首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, δ56Fe and δ66Zn isotopic signatures of filtered stream water samples varied by ∼3.5‰ and 0.4‰, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in δ56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in δ66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<−2.0‰) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4‰). Acidic drainage from mine wastes contributed heavier dissolved Fe (∼+0.5‰) and lighter Zn (∼+0.2‰) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (δ56Fe ∼ 0‰) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds.  相似文献   

2.
This study evaluates the effects of deforestation and land-use change, as compared to natural controls, on stream water chemistry in the Subandean Amazon. Dissolved major and trace elements were determined near the stream outlet of 48 independent watersheds with varying morphology, bed rock composition and intactness of forest cover (pristine to highly exploited). Geomorphological characteristics were derived from a digital elevation model, geological formations from digitalized maps and forest cover from digital classification of SPOT satellite images. Partial least square regression and multiple linear regression showed that watershed average elevation, which ranged between 396 and 1649 m, was the strongest control on stream water chemistry, explaining >70% of the variation in K and a considerable part also for Mn, U, Mg and HCO3 with near exponential concentration increases down the altitude gradient. Forest cover, which ranged between 7% and 99%, correlated strongly with average elevation (Spearman correlation coefficient, rs = 0.8), but had no statistically significant impact on stream solute concentrations. Thus, in the studied Subandean region, watershed scale deforestation has not resulted in measurable impacts on stream water chemistry which is dominated by the spatial variation in natural controls.  相似文献   

3.
GIS and Remote Sensing have proved to be an indispensible tool in morphometric analysis. The identification of morphometric properties based on a geographic information system (GIS) was carried out in two watersheds in the Thrissur district of Kerala, India. These watersheds are parts of Western Ghats, which is an ecologically sensitive area. Quantitative geomorphometric analysis was carried out for the Chimmini and Mupily watersheds independently by estimating their (a) linear aspects like stream number, stream order, stream length, mean stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like circulatory ratio, elongation ratio, drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. The drainage areas of Chimmini and Mupily watersheds are 140 and 122 km2 respectively and show patterns of dendritic to sub-dendritic drainage. The Chimmini watershed was classified as a sixth order drainage basin, whereas Mupily watershed was classified as a fifth order basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in the stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds. The slope of both watersheds varied from 0° to 50° and 0° to 42° respectively and the slope variation is chiefly controlled by the local geology and erosion cycles. Moreover, these studies are useful for planning rain water harvesting and watershed management.  相似文献   

4.
Deep Quaternary groundwater is the main source for industrial, domestic, and agricultural water supply in the North China Plain (NCP). There is currently a regional decline of groundwater levels, deterioration of water quality and environmental geological problems induced by increasing exploitation of the NCP Quaternary aquifer system. To trace sources and transport processes of dissolved Cl in a regional aquifer system and to reveal hydrogeological characteristics of Quaternary complexes, δ37Cl, δ18O and δD, and chemical compositions (including F, Cl, Br) of the deep groundwater sampled from the northern flow system of the NCP were measured along the west–east groundwater flow paths. The measured δ37Cl values decreased from 0.39‰ to −2.22‰ (SMOC) along the groundwater flow direction, with increasing Cl concentrations. Marine aerosol input via rainfall is the main source of Cl in the deep groundwater near the recharge areas, and subsequent evaporation/evapotranspiration appears to be responsible for Cl accumulation. Mixing of recharge water with water of high-Cl and low-δ37Cl accounts for the pattern of δ37Cl and Cl concentration observed in Aquifer-3 along the west–east transect. The water with high-Cl and low-δ37Cl is likely from pore water released from compacted clays induced by over-exploitation of deep groundwater, suggesting that clay is a dominant subsurface source of Cl for groundwater where a regional depression cone is present in the Quaternary aquifers. The groundwater of Aquifer-4 in the Huang-Hua depression is potentially mixed with an upward flux of Cl from the Neogene aquifer through subvertical faults. Diffusion and ion filtration are two mechanisms invoked to explain the highly negative δ37Cl data for groundwater of Aquifer-4 in the Yanshan–Haixing areas, which provides new insight into solute migration and the hydraulic relationship in the strongly exploited groundwater system. This study using the conservative solute Cl provides additional important information for further investigations of the geochemistry of a wide range of reactive solutes in the Quaternary aquifer system, so guiding water resource management.  相似文献   

