首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The massive Zn-(Pb) sulfide ore body at Rampura-Agucha in Bhilwara district, Rajasthan, occurs within graphitic metapelites surrounded by garnet-biotite-sillimanite gneiss containing concordant bodies of amphibolite. These rocks and the sulfide ores have been studied to estimate the pressure, temperature and fluid composition associated with upper amphibolite facies metamorphism. Geothermobarometric calculations involving garnet-biotite and garnet-hornblende pairs, as well as sphalerite-hexagonal pyrrhotite-pyrite and garnet-plagioclase-sillimanite-quartz assemblages indicate that the most pervasive P-T condition during peak of regional metamorphism was 650°C and 6 kb, and was attained between the first and second deformations in the region. Some temperature-pressure estimates also cluster around 500°C–5.1 kb which probably represent retrograde cooling during unloading. Consideration of devolatilization equilibria in the C-O-H-S system at the pervasive metamorphic conditions mentioned above shows that the metamorphic fluid was H2O-rich ( ) but also had a substantial component of . and were the other important phases in the fluid. CO (XCO = 0.002) and were the minor phases in the fluid. It is probable that a part of this aqueous fluid was consumed by re-/neocrystallization of hydrous silicate phases like chlorite during the retrogressive metamorphic path, so that fluid entrapped in quartz below 450°C was rendered CO2-rich (Holleret al 1996).  相似文献   

2.
《Gondwana Research》2000,3(1):79-89
The structural and petrographic studies of the metamorphic rocks of the Schirmacher region, East Antarctica, indicate polyphase metamorphism, dominantly of an early granulite and later amphibolite facies metamorphism. In order to understand the metamorphic evolution of the region, the temperature and pressure of metamorphism has been estimated for felsic gneisses and charnockites using conventional models of geothermometry and geobarometry. The studies showed that, the early granulite facies metamorphism and charnockitization took place around 827±29°C at 7.3±0.3 kbar, while the later amphibolite facies metamorphism and granitization took place around 654±27°C at 5.4±0.4 kbar. The pressure and temperature recorded in these rocks suggest that metamorphism was initiated at 20 to 27 km depth, with a geothermal gradient of around 32°C/km. The P-T conditions reflect isobaric cooling path, with a gentle dP/dT slope (∼10±1 bar/°C). The isobaric cooling path owes its origin to the underplating of crust by mantle derived magmas.  相似文献   

3.
大别山产出的榴辉岩相岩石包括石榴橄榄岩、榴辉岩、榴云片岩、榴辉片麻岩、榴玉英岩和榴辉大理岩等不同系列,它们均分布于花岗质片麻岩中。矿物共生序列研究表明,榴辉岩相岩石经历了从绿帘角闪岩相、柯石英榴辉岩相、角闪榴辉岩相、绿帘角闪岩相到绿片岩相的演化过程。花岗质片麻岩及变质火山—沉积岩系并未经历超高压变质作用,但却与榴辉岩相岩石经历了同一期绿帘角闪岩相变质事件,证明二者在地壳范围内发生了构造合并  相似文献   

