首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
利用双向耦合的区域气候模式和大气化学模式系统, 研究了中国与邻近地区人为污染排放引起对流层臭氧变化和产生的辐射强迫.结果表明, 污染排放对对流层臭氧含量的影响有明显的季节变化, 对北方的影响不如南方显著, 西部的季节变化稳定且小于东部, 内陆污染地区各季节臭氧柱含量的变化量均较高.对整个模拟区域而言, 臭氧变化量的年平均值为30.928 DU, 春季最大为32.168 DU, 而空间分布变化在12~38 DU之间.臭氧变化量对北方地区辐射的影响较小, 而对低纬和华东地区影响较大, 臭氧变化量引起的晴空地气系统短波辐射强迫、长波辐射强迫的平均值分别是0.185 W·m-2和0.464 W·m-2, 标准化短波辐射强迫与净辐射强迫值为0.006 W·m-2·DU-1和0.021 W·m-2·DU-1.气候反馈过程对对流层臭氧含量的影响范围在-0.470~0.752 DU之间, 包含气候反馈过程的区域年平均臭氧变化量是30.942 DU.在气候反馈条件下, 臭氧变化量的短波和长波辐射强迫分别是0.249 W·m-2及 0.482 W·m-2, 标准化的短波与净辐射强迫值为0.008 W·m-2·DU-1和0.024 W·m-2·DU-1.臭氧变化量导致地表温度的变化范围在±0.80 K之间.  相似文献   

2.
平流层对对流层的作用是准确评估、预测对流层气候变化的一个重要方面。其中平流层成分尤其是臭氧的变化,可以改变平流层乃至对流层的辐射平衡,从而影响平流层、对流层的热动力过程。本文从辐射、动力2个角度介绍了平流层臭氧影响对流层气候变化的若干研究进展。平流层臭氧可以通过长短波辐射的方式对对流层大气造成辐射强迫,利用大气化学气候模式可以定量计算平流层臭氧变化引起的辐射强迫,但是辐射强迫的估算受模式中辐射传输模块本身缺陷的影响存在不确定性。动力方面,平流层臭氧变化产生的辐射效应可以改变温度的垂直和经向梯度,造成波折射指数的变化,进而影响平流层甚至对流层内波的折射与反射,通过上对流层下平流层区域内的波—流相互作用,对对流层气候产生影响。另外,南极臭氧损耗可通过大气环状模影响冬春季中高纬度对流层的天气气候,但是其影响的强度大小以及物理机制仍需进一步的确认。值得注意的是,北极平流层臭氧的变化与北半球中高纬度气候变化之间的关系相比南半球要更加复杂,需要更为深入的研究。  相似文献   

3.
黑碳气溶胶辐射强迫全球分布的模拟研究   总被引:15,自引:3,他引:15  
张华  马井会  郑有飞 《大气科学》2008,32(5):1147-1158
利用一个改进的辐射传输模式,结合全球气溶胶数据集(GADS),计算晴空条件下冬夏两季黑碳气溶胶的直接辐射强迫在对流层顶和地面的全球分布。计算结果表明,与温室气体引起的整层大气都是正的辐射强迫不同,黑碳气溶胶的辐射强迫在对流层顶为正值,而在地面的辐射强迫却是负值。作者从理论上解释了造成这种结果的原因。对北半球冬季和夏季而言,在对流层顶黑碳气溶胶的全球辐射强迫的平均值分别为0.085W/m2和0.155 W/m2,在地面则分别为-0.37 W/m2和-0.63 W/m2。虽然气溶胶的辐射强迫主要依赖于其本身的光学性质和在大气中的浓度,太阳高度角和地表反照率对黑碳气溶胶的辐射强迫会产生很大的影响。研究指出:黑碳气溶胶在对流层顶正的辐射强迫和在地面负的辐射强迫的绝对值都随太阳天顶角的余弦和地表反照率的增加线性增大;地表反照率对黑碳气溶胶辐射强迫的强度和分布都有重要影响。黑碳气溶胶的辐射强迫分布具有明显的纬度变化特征,冬夏两季的大值区都位于30°N~90°N之间,表明人类活动是造成黑碳气溶胶辐射强迫的主要原因。  相似文献   