5.
《Applied Geochemistry》2005,20(5):861-873
Natural tracers (major ions, δ18O, and O2) were monitored to evaluate groundwater flow and transport to a depth of 20 m below the surface in fractured sedimentary (primarily shale and limestone) rocks. Large temporal variations in these tracers were noted in the soil zone and the saprolite, and are driven primarily by individual storm events. During nonstorm periods, an upward flow brings water with high TDS, constant δ18O, and low dissolved O2 to the water table. During storm events, low TDS, variable δ18O, and high dissolved O2 water recharges through the unsaturated zone. These oscillating signals are rapidly transmitted along fracture pathways in the saprolite, with changes occurring on spatial scales of several meters and on a time scale of hours. The variations decreased markedly below the boundary between the saprolite and less weathered bedrock. Variations in the bedrock units occurred on time scales of days and spatial scales of at least 20 m. The oscillations of chemical conditions in the shallow groundwater are hypothesized to have significant implications for solute transport. Solutes and colloids that adsorb onto aquifer solids can be released into solution by decreases in ionic strength and pH. The decreases in ionic strength also cause thermodynamic undersaturation of the groundwater with respect to some mineral species and may result in mineral dissolution. Redox conditions are also changing and may result in mineral dissolution/precipitation. The net result of these chemical variations is episodic transport of a wide range of dissolved solutes or suspended particles, a phenomenon rarely considered in contaminant transport studies.  相似文献   

6.
A morphometric analysis was carried out to describe the topography and drainage characteristics of Papanasam and Manimuthar watersheds. These watersheds are part of Western Ghats, which is an ecologically sensitive region. The drainage areas of Papanasam and Manimuthar watersheds are 163 and 211 km2, respectively and they show patterns of dendritic to sub-dendritic drainage. The slope of both watersheds varied from 0° to 59° and 0° to 55°, respectively. Moreover, the slope variation is chiefly controlled by the local geology and erosion cycles. Each watershed was classified as a fifth-order drainage basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds.  相似文献   

7.
《Comptes Rendus Geoscience》2019,351(6):441-450
In humid subtropical regions, baseflow is mainly governed by aquifer discharges and this dynamic is fed by groundwater recharge. To better comprehend the watershed groundwater recharge using a large-scale approach, two watersheds located over the Serra Geral Aquifer System (Southern South America) were studied. Three different groundwater recharge methods were utilized to study the baseflow: a simplified water budget, a hydrograph separation using the Eckhardt filter with different ways of obtaining the BFImax parameter, and the MGB–IPH hydrological model, which is unprecedented in being used for this purpose. These methods showed a general mutual convergence, where recharge magnitude remained similar in most methods. The MGB–IPH model proved to be a useful tool for understanding the occurrence of groundwater recharge. Uncertainties associated with the representativity of interflow demonstrated by hydrograph separation and shown in the model may indicate that the groundwater recharge estimate could be lower than those obtained considering hydrograph numerical filters.  相似文献   

8.
The Quaternary coastal plain aquifer down gradient of the Wadi Watir catchment is the main source of potable groundwater in the arid region of south Sinai, Egypt. The scarcity of rainfall over the last decade, combined with high groundwater pumping rates, have resulted in water-quality degradation in the main well field and in wells along the coast. Understanding the sources of groundwater salinization and amount of average annual recharge is critical for developing sustainable groundwater management strategies for the long-term prevention of groundwater quality deterioration. A combination of geochemistry, conservative ions (Cl and Br), and isotopic tracers (87/86Sr, δ81Br, δ37Cl), in conjunction with groundwater modeling, is an effective method to assess and manage groundwater resources in the Wadi Watir delta aquifers. High groundwater salinity, including high Cl and Br concentrations, is recorded inland in the deep drilled wells located in the main well field and in wells along the coast. The range of Cl/Br ratios for shallow and deep groundwaters in the delta (∼50–97) fall between the end member values of the recharge water that comes from the up gradient watershed, and evaporated seawater of marine origin, which is significantly different than the ratio in modern seawater (228). The 87/86Sr and δ81Br isotopic values were higher in the recharge water (0.70,723 < 87/86Sr < 0.70,894, +0.94 < δ81Br < +1.28‰), and lower in the deep groundwater (0.70,698 < 87/86Sr < 0.70,705, +0.22‰ < δ81Br < +0.41‰). The δ37Cl isotopic values were lower in the recharge water (−0.48 < δ37Cl < −0.06‰) and higher in the deep groundwater (−0.01 < δ37Cl < +0.22‰). The isotopic values of strontium, chloride, and bromide in groundwater from the Wadi Watir delta aquifers indicate that the main groundwater recharge source comes from the up gradient catchment along the main stream channel entering the delta. The solute-weighted mass balance mixing models show that groundwater in the main well field contains 4–10% deep saline groundwater, and groundwater in some wells along the coast contain 2–6% seawater and 18–29% deep saline groundwater.A three-dimensional, variable-density, flow-and-transport SEAWAT model was developed using groundwater isotopes (87Sr/86Sr, δ37Cl and δ81Br) and calibrated using historical records of groundwater level and salinity. δ18O was used to normalize the evaporative effect on shallow groundwater salinity for model calibration. The model shows how groundwater salinity and hydrologic data can be used in SEAWAT to understand recharge mechanisms, estimate groundwater recharge rates, and simulate the upwelling of deep saline groundwater and seawater intrusion. The model indicates that most of the groundwater recharge occurs near the outlet of the main channel. Average annual recharge to delta alluvial aquifers for 1982 to 2009 is estimated to be 2.16 × 106 m3/yr. The main factors that control groundwater salinity are overpumping and recharge availability.  相似文献   