4.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

5.
This paper records, for the first time, the mineralization of gold (0.98–2.76 ppm) and uranium (133–640 ppm) in marbles from the Arabian-Nubian Shield of the Eastern Desert of Egypt. These auriferous and uraniferous marbles are hosted by sheared and altered ophiolitic serpentinized ultramafic rocks of Gebel El-Rukham (ER), Wadi Daghbag (DG), and Wadi Al Barramiyah (BM). They occur as massive or banded in pod-like or bedded shapes. The ER and BM-mineralized marbles are impure calcitic, whereas the DG marble is impure calcitic to impure dolomitic. Their protolith are pure limestones and dolomitic limestones with probable argillaceous components (BM marble), and their metamorphism (Pan-African) was retrograde. Peaks of metamorphism were at granulite-amphibolite facies for the ER and BM marbles, forming diopside (Al2O3?=?0.17–1.07 wt.%) at 600–900°C and augite (Al2O3?=?2.45–9.40 wt.%) at 825–975°C, and at the amphibolite facies for DG marble, recrystallising the carbonate minerals and forming tremolite. The lowest temperatures of metamorphism were at the upper subgreenschist facies as chlorite (ER and BM marbles) and kaolinite (DG marble) were formed. Metamorphic fluids were, most probably, essentially binary H2O–CO2 mixtures with low NaCl and HF concentrations. Gold in the studied mineralized marbles occurs as native nuggets (10–35 μm) having globule, rod, crescent, and streak shapes, in pores, vugs, and fissures. The source of gold in all marbles is mostly the country ultramafic rocks. Timing of gold mineralization relative to the marblization and metamorphism of the country source ultramafic rocks was both syn- and post-metamorphic. Concerning the ER and DG marbles, it was syn-metamorphic, where Au liberation and transportation were mostly by the metamorphic fluids. The composition and temperature of these fluids were most probably inappropriate for formation of the sulfide complexes of gold. The gold mineralization of BM marble, on the other hand, was mostly post-metamorphic. The mineralising fluid was of surficial origin under oxidizing conditions. The encountered uranium minerals are of secondary origin such as autunite, uranophane, and carnotite. These minerals occur as fine oval aggregates and irregular grains (10–50 μm) usually filling fissures and vugs. The uranium mineralization can be classified as surficial of ages <1.5 Ma. It is proposed that the U was transported from its source (might be flesite and trachyte dikes for the ER and DG marbles and granite rocks for BM marble) to the marble rocks by surface and/or underground water related to the pluvial periods in Egypt. In BM marble, U and Au have mutual mineralizing fluid but different paragenesis.  相似文献   

6.
The east sector of the southern Qinling belt is, lithologically, composed mainly of metapelites,quartzites, marbles and small amount of metabasites and gneisses, whose protoliths are the Silurian, Devonian andless commonly the Sinian and Upper Palaeozoic. They have been subjected at least to two epochs of metamorphism.The early epoch belongs to progressive metamorphism which is centered on high amphibolite-granulite facies in theFuping area and changed outwards into low amphibolite facies (staurolite-kyanite zone), epidote amphibolite facies(garnet zone) and greenschist facies (chlorite and biotite zones), the metamorphic age of which is about 220-260 Ma.This early-epoch metamorphism belongs to different pressure types: the rocks from greenschist to low amphibolitefacies belong to the typical medium-pressure type which shows geothermal gradients of about 17-20℃/km and wasprobably produced by a crustal thickening process related to continental collision, and the high amphibolite-granulitefacies belongs to the low-pressure type which shows geothermal gradients of about 25-38℃/km and was probablyaffected by some magmatic heats. Based on the basic characteristics of the P-T paths of the different facies calculatedfrom the garnet zonations, it can be deduced that the metamorphism of medium-pressure facies series took place dur-ing an imbricated thickening process, rather than during the uplifting process after thickening. The late-epoch meta-morphism belongs to dynamic metamorphism of greenschist facies which is overprinted on the early-epoch meta-morphic rocks and is Yanshanian or Himalayan in age, probably related to intracontinental orogeny.  相似文献   

7.
吉林省夹皮沟太古代岩石分布及变质、变形作用研究   总被引:3,自引:0,他引:3  
孙胜龙 《吉林地质》1992,11(2):61-70
在野外1∶10000地质填图及室内研究工作基础上,认为夹皮沟地区太古代主体岩石是中酸性侵入体(TTG),已变质成为长英质片麻岩。太古代上壳岩以包体形式分布在长英质片麻岩中。太古代岩石经历了三期变质作用和三期变形作用。太古代上壳岩经历韧性变形作用和具有麻粒岩相变质怍用,长英质片麻岩经历早期韧性变形作用和角闪岩相变质作用,而晚期经历脆—韧性变形作用和绿片岩相变质作用。低级变质作用和晚期变形作用改造、叠加早期变质作用和变形作用。  相似文献   