4.
长波区间太阳辐射对气候模拟的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
长波区间的太阳辐射在气候模式中往往被忽略。利用国家气候中心BCC_AGCM2.0.1大气环流模式,采用矩阵算子辐射传输算法,研究了长波区间太阳辐射对气候模式辐射通量和温度模拟结果的影响。结果表明,以ISCCP和CERES辐射资料为标准,考虑长波区间太阳辐射后,长波区间晴空大气地表向下辐射通量平均误差减小2.05 W/m2,均方根误差减少1.29 W/m2;长波区间晴空大气模式顶向上辐射通量平均误差减小0.70 W/m2,均方根误差减小0.21 W/m2;长波区间有云大气地表向下辐射通量平均误差减小1.38 W/m2,均方根误差减小1.03 W/m2;长波区间有云大气模式顶向上辐射通量平均误差减小0.99 W/m2,均方根误差减小0.30 W/m2。以ECMWF再分析资料为标准,考虑长波区间太阳辐射后,赤道地区上对流层—下平流层区域温度的冷偏差得到改善,对流层顶温度平均误差减小0.27 K,均方根误差减小0.25 K。  相似文献   

5.
沙尘气溶胶辐射强迫全球分布的模拟研究   总被引:7,自引:2,他引:5  
张华  马井会  郑有飞 《气象学报》2009,67(4):510-521
为了定景了解沙尘气溶胶对气候的影响,文中利用一个改进的辐射传输模式,结合伞球气溶胶数据集(G-ADS),计算了晴空条件下,冬夏两季沙尘气溶胶的直接辐射强迫在对流层顶和地面的全球分布,并讨论了云对沙尘气溶胶辐射强迫的影响.计算结果表明,对北半球冬季和夏季而言,在对流层顶沙尘气溶胶的全球短波辐射强迫的平均值分别为-0.477和-0.501 W/m2;长波辐射强迫分别为0.11和0.085 W/m2;全球平均短波地面辐射强迫冬夏两季分别为-1.362和-1.559 W/m2;长波辐射强迫分别为0.274和0.23 W/m2.沙尘气溶胶在对流层顶和地面的负辐射强迫的绝对值郁随太阳天顶角的余弦和地表反照率的增加而增大;地表反照率对沙尘气溶胶辐射强迫的强度和分布都有重要影响.研究指出:云对沙尘气溶胶的直接辐射强迫的影响不仅取决于云量,而且取决于云的高度和云水路径,以及地面反照率和太阳高度角等综合因素.中云和低云对沙尘气溶胶在对流层顶的短波辐射强迫的影响比高云明显.云的存在都使对流层顶长波辐射强迫减少,其中低云的影响最为明显.因此,在估算沙尘气溶胶总的直接辐射强迫时,云的贡献不可忽视.  相似文献   

6.
BCC_AGCM2.1对中国东部地区云辐射特征模拟的偏差分析   总被引:2,自引:0,他引:2  
张祎  王在志  宇如聪 《气象学报》2012,70(6):1260-1275
通过与观测及再分析资料的对比,评估了中国国家气候中心大气环流模式BCC_AGCM 2.1对中国东部地区云辐射特征的模拟性能,并着重分析了模拟偏差的原因.在云辐射特征的基本气候态模拟方面,模式能大致再现中国东部中纬度层状云大值带,以及层状云冷季多、暖季少的季节特征,模拟的短波云辐射强迫也具有与观测相对应的季节变化特征.在云辐射强迫和地面温度相互影响过程的模拟方面,模式也能模拟出与观测相近的相互作用过程,即地面温度降低伴随着层状云云量增多以及负的净云辐射强迫加强,升温时层状云云量减少和净云辐射强迫减弱.但模式模拟的大陆层状云云量系统性偏少(尤其在冷季),使得模式在该处的短波云辐射强迫明显偏弱.初步分析表明,造成层状云模拟差异的主要原因是在中国西南地区对流层低层模式模拟的偏南气流明显偏弱以及陆-气潜热通量偏小.偏南气流偏弱导致低层散度和垂直运动条件不利于中层云的形成.同时偏南气流偏弱也不利于向西南地区的水汽输送,再加上模式模拟地表向上潜热通量偏小,这二者都使得模式模拟中国西南区域对流层低层的水汽含量严重偏少,相对湿度偏低,同样不利于层状云生成和发展.水汽偏少进一步导致在冷异常情况下青藏高原下游云辐射-地表温度反馈模拟偏弱,即呈现冷异常时,水汽条件偏弱限制了云量增加,弱化了进一步降低温度的反馈过程.  相似文献   

