首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.  相似文献   

2.
Guo  Wei  Wu  Jun  Hu  Yao  Li  Yunsong  Yang  T. Y. 《地震工程与工程振动(英文版)》2019,18(2):433-446
Adding dampers is a commonly adopted seismic risk mitigation strategy for modern buildings, and the corresponding design procedure of dampers has been well established by the Chinese Building Code. Even though all types of dampers are designed by the same procedure, actual seismic performance of the building may differ from one to the others. In this study, a nine-story benchmark steel building is established, and three different and typical types of dampers are designed according to the Chinese Building Code to realize structural vibration control under strong earthquake excitation. The seismic response of the prototype building equipped with a viscoelastic damper, viscous damper and buckling-restrained brace(BRB) subjected to 10 earthquake records are calculated, and Incremental Dynamic Analysis(IDA) is performed to describe progressive damage of the structure under increasing earthquake intensity. In the perspective of fragility, it shows that the viscoelastic damper has the highest collapse margin ratio(CMR), and the viscous damper provides the best drift control. Both the BRB and viscoelastic dampers can effectively reduce the floor acceleration responses in the mid-rise building.  相似文献   

3.
This paper describes the three‐dimensional nonlinear analysis of six 19‐storey steel moment‐frame buildings, designed per the 1997 Uniform Building Code, under strong ground motion records from near‐source earthquakes with magnitudes in the range of 6.7–7.3. Three of these buildings possess a reentrant corner irregularity, while the remaining three possess a torsional plan irregularity. The records create drift demands of the order of 0.05 and plastic rotation demands of the order of 4–5% of a radian in the buildings with reentrant corners. These values point to performance at or near ‘Collapse Prevention’. Twisting in the torsionally sensitive buildings causes the plastic rotations on the moment frame on one face of the building (4–5% of a radian) to be as high as twice of that on the opposite face (2–3% of a radian). The asymmetric yield pattern implies a lower redundancy in the lateral force‐resisting system as the failure of the heavily loaded frame could result in a total loss of resistance to torsion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The nonlinear behavior of a soil-foundation system may alter the seismic response of a structure by providing additional flexibility to the system and dissipating hysteretic energy at the soil-foundation interface. However, the current design practice is still reluctant to consider the nonlinearity of the soil-foundation system, primarily due to lack of reliable modeling techniques. This study is motivated towards evaluating the effect of nonlinear soil-structure interaction (SSI) on the seismic responses of low-rise steel moment resisting frame (SMRF) structures. In order to achieve this, a Winkler-based approach is adopted, where the soil beneath the foundation is assumed to be a system of closely-spaced, independent, nonlinear spring elements. Static pushover analysis and nonlinear dynamic analyses are performed on a 3-story SMRF building and the performance of the structure is evaluated through a variety of force and displacement demand parameters. It is observed that incorporation of nonlinear SSI leads to an increase in story displacement demand and a significant reduction in base moment, base shear and inter-story drift demands, indicating the importance of its consideration towards achieving an economic, yet safe seismic design.  相似文献   

5.
The local design and construction practices in the United Arab Emirates(UAE),together with Dubai’s unique rate of development,warrant special attention to the selection of Lateral Force-Resisting Systems(LFRS).This research proposes four different feasible solutions for the selection of the LFRS for tall buildings and quantifies the impact of these selections on seismic performance and cost.The systems considered are: Steel Special Moment-Resisting Frame(SMRF),Concrete SMRF,Steel Dual System(SMRF with Special Steel Plates Shear Wall,SPSW),and Concrete Dual System(SMRF with Special Concrete Shear Wall,SCSW).The LFRS selection is driven by seismic setup as well as the adopted design and construction practices in Dubai.It is found that the concrete design alternatives are consistently less expensive than their steel counterparts.The steel dual system is expected to have the least damage based on its relatively lesser interstory drifts.However,this preferred performance comes at a higher initial construction cost.Conversely,the steel SMRF system is expected to have the most damage and associated repair cost due to its excessive flexibility.The two concrete alternatives are expected to have relatively moderate damage and repair costs in addition to their lesser initial construction cost.  相似文献   

6.
Earthquake codes have been revised and updated depending on the improvements in the representation of ground motions, soils and structures. These revisions have been more frequently seen in recent years. One of the key changes in earthquake codes has been performed on the design spectra. In this paper, the design spectra recommended by Turkish Earthquake Code and three other well known codes (Uniform Building Code, Eurocode 8, and International Building Code) are considered for comparison. The main purpose of this study is to investigate the differences caused by the use of different codes in the dynamic analysis and seismic verification of given types of buildings located at code defined different sites. The differences in expressions and some important points for elastic and inelastic spectra defined by the codes are briefly illustrated in tables and figures. Periods, base shears, lateral displacements and interstory drifts for the analyzed buildings located at code defined ground type are comparatively presented.  相似文献   