8.
ABSTRACT The northern Dabie terrane consists of a variety of metamorphic rocks with minor mafic-ultramafic blocks, and abundant Jurassic-Cretaceous granitic plutons. The metamorphic rocks include orthogneisses, amphibolite, migmatitic gneiss with minor granulite and metasediments; no eclogite or other high-pressure metamorphic rocks have been found. Granulites of various compositions occur either as lenses, blocks or layers within clinopyroxene-bearing amphibolite or gneiss. The palaeosomes of most migmatitic gneisses contain clinopyroxene; melanosomes and leucosomes are intimately intermingled, tightly folded and may have formed in situ. The granulites formed at about 800–830 °C and 10–14 kbar and display near-isothermal decompression P–T paths that may have resulted from crust thickened by collision. Plagioclase-amphibole coronae around garnets and matrix PI + Hbl assemblages from mafic and ultramafic granulites formed at about 750–800 °C. Partial replacement of clinopyroxene by amphibole in gneiss marks amphibolite facies retrograde metamorphism. Amphibolite facies orthogneisses and interlayered amphibolites formed at 680–750 °C and c. 6 kbar. Formation of oligoclase + orthoclase antiperthite after plagioclase took place in migmatitic gneisses at T ≤ 490°C in response to a final stage of retrograde recrystallization. These P–T estimates indicate that the northern Dabie metamorphic granulite-amphibolite facies terrane formed in a metamorphic field gradient of 20–35 °C km-1 at intermediate to low pressures, and may represent the Sino-Korean hangingwall during Triassic subduction for formation of the ultrahigh- and high-P units to the south. Post-collisional intrusion of a mafic-ultramafic cumulate complex occurred due to breakoff of the subducting slab.  相似文献   

9.
据近期成果,贺兰山—阿拉善地区出露的巨厚变质杂岩可划分为中太古界贺兰山群和叠布斯格群(其全岩Rb—Sr等时年龄为3108.3和3218.8Ma),上太古界阿拉善群和下元古界的赵池沟群、阿拉坦敖包群;它们具不同的变质矿物共生组合,太古界变质岩属低压高温变质的麻粒岩相;下元古界为低—低中压区域动力(热流)变质的绿片岩相岩石。太古界有较强的混合岩化、花岗岩化作用,并蕴藏有铁、石墨、矽线石、刚玉等多种矿产。  相似文献   

10.
姜继圣  刘志宏 《岩石学报》1997,13(3):346-355
根据15万区域地质调查,将区内的早前寒武纪基底划分为变质上壳岩、中粗粒黑云长英片麻岩、变黑云母钾长花岗岩和变质基性岩四个岩石单元。通过对上述岩石单元岩石类型、地球化学特征、变质变形作用及同位素年代学研究,对其形成时序进行了讨论,由此确定了本区早前寒武纪基底的地质演化轮廓,即在中晚太古时期,本区经历了由玄武安山岩和英安岩双峰式火山建造为主体的上壳岩系的形成阶段,并于2.6Ga遭受角闪岩相变质;随即伴有大规模的TTG深成岩浆活动,晚太古末经历绿帘角闪岩相的区域变质作用;至早元古初期,深熔成因的钾质花岗岩侵位,区内已存的早期变质岩石受到该期钾质岩浆的交代改造,并在其成岩之后遭受绿片岩相的区域变质。  相似文献   