7.
利用NCAR的全球大气模式CAM3分析了黑碳气溶胶在大气顶和地表的直接辐射强迫分布及其季节变化,重点讨论了云对黑碳气溶胶直接辐射强迫的影响,以及黑碳气溶胶对中国夏季降水的影响。结果表明:黑碳气溶胶在大气顶和地表的直接辐射强迫分布范围和强度都具有明显的季节变化。有云条件下,黑碳气溶胶在大气顶产生正的直接辐射强迫,全球年平均强迫值为+0.33 W·m-2;在地表产生负的直接辐射强迫,全球年平均强迫值为-0.56 W·m-2。晴空条件下,黑碳气溶胶在大气顶和地表的全球年平均辐射强迫值分别为+0.21 和-0.71 W·m-2。云的存在对黑碳气溶胶的辐射强迫产生了很大的影响,使大气顶的正辐射强迫增加,地表的负辐射强迫减小。黑碳气溶胶导致夏季中国北方30°N~45°N之间区域降水明显增加;而中国长江以南地区除了海南和广西的部分城市外,降水明显减少。模拟结果表明,中国夏季近50年来经常发生的南涝北旱并非由黑碳气溶胶引起。  相似文献   

8.
我国对流层大气臭氧的数值模拟   总被引:7,自引:2,他引:7  
何东阳  黄美元 《大气科学》1993,17(6):741-749
本文建立了一个用于对流层大气臭氧模拟的三维欧拉模式,针对影响臭氧光化学转化的各种因素及我国城市光化学污染的特点,模式中简化了光化学项的计算。根据实际观测资料,提出了模拟云雾对臭氧影响的参数化方法,并确定了云雾作用系数,通过模式的数值模拟,得出了我国对流层大气臭氧,特别是近地面层大气臭氧的分布状况、我国城市光化学污染的分布特征以及它们的季节变化规律.  相似文献   

9.
全球气候模式对东亚地区地表短波辐射的模拟检验   总被引:2,自引:1,他引:1       下载免费PDF全文
利用WCRPCMIP3提供的18个全球气候模式输出结果, 检验了其对东亚地区地表短波辐射的模拟能力, 结果表明:多模式集合的多年平均地表短波辐射模拟偏高约8.7 W/m 2, 晴空地表短波辐射模拟偏高约3.4 W/m 2, 地表短波云辐射强迫模拟偏低约5.3 W/m2, 模式间的标准差分别达到9.6, 7.8 W/m2和8 W/ m2; 多模式集合能够很好地模拟出地表短波辐射的纬向平均季节变化的位相特征, 但在量值上还有较大的差距; 模拟偏差分析表明, 多模式集合的区域年平均地表短波辐射、晴空地表短波辐射、地表短波云辐射强迫的均方根偏差分别为34.7, 17.1 W/m 2和29.1 W/ m2, 表明云在地表短波辐射的模拟偏差中起着重要作用; 多模式集合能够很好地模拟出地表入射短波辐射年变化的线性减小趋势, 但模式高估了晴空入射辐射的减小趋势, 而模拟的云辐射强迫变化趋势与ERA 40完全相反。  相似文献   

10.
耦合模式FGOALS_s模拟的东亚夏季风   总被引:9,自引:6,他引:3  
本文评估了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室的海气耦合模式FGOALS_s对东亚夏季风的模拟能力, 并通过与观测海温强迫下单独大气模式SAMIL试验结果的比较, 分析了海气耦合过程对模式性能的影响。结果表明, FGOALS_s基本能够模拟出东亚夏季风系统的气候态分布及其演变过程, 但也存在明显偏差, 主要表现为模拟的温度场在对流层中上层一致性偏冷, 导致模式中环流系统强度偏弱; 而温度经向梯度模拟的不足, 直接影响到东亚副热带西风急流的模拟。通过与观测海温强迫下SAMIL模拟结果的对比发现, SAMIL模拟的温度场、 环流场以及风场较之耦合模式结果更接近观测, 但也存在与FGOALS_s类似的模式偏差。因此, 大气模式固有的偏差对耦合模式的模拟偏差有重要影响。分析发现, 对于西太平洋降水的模拟而言, 耦合模式结果更加合理, 表明海气相互作用过程对模式性能有重要影响。本文的结果表明, 大气模式自身的误差是导致耦合模式误差的主要原因。通过更新云-辐射模块改进大气模式模拟的温度场, 应是FGOALS_s后续发展的首要工作。  相似文献   