9.
The relatively stable concentrations of calcium (42.2–122.3 mg/l) and magnesium (48.9–88.1 mg/l) between 2012 and 2013 and their possible weathering paths identified by mass balance models for both soil solutions and stream water from a small salted (regular applications of winter road deicing salt) watershed in New Jersey, USA indicate that the weathering of feldspars and dissolution of carbonates are the primary sources for these cations. However, the relatively stable and lower concentrations of sodium and chloride in soil solutions (19.6–46.1 mg/l for Na and 12.7–88.3 mg/l for Cl) and their fluctuating and higher concentrations in stream water (14.6–103.1 mg/l for Na and 15.2–260.4 mg/l)) from the same watershed during the same period also indicate that road deicing salt is the primary source for sodium and chloride in stream water. Furthermore, positive correlations between calcium and sulfur concentrations (correlation coefficient r = 0.77) and magnesium and sulfur concentrations (r = 0.73) in stream water between 2009 and 2013, as well as positive correlations between sulfur and iron concentrations in soil compositions (r = 0.27), indicate that both the dissolution of gypsum and the oxidation of pyrite into hematite might be the primary sources of sulfate in the watershed. Analyses of water chemistry from the related and much larger Delaware River Watershed (DRW) show that sodium and chloride concentrations have increased steadily (2.7 times for Na and 4.56 times for Cl for 10-year average) due to the regular application of winter deicing salt from 1944 to 2011 for which data are available. The greater increase of stream water chloride concentrations compared with sodium concentrations also results in the steady decline of Na+/Cl molar ratios from 1.51 to 0.92 for the 10-year average during that time in the DRW and approximately 78% of the chloride in the DRW now being anthropogenic. In addition, the decline of sulfate concentration from 22.08 to 14.59 mg/l (∼34%) for the 10-year average from 1980 to 2011 in the DRW stream water may be attributed to the decline of sulfate levels in atmospheric deposition resulting from enhanced national and state environmental regulations and a shift in local economic activities. There also are more periods of low silica stream water concentrations in the DRW than in the past, perhaps as a result of recent increases in summer stream temperatures combined with an increase of impervious surface area in the region. Warmer stream water might cause the temporary bloom of biota requiring silica, particularly plankton, increasing its uptake from stream water, while an expanded impervious surface area increases the contribution of low-silica runoff water to total stream discharge, thereby lowering the silica concentration in stream water. The combined results of this study illustrate the possible changing anthropogenic factors that can control stream water chemistry in salted watersheds and that these factors need to be taken into account when future water quality regulations and policy are considered.  相似文献   