11.
U-Pb isotope analyses of zircon and titanite extracted from different rocks of the Felbertal scheelite deposit yield the following information: (1) An age of 593±22 Ma (2) is obtained for zircon crystallization in the scheelite-bearing matrix of an eruption breccia in the western ore field. (2) Discordant zircons from an elongated, up to 8 m thick scheelite-rich quartzite body in the eastern ore field give an upper intercept age of 544±5 Ma. This quartzite contains a laminated, fine-grained scheelite mineralization. (3) Zircons from a small granitoid intrusion of the western ore field reveal an age of 336±16 Ma, and concordant titanites document an age of 282±2 Ma for Variscan amphibolite facies metamorphism. Both events, granitoid intrusion and later metamorphism caused ore re-mobilization, including the formation of yellowish fluorescent (molybdo-) scheelite porphyroblasts. (4) For a narrow lamprop-1hyric dike in the western ore field, a concordant titanite age of 283±7 Ma is obtained. This age is identical with the titanites from the amphibolite facies metamorphic intrusion. Tiny scheelite grains were tapped by the dike from pre-existing scheelite mineralizations in the truncated host rocks. (5) Alpine metamorphism at 31±4 Ma did not exceed lowermost amphibolite facies conditions, and it caused scheelite re-mobilization on a minor scale only, producing bluish fluorescent porphyroblasts in quartz veinlets and veins, as well as bluish fluorescent scheelite rims around older scheelite grains. Moreover, crosscutting Alpine fissure fillings show bluish fluorescent, inclusion-free scheelite. (6) The preservation of Variscan titanites, the absence of Alpine titanite growth, and the large degree of Variscan scheelite re-mobilization demonstrate that amphibolite facies metamorphism in the Felbertal area has a Variscan age. This result clearly documents Variscan tectono-metamorphism to be the dominant event, instead of the hitherto surmised Alpine metamorphism. This multi-stage evolution of the Felbertal ore bodies corroborates the view that tungsten deposits are conditioned by several succeeding thermal events, leading to a series of stages that ultimately produce high-grade scheelite concentrations. These high-grade ores predominately occur along shear zones of different age, accompanied by the formation of large volumes of low-grade scheelite mineralizations along host rock foliations and quartz veinlets and veins.  相似文献   

12.
The Bajgan Complex, one of the basement constituents of the arc massif in Iranian Makran forms a rugged, deeply incised terrain. The complex consists of pelitic schists with minor psammitic and basic schists, calc silicate rocks, amphibolites, marbles, metavolcanosediments, mafic and felsic intrusives as well as ultramafic rocks. Metapelitic rocks show an amphibolite facies regional metamorphism and contain garnet, biotite, white mica, quartz, albite ± rutile ± apatite. Thermobarometry of garnet schist yields pressure of more than 9 kbar and temperatures between 560 and 675 °C. The geothermal gradient obtained for the peak of regional metamorphism is 19 °C/km, corresponding to a depth of ca. 31 km. Replacement of garnet by chlorite and epidote suggest greenschist facies metamorphism due to a decrease in temperature and pressure through exhumation and retrograde metamorphism (370–450 °C and 3–6 kbar). The metapelitic rocks followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal decline following tectonic thickening. The formation of medium-pressure metamorphic rocks is related to presence of active subduction of the Neotethys Oceanic lithosphere beneath Eurasia in the Makran.  相似文献   

13.
14.
桐柏秦岭岩群的两类变质作用   总被引:1,自引:1,他引:0  
任留东  李崇  王彦斌  李淼  蔡春红 《岩石学报》2016,32(6):1596-1610
本文重点对河南桐柏地区的秦岭岩群进行了观察与研究,根据野外地质、岩相关系及同位素测年资料,提出该区秦岭岩群具有明显不同的两类变质作用,一是较早期的高温麻粒岩相变质作用,以包体或长透镜群、甚至巨型条块状局限于中部郭庄组的花岗质片麻岩之中。根据伟晶岩、片麻岩及麻粒岩锆石年龄的综合限定,该变质作用的时间可能为~498Ma,多数人主张的445~430Ma的麻粒岩相变质年龄实际上是早期锆石被后期岩浆或变质事件引起的同位素体系重启年龄。另一种是相对晚期的角闪岩相变质作用,变质程度以角闪岩相为主,局部达高角闪岩相,没有任何早期高温或高压变质的残留迹象,形成秦岭岩群中主导类型的变质作用。同样,采用伟晶岩及有关片麻岩和麻粒岩中锆石测年限定,角闪岩相变质时间可能为~472Ma。高温麻粒岩的产出具有其特殊机制,大量的花岗质岩浆侵位过程中把地壳深部的高温麻粒岩裹挟上升至浅部层次,随后一起遭受区域上的角闪岩相变质作用。  相似文献   

