首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The terms “weather extremes” and “climate extremes” are widely used in meteorology, often in relation to climate change. This paper reviews the empirical investigations into parallel changes in extreme events and climate change published in recent years and looks at their relevance for the global energy system. Empirical investigation into the correlation of extremes with global warming covers five groups: changes in temperature, precipitation, wind (storm) extremes, tropical and extra-tropical circulation phenomena. For temperature extremes, extensive analyses demonstrate that extreme hot days and nights will likely become more frequent, and extreme cold days and nights less frequent. Intense precipitation events will likely become more frequent in most continental regions. Scientific confidence in the trends of the frequency, duration, and intensity of tropical cyclones, is still low. A poleward shift is observed for extratropical cyclones, whereas no convincing tendencies of many smaller-scale phenomena, for example, tornados, or hail, can yet be detected. All these extremes have serious implications for the energy sector.  相似文献   

2.
3.
The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level).  相似文献   

4.
Processes acting at the interface between the land surface and the atmosphere have a strong impact on the European summer climate, particularly during extreme years. These processes are to a large extent associated with soil moisture (SM). This study investigates the role of soil moisture?Catmosphere coupling for the European summer climate over the period 1959?C2006 using simulations with a regional climate model. The focus of this study is set on temperature and precipitation extremes and trends. The analysis is based on simulations performed with the regional climate model CLM, driven with ECMWF reanalysis and operational analysis data. The set of experiments consists of a control simulation (CTL) with interactive SM, and sensitivity experiments with prescribed SM: a dry and a wet run to determine the impact of extreme values of SM, as well as experiments with lowpass-filtered SM from CTL to quantify the impact of the temporal variability of SM on different time scales. Soil moisture?Cclimate interactions are found to have significant effects on temperature extremes in the experiments, and impacts on precipitation extremes are also identified. Case studies of selected major summer heat waves reveal that the intraseasonal and interannual variability of SM account for 5?C30% and 10?C40% of the simulated heat wave anomaly, respectively. For extreme precipitation events on the other hand, only the wet-day frequency is impacted in the experiments with prescribed soil moisture. Simulated trends for the past decades, which appear consistent with projected changes for the 21st century, are identified to be at least partly linked to SM-atmosphere feedbacks.  相似文献   

5.
气候变暖背景下降水持续性与相态变化的研究综述   总被引:1,自引:0,他引:1  
翟盘茂  廖圳  陈阳  余荣  袁宇锋  陆虹 《气象学报》2017,75(4):527-538
持续性降水和固态降水(或近地面气温为0℃左右的降水)都能导致洪涝和低温雨雪冰冻等灾害性的极端事件,对人民群众生命和财产安全以及社会经济发展也会造成严重危害。目前中外围绕降水量、极端降水事件变化等已开展了大量研究,但在降水持续性和相态变化的特征及其影响机理方面的研究仍显不足。因此,围绕降水持续性和相态变化的相关研究,对近20余年来取得的一些重要研究进展进行回顾。研究指出,在气候变暖背景下降水持续性和相态变化的特征在全球范围内表现出了区域上的不一致性。有关降水持续性变化方面,中国南方地区持续性降水过程及其产生的降水量呈现增多趋势,但北方地区呈现减少的趋势,而西南地区长持续性降水呈下降趋势。至于降水相态变化方面,中国南方地区持续性雨雪冰冻事件在气候变暖背景下总体呈减少趋势。这些变化除了与气候变暖有关外,可能还与大气遥相关模态、低频振荡及ENSO事件等引起的大气环流异常有关。今后应该更多开展气候变暖背景下降水持续性和相态变化的特征、可能机理以及其与气候变暖的可能联系方面的研究,以期通过相关研究深入理解中国降水持续性与相态变化的规律、成因及其与旱涝、低温雨雪灾害等的联系,进一步加深对气候变暖背景下中国天气、气候的影响及其机理的认识。   相似文献   

6.
极端天气和气候事件的变化   总被引:4,自引:0,他引:4       下载免费PDF全文
自1950年以来的观测证据表明,有些极端天气和气候事件已经发生了变化。全球尺度上,人为影响可能已经导致极端日最低和最高温度升高;由于平均海平面上升,人类活动可能已对沿海极端高水位事件的增加产生了影响;具有中等信度的是,人为影响已导致全球强降水增加;由于热带气旋历史记录的不确定性、缺乏对热带气旋与气候变化之间关联的物理机制的完整认识及热带气旋自然变率的程度,将可检测到的热带气旋活动变化归因于人为影响仅具有低信度。将单一的极端事件变化归因于人为气候变化具有挑战性。对极端事件变化预估的信度取决于事件的类型、区域和季节、观测资料的数量和质量、基本物理过程的认知水平及模式对其模拟的可靠性。  相似文献   