10.
. The major ion stream chemistry for an urbanized basin (Peachtree Creek) in the Atlanta (Georgia, USA) metropolitan region was analyzed and compared upon a time-series basis with the stream chemistry of a nearby, but far less developed basin (Sweetwater Creek). The major ion chemistry from both streams indicated that all parameters fell below safe drinking water standards as would be expected in watersheds underlain by low-solubility aluminosilicate bedrock. Base flow TDS concentrations for the urbanized basin (Peachtree Creek) were ~30% greater than Sweetwater Creek and were characterized by elevated concentrations of base cations (Ca, Mg, Na), alkalinity, sulfate, and chloride. The less-urbanized Sweetwater Creek basin is underlain by a higher percentage of more soluble amphibolite and, therefore, the higher concentration of solutes within the urban base flow can not readily be explained by differential mineral weathering. The increased inorganic solute loads might have resulted from pollution input (leaky underground sewer lines?) and/or evaporative concentration; however, these explanations are presently speculative. Major ion concentrations within the urban Peachtree Creek basin were diluted by an average of ~50% compared with only ~25% in the Sweetwater Creek basin as a result of the increased contribution of direct surface runoff. The regression correlation coefficients for the ions that evolve through mineral weathering (Ca, Mg, Na, and HCO3) are much higher in urban stream flow than in Sweetwater Creek waters. This might indicate that storm waters in the urban basin are more closely derived from a two end member mixture (groundwater and street runoff) than waters from Sweetwater Creek, which represent a more complex mixture.  相似文献   

11.
The goal of the current study is to better understand the role of storm dynamics on stream water chemical variability in a highly polluted urban-fringe watershed. The study was conducted in the upper reach of the Arroyo Seco watershed located on the eastern edge of the densely urbanized Los Angeles basin in California. During the 2008–2009 study period, high-frequency stream water observations of chloride, fluoride, sulfate, and nitrate were monitored through a series of storm events and were compared to pre- and post-winter storm season geochemical soil profiles. Of the four solutes measured, nitrate demonstrated hydrologically enhanced behavior. Chloride, fluoride, and sulfate exhibited enhanced behavior initially (first flush), but transitioned to dilution behavior as the season progressed. Soil chemistry analyses in the riparian zone confirmed the abundance of nitrate on the soil surface, serving as a source for stream water nitrate. Observations and analyses collectively suggest that the chemical variability observed during the storms is dependent not only on discharge, but also on the magnitude and intensity of rainfall, the length of the antecedent dry period, and riparian soil composition. A further understanding of these factors will ultimately improve geochemical models for prediction of downstream chemical loads from regional urban-fringe watersheds.  相似文献   

12.
Surface water and groundwater are the main water resources used for drinking and production. Assessments of the relationship between surface water and groundwater provide information for water resource management in Sanjiang plain, Northeast China. The surface water (river, lake, and wetland) and groundwater were sampled and analyzed for stable isotopic (δD, δ 18O) composition, tritium, and chlorofluorocarbons concentrations. The local meteoric water line is δD = 7.3δ 18O–6.7. The tritium (T) and chlorofluorocarbon (CFC) contents in groundwater were analyzed to determine the groundwater ages. Most groundwater were modern water with the ages <50 years. The groundwaters in mountain area and near rivers were younger than in the central plain. The oxygen isotope (δ 18O) was used to quantify the relationship between surface water and groundwater. The Songhua, Heilongjiang, and Wusuli rivers were gaining rivers, but the shallow groundwater recharged from rivers at the confluence area of rivers. At the confluence of Songhua and Heilongjiang rivers, 88 % of the shallow groundwater recharged from Songhua river. The combination of stable isotopes, tritium, and CFCs was an effectively method to study the groundwater ages and interrelation between surface water and groundwater. Practically, the farmlands near the river and under foot of the mountain could be cultivated, but the farmlands in the central plain should be controlled.  相似文献   

13.
The hydrogeochemistry of the Lake Waco drainage basin,Texas   总被引:1,自引:0,他引:1  
The origin of surface water chemistry in highly impacted drainage basins must be investigated on a drainage-basin scale if the causes of the pollution are to be elucidated. This study characterizes and deciphers the surface water chemistry of a nutrient polluted river system in central Texas. Four tributaries of the Lake Waco reservoir were chemically characterized temporally and spatially in order to gain a complete understanding of the nature and origin of dissolved solids being transported into the lake. Temporal chemical variations measured at the base of each of the drainage basins are repetitive and seasonal. The most periodic and well-defined variation is exhibited by nitrate concentrations although many of the other solutes show seasonal changes as well. These temporal chemical changes are controlled by seasonal precipitation. During rainy seasons, the shallow aquifer is recharged resulting in stream discharge that is high in nitrate, calcium, and bicarbonate. When the shallow flow system is depleted in the summer, stream waters are dominated by deeper groundwater and become rich in sodium. Spatial variations in the chemistry of South Bosque surface waters were characterized using the snapshot technique. The spatial distribution of nitrate in surface waters is controlled by fertilizer application to row crops and the location of a munitions factory. The concentrations of naturally derived solutes such as Ca+, Na+, Cl, and SO4–2are controlled by underlying lithologies.  相似文献   