15.
The central part of the Carolina terrane in western South Carolina comprises a 30 to 40 km wide zone of high grade gneisses that are distinct from greenschist facies metavolcanic rocks of the Carolina slate belt (to the SE) and amphibolite facies metavolcanic and metaplutonic rocks of the Charlotte belt (to the NW). This region, termed the Silverstreet domain, is characterized by penetratively deformed felsic gneisses, granitic gneisses, and amphibolites. Mineral assemblages and textures suggest that these rocks formed under high‐pressure metamorphic conditions, ranging from eclogite facies through high‐P granulite to upper amphibolite facies. Mafic rocks occur as amphibolite dykes, as metre‐scale blocks of coarse‐grained garnet‐clinopyroxene amphibolite in felsic gneiss, and as residual boulders in deeply weathered felsic gneiss. Inferred omphacite has been replaced by a vermicular symplectite of sodic plagioclase in diopside, consistent with decompression at moderate to high temperatures and a change from eclogite to granulite facies conditions. All samples have been partially or wholly retrograded to amphibolite assemblages. We infer the following P‐T‐t history: (1) eclogite facies P‐T conditions at ≥ 1.4 GPa, 650–730 °C (2) high‐P granulite facies P‐T conditions at 1.2–1.5 GPa, 700–800 °C (3) retrograde amphibolite facies P‐T conditions at 0.9–1.2 GPa and 720–660 °C. This metamorphic evolution must predate intrusion of the 415 Ma Newberry granite and must postdate formation of the Charlotte belt and Slate belt arcs (620 to 550 Ma). Comparison with other medium temperature eclogites and high pressure granulites suggests that these assemblages are most likely to form during collisional orogenesis. Eclogite and high‐P granulite facies metamorphism in the Silverstreet domain may coincide with a ≈570–535 Ma event documented in the western Charlotte belt or to a late Ordovician‐early Silurian event. The occurrence of these high‐P assemblages within the Carolina terrane implies that, prior to this event, the western Carolina terrane (Charlotte belt) and the eastern Carolina terrane (Carolina Slate belt) formed separate terranes. The collisional event represented by these high‐pressure assemblages implies amalgamation of these formerly separate terranes into a single composite terrane prior to its accretion to Laurentia.  相似文献   

16.
The preservation of premetamorphic, whole-rock oxygen isotope ratios in Adirondack metasediments shows that neither these rocks nor adjacent anorthosites and gneisses have been penetrated by large amounts of externally derived, hot CO2-H2O fluids during granulite facies metamorphism. This conclusion is supported by calculations of the effect of fluid volatilization and exchange and is also independently supported by petrologic and phase equilibria considerations. The data suggest that these rocks were not an open system during metamorphism; that fluid/rock ratios were in many instances between 0.0 and 0.1; that externally derived fluids, as well as fluids derived by metamorphic volatilization, rose along localized channels and were not pervasive; and thus that no single generalization can be applied to metamorphic fluid conditions in the Adirondacks.Analyses of 3 to 4 coexisting minerals from Adirondack marbles show that isotopic equilibrium was attained at the peak of granulite and upper amphibolite facies metamorphism. Thus the isotopic compositions of metamorphic fluids can be inferred from analyses of carbonates and fluid budgets can be constructed.Carbonates from the granulite facies are on average, isotopically similar to those from lower grade or unmetamorphosed limestones of the same age showing that no large isotopic shifts accompanied high grade metamorphism. Equilibrium calculations indicate that small decreases in 18O, averaging 1 permil, result from volatilization reactions for Adirondack rock compositions. Additional small differences between amphibolite and granulite facies marbles are due to systematic lithologie differences.The range of Adirondack carbonate 18O values (12.3 to 27.2) can be explained by the highly variable isotopic compositions of unmetamorphosed limestones in conjunction with minor 18O and 13C depletions caused by metamorphic volatilization suggesting that many (and possibly most) marbles have closely preserved their premetamorphic isotopic compositions. Such preservation is particularly evident in instances of high 18O calcites (25.0 to 27.2), low 18O wollastonites (–1.3 to 3.5), and sharp gradients in 18O (18 permil/15m between marble and anorthosite, 8 permil/25 m in metasediments, and 6 permil/1 m in skarn).Isotopic exchange is seen across marble-anorthosite and marble-granite contacts only at the scale of a few meters. Small (<5 m) marble xenoliths are in approximate exchange equilibrium with their hosts, but for larger xenoliths and layers of marble there is no evidence of exchange at distances greater than 10 m from meta-igneous contacts.  相似文献   