11.
The global three-dimensional Lagrangian chemistry-transport model STOCHEM has been used to follow the changes in the tropospheric distributions of the two major radiatively-active trace gases, methane and tropospheric ozone, following the emission of pulses of the short-lived tropospheric ozone precursor species, methane, carbon monoxide, NOx and hydrogen. The radiative impacts of NOx emissionswere dependent on the location chosen for the emission pulse, whether at the surface or in the upper troposphere or whether in the northern or southern hemispheres. Global warming potentials were derived for each of the short-lived tropospheric ozone precursor species by integrating the methane and tropospheric ozone responses over a 100 year time horizon. Indirect radiative forcing due to methane and tropospheric ozone changes appear to be significant for all of the tropospheric ozone precursor species studied. Whereas the radiative forcing from methane changes is likely to be dominated by methane emissions, that from tropospheric ozone changes is controlled by all the tropospheric ozone precursor gases, particularly NOxemissions. The indirect radiative forcing impacts of tropospheric ozone changes may be large enough such that ozone precursors should be considered in the basket of trace gases through which policy-makers aim to combat global climate change.  相似文献   

12.
Releases of halocarbons into the atmosphere over the last 50 years are among the factors that have contributed to changes in the Earth’s climate since pre-industrial times. Their individual and collective potential to contribute directly to surface climate change is usually gauged through calculation of their radiative efficiency, radiative forcing, and/or Global Warming Potential (GWP). For those halocarbons that contain chlorine and bromine, indirect effects on temperature via ozone layer depletion represent another way in which these gases affect climate. Further, halocarbons can also affect the temperature in the stratosphere. In this paper, we use a narrow-band radiative transfer model together with a range of climate models to examine the role of these gases on atmospheric temperatures in the stratosphere and troposphere. We evaluate in detail the halocarbon contributions to temperature changes at the tropical tropopause, and find that they have contributed a significant warming of ~0.4 K over the last 50 years, dominating the effect of the other well-mixed greenhouse gases at these levels. The fact that observed tropical temperatures have not warmed strongly suggests that other mechanisms may be countering this effect. In a climate model this warming of the tropopause layer is found to lead to a 6% smaller climate sensitivity for halocarbons on a globally averaged basis, compared to that for carbon dioxide changes. Using recent observations together with scenarios we also assess their past and predicted future direct and indirect roles on the evolution of surface temperature. We find that the indirect effect of stratospheric ozone depletion could have offset up to approximately half of the predicted past increases in surface temperature that would otherwise have occurred as a result of the direct effect of halocarbons. However, as ozone will likely recover in the next few decades, a slightly faster rate of warming should be expected from the net effect of halocarbons, and we find that together halocarbons could bring forward next century’s expected warming by ~20 years if future emissions projections are realized. In both the troposphere and stratosphere CFC-12 contributes most to the past temperature changes and the emissions projection considered suggest that HFC-134a could contribute most of the warming over the coming century.  相似文献   

13.
The spatial distribution, radiative forcing, and climatic effects of tropospheric ozone in China during summer were investigated by using the regional climate model RegCM4. The results revealed that the tropospheric ozone column concentration was high in East China, Central China, North China, and the Sichuan basin during summer. The increase in tropospheric ozone levels since the industrialization era produced clear-sky shortwave and clear-sky longwave radiative forcing of 0.18 and 0.71 W m–2, respectively, which increased the average surface air temperature by 0.06 K and the average precipitation by 0.22 mm day–1 over eastern China during summer. In addition, tropospheric ozone increased the land–sea thermal contrast, leading to an enhancement of East Asian summer monsoon circulation over southern China and a weakening over northern China. The notable increase in surface air temperature in northwestern China, East China, and North China could be attributed to the absorption of longwave radiation by ozone, negative cloud amount anomaly, and corresponding positive shortwave radiation anomaly. There was a substantial increase in precipitation in the middle and lower reaches of the Yangtze River. It was related to the enhanced upward motion and the increased water vapor brought by strengthened southerly winds in the lower troposphere.  相似文献   