14.
Documenting whether surface water catchments are in net chemical mass balance is important to understanding hydrological systems. Catchments that export significantly greater volumes of solutes than are delivered via rainfall are not in hydrologic equilibrium and indicate a changing hydrological system. Here an assessment is made of whether a saline catchment in southeast Australia is in chemical mass balance based on Cl. The upper reaches of the Barwon River, southeast Australia, has total dissolved solids, TDS, concentrations of up to 5860 mg/L and Cl concentrations of up to 3370 mg/L. The high river TDS concentrations are due to the influxes of groundwater with TDS concentrations of up to 68,000 mg/L. Between 1989 and 2011, the median annual Cl flux from the upper Barwon catchment was 17.8 × 106 kg (∼140 kg/a/ha). This represents 340–2230% of the annual Cl input by rainfall to the catchment. Major ion and stable isotope geochemistry indicate that the dominant source of solutes in the catchment is evapotranspiration of rainfall, precluding mineral dissolution as a source of excess Cl. The upper Barwon catchment is not in chemical mass balance and is a net exporter of solutes. The chemical imbalance may reflect the transition within the last 100 ka from an endorheic lake system where solutes were recycled producing shallow groundwater with high TDS concentrations to a better drained catchment. Alternatively, a rise in the regional water table following land clearing may have increased the input of groundwater with high TDS concentrations to the river system.  相似文献   

15.
Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition.Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg2+/Ca2+ ratio of 0.4.Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca2+ and Mg2+ in natural waters. Dolomite dissolution appears to be a major process, rivaling calcite dissolution as a control on divalent cation and inorganic carbon contents of soil waters. Furthermore, the fraction of Mg2+ derived from silicate mineral weathering is much smaller than most of the values previously estimated from riverine chemistry.  相似文献   

16.
Stable Cl isotope ratios (37Cl/35Cl) were measured in groundwater samples from the southwestern flow system of the Great Artesian Basin, Australia to gain a better understanding of the Cl sources and transport mechanisms. δ37Cl values range from 0‰ to −2.5‰ (SMOC), and are inversely correlated with Cl concentration along the inferred flow direction. The Cl isotopic compositions, in conjunction with other geochemical parameters, suggest that Cl in groundwaters is not derived from salt dissolution. Mixing of the recharge water with saline groundwater cannot explain the relationship between δ37Cl and Cl concentration measured. Marine aerosols deposited via rainfall and subsequent evapotranspiration appear to be responsible for the Cl concentrations observed in wells that are close to the recharge area, and in groundwaters sampled along the southern transect. δ37Cl values measured in the leachate of the Bulldog shale suggest that the aquitard is the subsurface source of Cl for the majority of groundwater samples studied. Diffusion is likely the mechanism through which Cl is transported from the pore water of the Bulldog shale to the aquifer. However, a more detailed study of the aquitard rocks is required to verify this hypothesis.  相似文献   

17.
Groundwater is the most important source of water supply in the Yeniceoba Plain in Central Anatolia,Turkey.An understanding of the geochemical evolution of groundwater is important for the sustainable development of water resources in this region.A hydrogeochemical investigation was conducted in the Plio-Quaternary aquifer system using stable isotopes(δ~(18)O andδD),tritium(~3H),major and minor elements(Ca,Na,K,Mg,Cl,SO_4,NO_3,HCO_3 and Br)in order to identify groundwater chemistry patterns and the processes affecting groundwater mineralization in this system.The chemical data reveal that the chemical composition of groundwater in this aquifer system is mainly controlled by rock/water interactions including dissolution of evaporitic minerals,weathering of silicates,precipitation/dissolution of carbonates,ion exchange,and evaporation.Based on the values of Cl/Br ratio(300 mg/l)in the Plio-Quaternary groundwater,dissolution of evaporitic minerals in aquifer contributes significantly to the high mineralization.The stable isotope analyses indicate that the groundwater in the system was influenced by evaporation of rainfall during infiltration.Low tritium values(generally1 tritium units)of groundwater reflect a minor contribution of recent recharge and groundwater residence times of more than three or four decades.  相似文献   