7.
The results are analyzed of the ensemble forecast of temperature and precipitation extremes on the territory of Siberia by the middle of the 21st century based on the regional climate model of the Main Geophysical Observatory (MGO) with the resolution of 25 km. The results of computation of oceanic components of CMIP3 coupled models are used as the boundary conditions on the sea surface. It is demonstrated that the high resolution of the regional model enables to simulate the observed climate variability in a more realistic way as compared to the low-resolution models. The analysis of the signal-to-noise ratio for future climate changes made it possible to determine to which degree its internal variability for various time scales (from interannual to interdecennial one) bounds the potential of the ensemble to compute the statistically significant anthropogenic changes of extremes. A comparative analysis of variations of extreme and average seasonal characteristics of the Siberian climate is carried out.  相似文献   

8.
与IPCC第五次评估报告(AR5)相比,在第六次评估报告(AR6)评估中,观测的极端天气气候事件变化证据,特别是归因于人为影响的证据加强。人类活动造成的气候变化已影响到全球每个区域的许多极端天气气候事件。随着未来全球变暖进一步加剧,预估极端热事件、强降水、农业生态干旱的强度和频次以及强台风(飓风)比例等将增加,越罕见的极端天气气候事件,其发生频率的增长百分比越大。这些结论再次凸显了应对气候变化和极端天气气候事件的必要性和紧迫性。  相似文献   

9.
Many analyses of the paleoclimate record include conclusions about extremes, with a focus on the unprecedented nature of recent climate events. While the use of extreme value theory is becoming common in the analysis of the instrumental climate record, applications of this framework to the spatio-temporal analysis of paleoclimate records remain limited. This article develops a Bayesian hierarchical model to investigate spatially varying trends and dependencies in the parameters characterizing the distribution of extremes of a proxy data set, and applies it to the site-wise decadal maxima and minima of a gridded network of temperature sensitive tree ring density time series over northern North America. The statistical analysis reveals significant spatial associations in the temporal trends of the location parameters of the generalized extreme value distributions: maxima are increasing as a function of time, with stronger increases in the north and east of North America; minima are significantly increasing in the west, possibly decreasing in the east, and exhibit no changes in the center of the region. Results indicate that the distribution varies as a function of both space and time, with tree ring density maxima becoming more extreme as a function of time and minima having diverging temporal trends, by spatial location. Results of this proxy-only analysis are a first step towards directly reconstructing extremal climate behavior, as opposed to mean climate behavior, by linking extremes in the proxy record to extremes in the instrumental record.  相似文献   

10.
The study examines future scenarios of precipitation extremes over Central Europe in an ensemble of 12 regional climate model (RCM) simulations with the 25-km resolution, carried out within the European project ENSEMBLES. We apply the region-of-influence method as a pooling scheme when estimating distributions of extremes, which consists in incorporating data from a ‘region’ (set of gridboxes) when fitting an extreme value distribution in any single gridbox. The method reduces random variations in the estimates of parameters of the extreme value distribution that result from large spatial variability of heavy precipitation. Although spatial patterns differ among the models, most RCMs simulate increases in high quantiles of precipitation amounts when averaged over the area for the late-twenty-first century (2070–2099) climate in both winter and summer. The sign as well as the magnitude of the projected change vary only little for individual parts of the distribution of daily precipitation in winter. In summer, on the other hand, the projected changes increase with the quantile of the distribution in all RCMs, and they are negative (positive) for parts of the distribution below (above) the 98% quantile if averaged over the RCMs. The increases in precipitation extremes in summer are projected in spite of a pronounced drying in most RCMs. Although a rather general qualitative agreement of the models concerning the projected changes of precipitation extremes is found in both winter and summer, the uncertainties in climate change scenarios remain large and would likely further increase considerably if a more complete ensemble of RCM simulations driven by a larger suite of global models and with a range of possible scenarios of the radiative forcing is available.  相似文献   