7.
The Campus Earthquake Program (CEP) of the University of California (UC) started in March 1996, and involved a partnership among seven campuses of the UC—Berkeley, Davis, Los Angeles, Riverside, San Diego, Santa Barbara, Santa Cruz—and the Lawrence Livermore National Laboratory (LLNL). The aim of the CEP was to provide University campuses with site-specific assessments of their earthquake strong motion exposure, to complement estimates they obtain from consultants according to the state-of-the-practice (SOP), i.e. Building Codes (UBC 97, IBC 2000), and Probabilistic Seismic Hazard Analysis (PSHA). The Building Codes are highly simplified tools, while the more sophisticated PSHA is still somewhat generic in its approach because it usually draws from many earthquakes not necessarily related to the faults threatening the site under study.Between 1996 and 2001, the site-specific studies focused on three campuses: Riverside, San Diego, and Santa Barbara. Each campus selected 1–3 sites to demonstrate the methods and procedures used by the CEP: Rivera Library and Parking Lots (PL) 13 and 16 at UCR, Thornton Hospital, the Cancer Center, and PL 601 at UCSD, and Engineering I building at UCSB. The project provided an estimate of strong ground motions at each selected site, for selected earthquake scenarios. These estimates were obtained by using an integrated geological, seismological, geophysical, and geotechnical approach, that brings together the capabilities of campus and laboratory personnel. Most of the site-specific results are also applicable to risk evaluation of other sites on the respective campuses.The CEP studies have provided a critical assessment of whether existing campus seismic design bases are appropriate. Generally speaking, the current assumptions are not acknowledging the severity of the majority of expected motions. Eventually, both the results from the SOP and from the CEP should be analyzed, to arrive at decisions concerning the design-basis for buildings on UC campuses.  相似文献   

8.
The performance‐based seismic design of steel special moment‐resisting frame (SMRF) structures is formulated as a multiobjective optimization problem, in which conflicting design criteria that respectively reflect the present capital investment and the future seismic risk are treated simultaneously as separate objectives other than stringent constraints. Specifically, the initial construction expenses are accounted for by the steel material weight as well as by the number of different standard steel section types, the latter roughly quantifying the degree of design complexity related additional construction cost; the seismic risk is considered in terms of maximum interstory drift demands at two hazard levels with exceedance probabilities being 50% and 2% in 50 years, respectively. The present formulation allows structural engineers to find an optimized design solution by explicitly striving for a desirable compromise between the initial investment and seismic performance. Member sizing for code‐compliant design of a planar five‐story four‐bay SMRF is presented as an application example using the proposed procedure that is automated by a multiobjective genetic algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
A multi‐level seismic vulnerability assessment of reinforced concrete moment frame buildings located in moderate seismic zones (0.25g) is performed on a set of ductile versions of low‐ to mid‐rise two‐dimensional moment frames. The study is illustrated through application to comparative trial designs of two (4‐ and 8‐story) buildings adopting both space‐ and perimeter‐framed approaches. All frames are dimensioned as per the emerging version of the seismic design code in Egypt. These new seismic provisions are in line with current European norms for seismic design of buildings. Code‐compliant designs (CCD), as well as a proposed modified code design relaxing design drift demands for the investigated buildings, are examined to test their effectiveness and reliability. Applying nonlinear inelastic incremental dynamic analyses, fragility curves (FC) for the frames are developed corresponding to various code‐specified performance levels. Code preset lower and upper bounds on design acceleration and drift, respectively, are also addressed along with their implications, if imposed, on the frames seismic performance and vulnerability. Annual spectral acceleration hazard curves for the case study frames are also generated. Estimates for mean annual frequency (MAF) of exceeding various performance levels are then computed through an integration process of the data resulting from the FC with the site hazard curves. The study demonstrates that the proposed design procedure relaxing design drift demands delivers more economic building designs relative to CCDs, yet without risking the global safety of the structure. The relaxed design technique suggested herein, even though scoring higher, as expected by intuition, MAF of exceeding various code‐limiting performance levels expressed in terms of interstory drift ratios, still guarantees a reasonably acceptable actual margin against violating code limits for such levels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper explores the potential of a new time domain identification procedure to detect changes in structural dynamic characteristics on the basis of measurements. This procedure is verified using mathematical models simulated on the computer. The experiments involve two eight-storey steel structures with and without energy devices, and a 47-storey building at San Francisco during the Loma Prieta earthquake. The recursive instrumental variable method and extended Kalman filter algorithm are used as identification algorithms. An exploratory investigation is made of the usefulness of various indices, such as mode shape and storey drift, that can be extracted accurately from identification to quantify changes in the characteristics of the physical system. It is concluded that the change of storey drift is the key information to the detection of changes in structural parameters, from which the proposed system identification algorithm can be applied with an appropriate inelastic model to simulate the dynamic behaviour of real structures undergoing strong ground motion excitations.  相似文献   