17.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   

18.
赞皇变基性岩中锆石的U-Pb定年及其地质意义   总被引:4,自引:0,他引:4  
赞皇变质杂岩区位于阜平杂岩南部,地处华北克拉通中部造山带的中段,和中部带北段杂岩一样,是洞悉华北克拉通前寒武纪基底构造演化历史的一个重要窗口.研究区变基性岩可分为斜长角闪岩和角闪斜长片麻岩两种,二者均以似层状方式产于黑云斜长片麻岩或长英质片麻岩中,斜长角闪岩亦可呈透镜状,二者后期与围岩一起共同经历了高角闪岩相变质作用....  相似文献   

19.
The Broken Hill Pb-Zn deposit, New South Wales Australia, is hosted in granulite facies gneisses of the Southern Curnamona Province (SCP) that have long been known to record a polydeformational and polymetamorphic history. The details of this potentially prolonged tectonothermal history have remained poorly understood because of a historical emphasis on conventional (i.e. grain mount) U-Pb zircon geochronology to reveal details of the sedimentary, magmatic and metamorphic history of the rock that crops out in the vicinity of the city of Broken Hill. An alternative approach to unravelling the metamorphic history of the granulite facies gneisses in and around Broken Hill is to date accessory minerals, such as monazite, that participate in sub-solidus metamorphic reactions. We have taken advantage of the high spatial resolution and high sensitivity afforded by SHRIMP monazite geochronology to reconstruct the early history of the metamorphic rocks at Broken Hill. In contrast to previous studies, in situ analysis of monazite grains preserved in their original textural context in polished thin sections is used. Guided by electron microprobe X-ray maps, SHRIMP U-Pb dates for three distinct monazite compositional domains record pulses of monazite growth at c. 1657 Ma, c. 1630 Ma and c. 1602 Ma. It is demonstrated that these ages correspond to monazite growth during lower amphibolite facies, upper amphibolite facies and granulite facies metamorphism, respectively. It is speculated that this progressive heating of the SCP crust may have been driven by inversion of the upper crust during the Olarian Orogeny that was pre-heated by magmatic underplating at c. 1657 Ma.  相似文献   

20.
The metamorphic rocks of the Aligudarz-Khonsar region can be divided into nine groups: slate, phyllite, sericite schist, biotite-muscovite schist, garnet schist, garnet-staurolite schist, staurolite schist, mylonitic granite, and marble. In this metamorphic region, four phases of metamorphism can be identified (dynamothermal, thermal, dynamic and retrograde metamorphism) and there are three deformation phases (D1, D2 and D3). Paleozoic pelagic shales experienced prograde metamorphism and polymetamorphism from the greenschist to amphibolite facies along the kyanite geotherm. The metapelites show prograde dynamothermal metamorphism from the greenschist to amphibolite facies. Maximum degree of dynamothermal metamorphism is seen in the Nughan bridge area. Also development of the mylonitic granites in the Nughan bridge area shows that dynamic metamorphism in this area was more intense than in other parts of the AligudarzKhonsar metapelitic zone. The chemical zoning of garnets shows three stages of growth and syn-tectonic formation. With ongoing metamorphism, staurolite appeared, and the rocks reached amphibolite facies, but the degree of metamorphism did not increase past the kyanite zone. Thus, metamorphism of the pelitic sediments occurred at the greenschist to amphibolite facies (kyanite zone). Thermodynamic studies of these rocks indicate that the metapelites in the Aligudarz-Khonsar region formed at 490–550°C and 0.47–5.6 kbar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号