11.
尽管气候变化是全球性的现象,但其表现和结果随区域不同而不同,因此区域气候信息对于气候变化的作用和风险评估很重要。基于此,IPCC第六次评估报告(AR6)第一工作组(WGI)报告第十章对如何从全球链接到区域气候变化方面进行了评估。区域气候变化是对自然强迫和人类活动的区域响应、对大尺度气候系统内部变率的响应和区域气候本身反馈过程的相互作用结果。因此,本章重点关注如何从多套观测资料,不同模式的集合,物理过程的理解、专家判断和本地信息等多元信息中有效提炼出区域信息的方法。通过提炼方法指出人类活动是许多次大陆尺度上1950年代以来区域平均温度变化的主要驱动力,但参考时段和阈值的选择对人类活动信号是否出现和出现的早晚有影响。人类活动对一些区域的多年代际降水变化有一定贡献,但其不确定性相对全球平均而言更大。气候系统内部变率可以在很大程度上延迟和阻碍人类活动信号在区域气候变化中的出现。区域气候变化的评估给决策者提供了更多有用的信息,增加了评估报告的适用性。  相似文献   

12.
Many studies have observed changes in the frequency and intensity of precipitation extremes and floods during the last decade(s). Natural variability by climate oscillations partly determines the observed evolution of precipitation extremes. Based on a technique for the identification and analysis of changes in extremes, this paper shows that precipitation extremes have oscillatory behaviour at multidecadal time scales. The analysis is based on a unique dataset of 108 years of 10-minute precipitation intensities at Uccle (Brussels), not affected by instrumental changes. We also checked the consistency of the findings with long precipitation records at 724 stations across Europe and the Middle East. The past 100 years show for northwestern Europe, both in winter and summer, larger and more precipitation extremes around the 1910s, 1950–1960s, and more recently during the 1990s–2000s. The oscillations for southwestern Europe are anti-correlated with these of northwestern Europe, thus with oscillation highs in the 1930–1940s and 1970s. The precipitation oscillation peaks are explained by persistence in atmospheric circulation patterns over the North Atlantic during periods of 10 to 15 years.  相似文献   

13.
This study aims at exploring potential impacts of land-use vegetation change (LUC) on regional climate variability and extremes. Results from a pair of Australian Bureau of Meteorology Research Centre (BMRC) climate model 54-yr (1949-2002) integrations have been analysed. In the model experiments, two vegetation datasets are used, with one representing current vegetation coverage in China and the other approximating its potential coverage without human intervention. The model results show potential impacts ...  相似文献   

14.
Observations as well as most climate model simulations are generally in accord with the hypothesis that the hydrologic cycle should intensify and become highly volatile with the greenhouse-gas-induced climate change, although uncertainties of these projections as well as the spatial and seasonal variability of the changes are much larger than for temperature extremes. In this study, we examine scenarios of changes in extreme precipitation events in 24 future climate runs of ten regional climate models, focusing on a specific area of the Czech Republic (central Europe) where complex orography and an interaction of other factors governing the occurrence of heavy precipitation events result in patterns that cannot be captured by global models. The peaks-over-threshold analysis with increasing threshold censoring is applied to estimate multi-year return levels of daily rainfall amounts. Uncertainties in scenarios of changes for the late 21st century related to the inter-model and within-ensemble variability and the use of the SRES-A2 and SRES-B2 greenhouse gas emission scenarios are evaluated. The results show that heavy precipitation events are likely to increase in severity in winter and (with less agreement among models) also in summer. The inter-model and intra-model variability and related uncertainties in the pattern and magnitude of the change is large, but the scenarios tend to agree with precipitation trends recently observed in the area, which may strengthen their credibility. In most scenario runs, the projected change in extreme precipitation in summer is of the opposite sign than a change in mean seasonal totals, the latter pointing towards generally drier conditions in summer. A combination of enhanced heavy precipitation amounts and reduced water infiltration capabilities of a dry soil may severely increase peak river discharges and flood-related risks in this region.  相似文献   

15.
Climate change scenarios with a high spatial and temporal resolution are required in the evaluation of the effects of climate change on agricultural potential and agricultural risk. Such scenarios should reproduce changes in mean weather characteristics as well as incorporate the changes in climate variability indicated by the global climate model (GCM) used. Recent work on the sensitivity of crop models and climatic extremes has clearly demonstrated that changes in variability can have more profound effects on crop yield and on the probability of extreme weather events than simple changes in the mean values. The construction of climate change scenarios based on spatial regression downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translated the coarse resolution GCM grid-box predictions of climate change to site-specific values. These values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather data. This approach permits the incorporation of changes in the mean and variability of climate in a consistent and computationally inexpensive way. The stochastic weather generator used in this study, LARS-WG, has been validated across Europe and has been shown to perform well in the simulation of different weather statistics, including those climatic extremes relevant to agriculture. The importance of downscaling and the incorporation of climate variability are demonstrated at two European sites where climate change scenarios were constructed using the UK Met. Office high resolution GCM equilibrium and transient experiments.  相似文献   

