhibit scaling behaviors that match very well with that for the observed data. However, the results also indicate that fitting the scaling function alone does not necessarily mean reproducing the broader attributes that characterize the data. This observation clearly points out the extreme caution needed in the application of the existing methods for identification of scaling in rainfall, especially since such methods are also prevalent in studies of the emerging satellite observations and thus in the broader spectrum of hydrologic modeling.  相似文献   

7.
The presence of scaling statistical properties in temporal rainfall has been well established in many empirical investigations during the latest decade. These properties have more and more come to be regarded as a fundamental feature of the rainfall process. How to best use the scaling properties for applied modelling remains to be assessed, however, particularly in the case of continuous rainfall time‐series. One therefore is forced to use conventional time‐series modelling, e.g. based on point process theory, which does not explicitly take scaling into account. In light of this, there is a need to investigate the degree to which point‐process models are able to ‘unintentionally’ reproduce the empirical scaling properties. In the present study, four 25‐year series of 20‐min rainfall intensities observed in Arno River basin, Italy, were investigated. A Neyman–Scott rectangular pulses (NSRP) model was fitted to these series, so enabling the generation of synthetic time‐series suitable for investigation. A multifractal scaling behaviour was found to characterize the raw data within a range of time‐scales between approximately 20 min and 1 week. The main features of this behaviour were surprisingly well reproduced in the simulated data, although some differences were observed, particularly at small scales below the typical duration of a rain cell. This suggests the possibility of a combined use of the NSRP model and a scaling approach, in order to extend the NSRP range of applicability for simulation purposes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Simplified, vertically-averaged soil moisture models have been widely used to describe and study eco-hydrological processes in water-limited ecosystems. The principal aim of these models is to understand how the main physical and biological processes linking soil, vegetation, and climate impact on the statistical properties of soil moisture. A key component of these models is the stochastic nature of daily rainfall, which is mathematically described as a compound Poisson process with daily rainfall amounts drawn from an exponential distribution. Since measurements show that the exponential distribution is often not the best candidate to fit daily rainfall, we compare the soil moisture probability density functions obtained from a soil water balance model with daily rainfall depths assumed to be distributed as exponential, mixed-exponential, and gamma. This model with different daily rainfall distributions is applied to a catchment in New South Wales, Australia, in order to show that the estimation of the seasonal statistics of soil moisture might be improved when using the distribution that better fits daily rainfall data. This study also shows that the choice of the daily rainfall distributions might considerably affect the estimation of vegetation water-stress, leakage and runoff occurrence, and the whole water balance.  相似文献   

10.
Simulation of quick runoff components such as surface runoff and associated soil erosion requires temporal high‐resolution rainfall intensities. However, these data are often not available because such measurements are costly and time consuming. Current rainfall disaggregation methods have shortcomings, especially in generating the distribution of storm events. The objectives of this study were to improve point rainfall disaggregation using a new magnitude category rainfall disaggregation approach. The procedure is introduced using a coupled disaggregation approach (Hyetos and cascade) for multisite rainfall disaggregation. The new procedure was tested with ten long‐term precipitation data sets of central Germany using summer and winter precipitation to determine seasonal variability. Results showed that dividing the rainfall amount into four daily rainfall magnitude categories (1–10, 11–25, 26–50, >50 mm) improves the simulation of high rainfall intensity (convective rainfall). The Hyetos model category approach (HyetosCat) with seasonal variation performs representative to observed hourly rainfall compared with without categories on each month. The mean absolute percentage accuracy of standard deviation for hourly rainfall is 89.7% in winter and 95.6% in summer. The proposed magnitude category method applied with the coupled HyetosCat–cascade approach reproduces successfully the statistical behaviour of local 10‐min rainfall intensities in terms of intermittency as well as variability. The root mean square error performance statistics for disaggregated 10‐min rainfall depth ranges from 0.20 to 2.38 mm for summer and from 0.12 to 2.82 mm for the winter season in all categories. The coupled stochastic approach preserves the statistical self‐similarity and intermittency at each magnitude category with a relatively low computational burden. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Availability of weather data at finer timescales such as hourly is vital in the application of dynamic physical and biological models. In this study, we have examined the suitability of various approaches (deterministic periodic versus stochastic) of disaggregating daily weather data into hourly data in the Cedar Creek watershed, TX, USA. We found the cosine function suitable to disaggregate daily maximum and minimum temperatures and wind speed data into respective hourly data. We also used a common logarithmic equation to compute vapor pressures from temperature data, and hence relative humidity (the ratio between actual and saturated vapor pressures multiplied by 100). Disaggregation following uniform distribution of daily rainfall over 24 h did not reproduce most statistical parameters computed from observed hourly rainfall data onsite. Conversely, both stochastic models formulated based on univariate (Hyetos) and multivariate (MuDRain) processes mimicked the measured hourly rainfall distributions very well. Overall, we found the MuDRain model superior, compared to other models to disaggregate daily rainfall data into hourly data.  相似文献   