11.
This paper discusses an analytical study that quantifies the expected earthquake‐induced losses in typical office steel frame buildings designed with perimeter special moment frames in highly seismic regions. It is shown that for seismic events associated with low probabilities of occurrence, losses due to demolition and collapse may be significantly overestimated when the expected loss computations are based on analytical models that ignore the composite beam effects and the interior gravity framing system of a steel frame building. For frequently occurring seismic events building losses are dominated by non‐structural content repairs. In this case, the choice of the analytical model representation of the steel frame building becomes less important. Losses due to demolition and collapse in steel frame buildings with special moment frames designed with strong‐column/weak‐beam ratio larger than 2.0 are reduced by a factor of two compared with those in the same frames designed with a strong‐column/weak‐beam ratio larger than 1.0 as recommended in ANSI/AISC‐341‐10. The expected annual losses (EALs) of steel frame buildings with SMFs vary from 0.38% to 0.74% over the building life expectancy. The EALs are dominated by repairs of acceleration‐sensitive non‐structural content followed by repairs of drift‐sensitive non‐structural components. It is found that the effect of strong‐column/weak‐beam ratio on EALs is negligible. This is not the case when the present value of life‐cycle costs is selected as a loss‐metric. It is advisable to employ a combination of loss‐metrics to assess the earthquake‐induced losses in steel frame buildings with special moment frames depending on the seismic performance level of interest. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
汶川地震对建筑结构设计的启示   总被引:6,自引:1,他引:5  
汶川大地震造成了大量房屋建筑的破坏。本文通过对钢筋混凝土结构和砌体结构的震害研究、非结构构件的震害分析以及典型震害进行的调查归类分析,探讨了此次地震对建筑结构抗震设计的启示,总结了经验并给出了以下相关的建议:(1)适当提高抗震设防标准。(2)房屋建筑设计要更好实现“强柱弱梁”机制:改进加强楼梯间设计:进一步研究非结构构件与主体结构的连接。(3)进一步推广隔震技术。  相似文献   

13.
Building period formulas in seismic design code are evaluated with over 800 apparent building periods from 191 building stations and 67 earthquake events. The evaluation is carried out with the formulas in ASCE 7‐05 for steel and RC moment‐resisting frames, shear wall buildings, braced frames, and other structural types. Qualitative comparison of measured periods and periods calculated from the code formulas shows that the formula for steel moment‐resisting frames generally predicts well the lower bound of the measured periods for all building heights. But the differences between the periods from code formula and measured periods of low‐ to‐medium rise buildings are relatively high. In addition, the periods of essential buildings designed with the importance factor are about 40% shorter than the periods of non‐essential buildings. The code formula for RC moment‐resisting frames describes well the lower bound of measured periods. The formula for braced frames accurately predicts the lower bound periods of low‐to‐medium rise buildings. The formula for shear wall buildings overestimates periods for all building heights. For buildings that are classified as other structural types, the measured building periods can be much shorter than the periods calculated with the code formula. Based on these observations, it is suggested to use Cr factor of 0.015 for shear walls and other structural types. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a simplified method of evaluating the seismic performance of buildings. The proposed method is based on the transformation of a multiple degree of freedom (MDOF) system to an equivalent single degree of freedom (SDOF) system using a simple and intuitive process. The proposed method is intended for evaluating the seismic performance of the buildings at the intermediate stages in design, while a rigorous method would be applied to the final design. The performance of the method is evaluated using a series of buildings which are assumed to be located in Victoria in western Canada, and designed based on the upcoming version of the National Building Code of Canada which is due to be published in 2005. To resist lateral loads, some of these buildings contain reinforced concrete moment resisting frames,while others contain reinforced concrete shear walls. Each building model has been subjected to a set of site-specific seismic spectrum compatible ground motion records, and the response has been determined using the proposed method and the general method for MDOF systems. The results from the study indicate that the proposed method can serve as a useful tool for evaluation of seismic performance of buildings, and carrying out performance based design.  相似文献   