16.
Assessment of climate extremes in the Eastern Mediterranean   总被引:4,自引:0,他引:4  
Summary Several seasonal and annual climate extreme indices have been calculated and their trends (over 1958 to 2000) analysed to identify possible changes in temperature- and precipitation-related climate extremes over the eastern Mediterranean region. The most significant temperature trends were revealed for summer, where both minimum and maximum temperature extremes show statistically significant warming trends. Increasing trends were also identified for an index of heatwave duration. Negative trends were found for the frequency of cold nights in winter and especially in summer. Precipitation indices highlighted more regional contrasts. The western part of the study region, which comprises the central Mediterranean and is represented by Italian stations, shows significant positive trends towards intense rainfall events and greater amounts of precipitation. In contrast, the eastern half showed negative trends in all precipitation indices indicating drier conditions in recent times. Significant positive trends were revealed for the index of maximum number of consecutive dry days, especially for stations in southern regions, particularly on the islands.Current affiliation: National Observatory of Athens, Athens, Greece.  相似文献   

17.
Observing the full range of climate change impacts at the local scale is difficult. Predicted rates of change are often small relative to interannual variability, and few locations have sufficiently comprehensive long-term records of environmental variables to enable researchers to observe the fine-scale patterns that may be important to understanding the influence of climate change on biological systems at the taxon, community, and ecosystem levels. We examined a 50-year meteorological and hydrological record from the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, an intensively monitored Long-Term Ecological Research site. Of the examined climate metrics, trends in temperature were the most significant (ranging from 0.7 to 1.3 °C increase over 40–50 year records at 4 temperature stations), while analysis of precipitation and hydrologic data yielded mixed results. Regional records show generally similar trends over the same time period, though longer-term (70–102 year) trends are less dramatic. Taken together, the results from HBEF and the regional records indicate that the climate has warmed detectably over 50 years, with important consequences for hydrological processes. Understanding effects on ecosystems will require a diversity of metrics and concurrent ecological observations at a range of sites, as well as a recognition that ecosystems have existed in a directionally changing climate for decades, and are not necessarily in equilibrium with the current climate.  相似文献   

18.
Going to the Extremes   总被引:8,自引:1,他引:8  
Projections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an ensemble of 9 GCMs contributing to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC-AR4), under a range of emissions scenarios. Our focus is on the consensus from the GCM ensemble, in terms of direction and significance of the changes, at the global average and geographical scale. The climate extremes described by the ten indices range from heat-wave frequency to frost-day occurrence, from dry-spell length to heavy rainfall amounts. Historical trends generally agree with previous observational studies, providing a basic sense of reliability for the GCM simulations. Individual model projections for the 21st century across the three scenarios examined are in agreement in showing greater temperature extremes consistent with a warmer climate. For any specific temperature index, minor differences appear in the spatial distribution of the changes across models and across scenarios, while substantial differences appear in the relative magnitude of the trends under different emissions rates. Depictions of a wetter world and greater precipitation intensity emerge unequivocally in the global averages of most of the precipitation indices. However, consensus and significance are less strong when regional patterns are considered. This analysis provides a first overview of projected changes in climate extremes from the IPCC-AR4 model ensemble, and has significant implications with regard to climate projections for impact assessments. An erratum to this article is available at . An erratum to this article can be found at  相似文献   

19.
Human-caused climate change can affect weather and climate extremes, as well as mean climate properties. Analysis of observations and climate model results shows that previously rare (5th percentile) summertime average temperatures are presently occurring with greatly increased frequency in some regions of the 48 contiguous United States. Broad agreement between observations and a mean of results based upon 16 global climate models suggests that this result is more consistent with the consequences of increasing greenhouse gas concentrations than with the effects of natural climate variability. This conclusion is further supported by a statistical analysis based on resampling of observations and model output. The same climate models project that the prevalence of previously extreme summer temperatures will continue to increase, occurring in well over 50% of summers by mid-century.  相似文献   

20.
A set of climate parameters (mean precipitation, number of wet days, daily intensity, and number of days with more than 50 mm rainfall) and a quantile-based approach are used to assess the expected changes in daily precipitation characteristics over the Pyrenees predicted for the 21st century using a set of regional climate models (RCMs). The features of the geographic location and topography of the Pyrenees imply that the climate of the region is highly complex. The results point toward an intensification of extremes, with a generalized tendency toward increasing drought periods, an increasing trend in daily intensity, and an increasing contribution of intense events to total precipitation; however, the results are subject to substantial spatial and seasonal variability, mainly related to the Atlantic-Mediterranean gradient and the longitudinal disposition of the main axis of the range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号