12.
ABSTRACT

The interception process impacts rainfall magnitude and intensity under the canopy. In this study, the effect of plant interception on throughfall characteristics was assessed in the deciduous Caatinga vegetation, at different canopy development stages and for temporal scales ranging from seasonal to the intra-event scale. Throughfall and stemflow percentages were slightly higher at the onset of the rainy season, when leaf area density is low, with resulting lower interception losses. However, there was no statistical difference among the variables at the seasonal scale. At the intra-event scale, average and maximum throughfall intensity at different time intervals showed statistical difference between the stages of canopy development. Regardless of leaf area density and rainfall depth, vegetation is able to retain all the water up to 2 min in the beginning of each rainfall event with accumulated rainfall smaller than 0.6 mm. Furthermore, the Caatinga vegetation attenuates the rainfall intensity by 30–40%.  相似文献   

13.
The solar cycle induces strong periodicity in processes underlying monthly rainfall totals. Seasonally varying parameters of rainfall distributions can be estimated with reasonable reliability from relatively few years of monthly data. The distribution of annual totals or maxima in terms of these varying parameters can thus be used to predict long term annual characteristics from quite short records. Specification of seasonal variation of parameters as a harmonic process simplifies the derivations. Ignoring seasonal variation in the rainfall process leads to incorrect estimates of long-term extreme rainfalls when using traditional methodology.  相似文献   

14.
In modern hydrological practice large confidence is placed on modelling results that are used for planning and design. This is especially the case where the modelling results have been carefully verified against independent data. An underlying assumption of the calibration/verification process is that the whole data series is stationarity. Standard parametric and non-parametric tests are available for examining the stationary of hydrologic time series but it has been shown here that these may be inadequate for that purpose unless applied with care. Annual, seasonal, monthly and daily time series of precipitation and climate data were examined considering parts of the series formed using sequential windows. Seven standard parametric and non-parametric tests were applied to these relatively long series and while it was shown that some tests suggested that all series were stationary, most series were shown to be non-stationary in more than one of the tests, some of them at very high levels of significance. This apparently hidden non-stationarity could have very large effects on water resources modelling. These effects would have considerable influence in calibration and verification of models and in simulation of long series of water resources characteristics and could be especially important as the effects of climate change become more pervasive.  相似文献   

15.
Annual and monthly rainfall data generation schemes   总被引:2,自引:2,他引:0  
Synthetic annual and monthly rainfall data series are generated by using autoregressive (AR) processes, Thomas-Fiering (TF) model, method of fragments (F) and its modified version (MF), two-tier (TT) model, and a newly developed wavelet (W) approach. It is seen that the W approach is as well in preserving the statistical behavior of the observed data series as the classical annual and monthly hydrological data generation schemes used in this study. The W approach is found even better in replacing some particular characteristics such as the mean of the sequence and correlation between the successive months in the series. It is, therefore, proposed as a new annual and monthly hydrological data generation scheme.  相似文献   

16.
This study examines the role of rainfall variability on the spatial scaling structure of peak flows using the Whitewater River basin in Kansas as an illustration. Specifically, we investigate the effect of rainfall on the scatter, the scale break and the power law (peak flows vs. upstream areas) regression exponent. We illustrate why considering individual hydrographs at the outlet of a basin can lead to misleading interpretations of the effects of rainfall variability. We begin with the simple scenario of a basin receiving spatially uniform rainfall of varying intensities and durations and subsequently investigate the role of storm advection velocity, storm variability characterized by variance, spatial correlation and intermittency. Finally, we use a realistic space–time rainfall field obtained from a popular rainfall model that combines the aforementioned features. For each of these scenarios, we employ a recent formulation of flow velocity for a network of channels, assume idealized conditions of runoff generation and flow dynamics and calculate peak flow scaling exponents, which are then compared to the scaling exponent of the width function maxima. Our results show that the peak flow scaling exponent is always larger than the width function scaling exponent. The simulation scenarios are used to identify the smaller scale basins, whose response is dominated by the rainfall variability and the larger scale basins, which are driven by rainfall volume, river network aggregation and flow dynamics. The rainfall variability has a greater impact on peak flows at smaller scales. The effect of rainfall variability is reduced for larger scale basins as the river network aggregates and smoothes out the storm variability. The results obtained from simple scenarios are used to make rigorous interpretations of the peak flow scaling structure that is obtained from rainfall generated with the space–time rainfall model and realistic rainfall fields derived from NEXRAD radar data.  相似文献   