15.
This paper investigates the seismic performance of moment-resisting frame steel buildings with multiple underground stories resting on shallow foundations. A parametric study that involved evaluating the nonlinear seismic response of five, ten and fifteen story moment-resisting frame steel buildings resting on flexible ground surface, and buildings having one, three and five underground stories was performed. The buildings were assumed to be founded on shallow foundations. Two site conditions were considered: soil class C and soil class E, corresponding to firm and soft soil deposits, respectively. Vancouver seismic hazard has been considered for this study. Synthetic earthquake records compatible with Vancouver uniform hazard spectrum (UHS), as specified by the National Building Code of Canada (NBCC) 2005, have been used as input motion. It was found that soil–structure interaction (SSI) can greatly affect the seismic performance of buildings in terms of the seismic storey shear and moment demand, and the deformations of their structural components. Although most building codes postulate that SSI effects generally decrease the force demand on buildings, but increase the deformation demand, it was found that, for some of the cases considered, SSI effects increased both the force and deformation demand on the buildings. The SSI effects generally depend on the stiffness of the foundation and the number of underground stories. SSI effects are significant for soft soil conditions and negligible for stiff soil conditions. It was also found that SSI effects are significant for buildings resting on flexible ground surface with no underground stories, and gradually decrease with the increase of the number of underground stories.  相似文献   

16.
In cities and urban areas, building structures located at close proximities inevitably interact under dynamic loading by direct pounding and indirectly through the underlying soil. Majority of the previous adjacent building pounding studies that have taken the structure–soil–structure interaction (SSSI) problem into account have used simple lumped mass–spring–dashpot models under plane strain conditions. In this research, the problem of SSSI‐included pounding problem of two adjacent symmetric in plan buildings resting on a soft soil profile excited by uniaxial earthquake loadings is investigated. To this end, a series of SSSI models considering one‐directional nonlinear impact elements between adjacent co‐planar stories and using a method for direct finite element modeling of 3D inelastic underlying soil volume has been developed to accurately study the problem. An advanced inelastic structural behavior parameter, the seismic damage index, has been considered in this study as the key nonlinear structural response of adjacent buildings. Based on the results of SSSI and fixed base case analyses presented herein, two main problems are investigated, namely, the minimum building separation distance for pounding prevention and seismic pounding effects on structural damage in adjacent buildings. The final results show that at least three times, the International Building Code 2009 minimum distance for building separation recommended value is required as a clear distance for adjacent symmetric buildings to prevent the occurrence of seismic pounding. At the International Building Code‐recommended distance, adjacent buildings experienced severe seismic pounding and therefore significant variations in storey shear forces and damage indices. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A multi‐objective optimization procedure is presented for designing steel moment resisting frame buildings within a performance‐based seismic design framework. Life cycle costs are considered by treating the initial material costs and lifetime seismic damage costs as two separate objectives. Practical design/construction complexity, important but difficult to be included in initial cost analysis, is taken into due account by a proposed diversity index as another objective. Structural members are selected from a database of commercially available wide flange steel sections. Current seismic design criteria (AISC‐LRFD seismic provisions and 1997 NEHRP provisions) are used to check the validity of any design alternative. Seismic performance, in terms of the maximum inter‐storey drift ratio, of a code‐verified design is evaluated using an equivalent single‐degree‐of‐freedom system obtained through a static pushover analysis of the original multi‐degree‐of‐freedom frame building. A simple genetic algorithm code is used to find a Pareto optimal design set. A numerical example of designing a five‐storey perimeter steel frame building is provided using the proposed procedure. It is found that a wide range of valid design alternatives exists, from which a decision maker selects the one that balances different objectives in the most preferred way. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
房屋建筑数据是地震重点危险区预评估工作的基础,需基于获取到的房屋建筑信息开展人员伤亡、经济损失、救援物资需求等预评估工作。历年地震重点危险区预评估工作能够通过现场调查得到的房屋建筑信息占比极小,仅能进行抽样调查。因此,为批量完成危险区内全部房屋建筑损失估算,需基于遥感影像获取房屋建筑矢量数据,并建立数据库。为实现全国地震重点危险区预评估工作中大批量建筑物矢量化数据的快速获取,本文采用基于遥感影像的建筑物空间分布数据批量获取方法,得到地震重点危险区内建筑物空间矢量数据,结合现场抽样调查得到的建筑物属性信息,建立地震重点危险区建筑物空间分布数据库,进而为地震重点危险区灾害损失预评估工作提供数据基础。本文采用的方法可广泛应用于地震重点危险区房屋建筑信息获取工作中,可提高工作效率,降低工作成本,提升预评估工作的科学性和准确性。  相似文献   

19.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

20.
The need to investigate the level of seismic pounding risk of buildings is apparent in future building code calibrations. In order to provide further insight into the pounding risk of adjacent buildings, this study develops a numerical simulation approach to estimate the seismic pounding risk of adjacent buildings separated by a minimum code‐specified separation distance during a certain period of time. It has been demonstrated that the period ratio of adjacent buildings is an important parameter that affects the pounding risk of adjacent buildings. However, there is no specific consideration for the period ratio in the related seismic pounding provisions of the 1997 Uniform Building Code. Results also reveal that, for two adjacent buildings, the probability distribution of required distance to avoid seismic pounding fits very well with the type I extreme value distribution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号