18.
The Hauver Branch and Hunting Creek watersheds in Catoctin Mountain, Maryland, USA, are small rural watersheds that receive road salt during the winter. Base cation evidence of road salt application in stream water disappears by approximately September for Hauver Branch, but never disappears for Hunting Creek. The fraction of the precipitation-corrected watershed fluxes of both Mg2+ and Ca2+ attributable to cation exchange associated with road salt Na+ inputs are 14 and 19 % for Hauver Branch and Hunting Creek, respectively. The percentage of divalent cations in stream waters resulting from road salt application is calculated using the watershed chemical weathering Na+/SiO2 molar ratio. Calculation of a representative chemical weathering Na+/SiO2 molar ratio may be problematic with spatially variable bedrock, and/or inputs from water softeners, septic systems, and wastewater treatment plants. Therefore, investigations of small forested rural watersheds offer insights into road salt dynamics that may be lost at larger scales and/or with increased urbanization. The quantities of road salt application to the Hauver Branch and Hunting Creek watersheds are 3.3 and 11 t km?2 year?1, respectively. The per-lane-length-normalized road salt application rates for the Hauver Branch and Hunting Creek watersheds are 10 and 22 t lane?1 km?1 year?1, respectively. These per-lane-length-normalized road salt application rates are relatively large compared to more urbanized watersheds located north of the study site where the application rates are reported by municipalities. These findings may indicate that road and highway administrations may underestimate their rates of road salt application.  相似文献   

19.
An estimate of the groundwater budget at the catchment scale is extremely important for the sustainable management of available water resources. Water resources are generally subjected to over-exploitation for agricultural and domestic purposes in agrarian economies like India. The double water-table fluctuation method is a reliable method for calculating the water budget in semi-arid crystalline rock areas. Extensive measurements of water levels from a dense network before and after the monsoon rainfall were made in a 53 km2 watershed in southern India and various components of the water balance were then calculated. Later, water level data underwent geostatistical analyses to determine the priority and/or redundancy of each measurement point using a cross-validation method. An optimal network evolved from these analyses. The network was then used in re-calculation of the water-balance components. It was established that such an optimized network provides far fewer measurement points without considerably changing the conclusions regarding groundwater budget. This exercise is helpful in reducing the time and expenditure involved in exhaustive piezometric surveys and also in determining the water budget for large watersheds (watersheds greater than 50 km2).  相似文献   

20.
The work investigates the major solute chemistry of groundwater and fluoride enrichment(F~-) in the shallow phreatic aquifer of Odisha.The study also interprets the hydrogeochemical processes of solute acquisition and the genetic behavior of groundwater F~-contamination.A total of 1105 groundwater samples collected from across the state from different hydro-geomorphic settings have been analyzed for the major solutes and F~-content.Groundwater is alkaline in nature(range of pH: 6.6–8.7; ave.: 7.9) predominated by moderately hard to very hard types.Average cation and anion chemistry stand in the orders of Ca~(2+) Na~+ Mg~(2+) K~+and HCO_3~- Cl~- SO_4~(2-) CO_3~(2-)respectively.The average mineralization is low(319 mg/L).The primary water types are Ca-Mg-HCO_3 and Ca-Mg-Cl~-HCO_3, followed by Na-Cl, Ca-Mg-Cl, and Na-Ca-Mg-HCO_3~-Cl.Silicate-halite dissolution and reverse ion exchange are the significant processes of solute acquisition.Both the geogenic as well as the anthropogenic sources contribute to the groundwater fluoride contamination,etc.The ratio of Na~+/Ca~(2+) 1.0 comprises Na-HCO_3(Cl) water types with F~- 1.0 mg/L(range 1.0–3.5 mg/L)where the F~-bears geogenic source.Positive relations exist between F~-and pH, Na~+, TDS, and HCO_3~-.It also reflects a perfect Na-TDS correlation(0.85).The ratio of Na~+/Ca~(2+) 1.0 segregates the sample population(F~- range: 1.0–4.0 mg/L) with the F derived from anthropogenic sources.Such water types include Ca-Mg-HCO_3(Cl) varieties which are recently recharged meteoritic water types.The F~-levels exhibit poor and negative correlations with the solutes in groundwater.The Na-TDS relation remains poor(0.12).In contrast, the TDS levels show strong correlations with Ca~(2+)(0.91), Mg~(2+)(0.80) and even Cl~-(0.91).The majority of the monitoring points with the anthropogenic sources of groundwater F~-are clustered in the Hirakud Canal Command area in the western parts of the state, indicating the role of irrigation return flow in the F~-contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号