17.
Abstract

Basic hidden Markov models are very useful in stochastic environmental research but their ability to accommodate sufficient dependence between observations is somewhat limited. However, they can be modified in several ways to form a rich class of flexible models that are useful in many environmental applications. We consider a class of hidden Markov models that incorporate additional dependence among observations to model average regional rainfall time series. The focus of the study is on models that introduce additional dependence between the state level and the observation level of the process and also on models that incorporate dependence at observation level. Construction of the likelihood function of the models is described along with the usual second-order properties of the process. The maximum likelihood method is used to estimate the parameters of the models. Application of the proposed class of models is illustrated in an analysis of daily regional average rainfall time series from southeast and southwest England for the winter season during 1931 to 2010. Models incorporating additional dependence between the state level and the observation level of the process captured the distributional properties of the daily rainfall well, while the models that incorporate dependence at the observation level showed their ability to reproduce the autocorrelation structure. Changes in some of the regional rainfall properties during the time period are also studied.

Editor D. Koutsoyiannis  相似文献   

18.
Daily rainfall is a complex signal exhibiting alternation of dry and wet states, seasonal fluctuations and an irregular behavior at multiple scales that cannot be preserved by stationary stochastic simulation models. In this paper, we try to investigate some of the strategies devoted to preserve these features by comparing two recent algorithms for stochastic rainfall simulation: the first one is the modified Markov model, belonging to the family of Markov-chain based techniques, which introduces non-stationarity in the chain parameters to preserve the long-term behavior of rainfall. The second technique is direct sampling, based on multiple-point statistics, which aims at simulating a complex statistical structure by reproducing the same data patterns found in a training data set. The two techniques are compared by first simulating a synthetic daily rainfall time-series showing a highly irregular alternation of two regimes and then a real rainfall data set. This comparison allows analyzing the efficiency of different elements characterizing the two techniques, such as the application of a variable time dependence, the adaptive kernel smoothing or the use of low-frequency rainfall covariates. The results suggest, under different data availability scenarios, which of these elements are more appropriate to represent the rainfall amount probability distribution at different scales, the annual seasonality, the dry-wet temporal pattern, and the persistence of the rainfall events.  相似文献   

19.
Two analyses, one based on multiple regression and the other using the Holt–Winters algorithm, for investigating non‐stationarity in environmental time series are presented. They are applied to monthly rainfall and average maximum temperature time series of lengths between 38 and 108 years, from six stations in the Murray Darling Basin and four cities in eastern Australia. The first analysis focuses on the residuals after fitting regression models which allow for seasonal variation, the Pacific Decadal Oscillation (PDO) and the Southern Oscillation Index (SOI). The models provided evidence that rainfall is reduced during periods of negative SOI, and that the interaction between PDO and SOI pronounces this effect during periods of negative PDO. Following this, there was no evidence of any trend in either the PDO or SOI time series. The residuals from this regression were analysed with a cumulative sum (CUSUM) technique, and the statistical significance was assessed using a Monte Carlo method. The residuals were also analysed for volatility, autocorrelation, long‐range dependence and spatial correlation. For all ten rainfall and temperature time series, CUSUM plots of the residuals provided evidence of non‐stationarity for both temperature and rainfall, after removing seasonal effects and the effects of PDO and SOI. Rainfall was generally lower in the first half of the twentieth century and higher during the second half. However, it decreased again over the last 10 years. This pattern was highlighted with 5‐year moving average plots. The residuals for temperature showed a complementary pattern with increases in temperature corresponding to decreased rainfall. The second analysis decomposed the rainfall and temperature time series into random variation about an underlying level, trend and additive seasonal effects and changes in the level; trend and seasonal effects were tracked using a Holt–Winters algorithm. The results of this analysis were qualitatively similar to those of the regression analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
A long record (1862–2004) of seasonal rainfall and temperature from the Rome observatory of Collegio Romano are modeled in a nonstationary framework by means of the Generalized Additive Models in Location, Scale and Shape (GAMLSS). Modeling analyses are used to characterize nonstationarities in rainfall and related climate variables. It is shown that the GAMLSS models are able to represent the magnitude and spread in the seasonal time series with parameters which are a smooth function of time. Covariate analyses highlight the role of seasonal and interannual variability of large-scale climate forcing, as reflected in three teleconnection indexes (Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and Mediterranean Index), for modeling seasonal rainfall and temperature over Rome. In particular, the North Atlantic Oscillation is a significant predictor during the winter, while the Mediterranean Index is a significant predictor for almost all seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号