14.
 The concept of radiative forcing has been extensively used as an indicator of the potential importance of climate change mechanisms. It allows a first order estimate of the global-mean surface temperature change; and it is possible to compare forcings from different mechanisms, on the assumption that similar global-mean forcings produce similar global-mean surface temperature changes. This study illustrates two circumstances where simple models show that the conventional definition of radiative forcing needs refining. These problems arise mainly with the calculation of forcing due to stratospheric ozone depletion. The first part uses simple arguments to produce an alternative definition of radiative forcing, using a time-dependent stratospheric adjustment method, which can give different forcings from those calculated using the standard definition. A seasonally varying ozone depletion can produce a quite different seasonal evolution of forcing than fixed dynamical heating arguments would suggest. This is especially true of an idealised and extreme “Antarctic ozone hole” type scenario where a sudden loss of ozone is followed by a sudden recovery. However, for observed ozone changes the annually averaged forcing is usually within 5% of the forcing calculated using the fixed dynamical heating approximation. Another problem with the accepted view of radiative forcing arises from the definition of the tropopause considered in the second part of this study. For a correct radiative forcing estimate the “tropopause” needs to separate the atmosphere into regions with a purely radiative response and those with a radiative-convective response. From radiative-convective model results it is found that radiative equilibrium conditions persist for several kilometres below the tropopause (the tropopause being defined as where the lapse rate reaches 2 K km-1). This region needs to be included in stratospheric adjustment calculations for an accurate calculation of forcing, as it is only the region between the surface and the top of the convection that can be considered as a single, forced, system. Including temperature changes in this region has a very large effect on stratospheric ozone forcing estimates, and can reduce the magnitude of the forcing by more than a factor of two. Although these experiments are performed using simple climate models, the results are of equal importance for the analysis of forcing-response relationships using general circulation models. Received: 25 October 1996/Accepted: 14 April 1997  相似文献   

15.
As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS,and the transport model of BC aerosols has also been established and combined with the RIEMS model.Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.  相似文献   

16.
Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at ?0.15 W m?2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m?2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060–2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with ?0.34 and ?0.28 W m?2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between ?12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed ?3 W m?2.  相似文献   

17.
Oxidation by hydroxyl radicals is the main removal process for organic compounds in the troposphere. This oxidation acts as a source of ozone and as a removal process for hydroxyl and peroxy radicals, thereby reducing the efficiency of methane oxidation and promoting the build-up of methane. Emissions of organic compounds may therefore lead to the build-up of two important radiatively-active trace gases: methane and ozone. Emission pulses of 10 organic compounds were followed in a global 3-D Lagrangian chemistry-transport model to quantify their indirect greenhouse gas impacts through changes induced in the tropospheric distributions of methane and ozone. The main factors influencing the global warming potentials of the 10 organic compounds were found to be their spatial emission patterns, chemical reactivity and transport, molecular complexity and oxidation products formed. The indirect radiative forcing impacts of organic compounds may be large enough that ozone precursors should be considered in the basket of trace gases through which policy-makers aim to combat global climate change.  相似文献   

18.
Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.  相似文献   

19.
Black carbon aerosols absorb solar radiation and decrease planetary albedo, and thus can contribute to climate warming. In this paper, the dependence of equilibrium climate response on the altitude of black carbon is explored using an atmospheric general circulation model coupled to a mixed layer ocean model. The simulations model aerosol direct and semi-direct effects, but not indirect effects. Aerosol concentrations are prescribed and not interactive. It is shown that climate response of black carbon is highly dependent on the altitude of the aerosol. As the altitude of black carbon increases, surface temperatures decrease; black carbon near the surface causes surface warming, whereas black carbon near the tropopause and in the stratosphere causes surface cooling. This cooling occurs despite increasing planetary absorption of sunlight (i.e. decreasing planetary albedo). We find that the trend in surface air temperature response versus the altitude of black carbon is consistent with our calculations of radiative forcing after the troposphere, stratosphere, and land surface have undergone rapid adjustment, calculated as “regressed” radiative forcing. The variation in climate response from black carbon at different altitudes occurs largely from different fast climate responses; temperature dependent feedbacks are not statistically distinguishable. Impacts of black carbon at various altitudes on the hydrological cycle are also discussed; black carbon in the lowest atmospheric layer increases precipitation despite reductions in solar radiation reaching the surface, whereas black carbon at higher altitudes decreases precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号