首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Groundwater recharge rates calculated with the GROWA model have been applied as the recharge boundary condition for the regional groundwater model Rurscholle. This model simulates groundwater dynamics in the Pleistocene aquifers of the Lower Rhine lignite mining area (Germany). GROWA uses an area-differentiated approach to calculate recharge rates depending on runoff-relevant site characteristics, which are represented by a set of baseflow indices. The regional accuracy of the coupled groundwater and GROWA models has been checked using groundwater hydrographs as validation criteria. The results suggest that the current (unadjusted) version of GROWA underestimates the regional groundwater recharge rate by 10–20 mm/yr. The comparative analysis identified areas where recharge calculations could be improved by adjusting the baseflow indices for areas where runoff is dominated by slope, low water-logging and a low degree of sealing. Using the adjusted set of baseflow indices, the mean groundwater recharge rate of the Rurscholle region was modelled as approx. 170 mm/yr. This study highlights the benefit of using a coupled approach and being able to independently calibrate and validate groundwater recharge boundary conditions in regional groundwater models.  相似文献   

2.
邹连文 《水文》1996,(1):16-18
降水入渗补给地下水是地下水的主要来源。降水入渗补给量的计算方法有多种,依据地下水的运动规律,从陆地水文学原理出发,由天然状态下的逐月河川径流过程,采用一种新的基流分割方法分割基流,由逐月基流过程反推逐月降水入渗补给量,即确定逐月地下水降水入渗补给量。  相似文献   

3.
Estimation of the long-term groundwater recharge based on the chloride mass balance method is easy for practical applications. This method is reliable only if the atmospheric chloride deposition is known. The direct measuring of this deposition is difficult and time consuming. In this study, the chloride deposition at the catchment scale is assessed based on the export of chloride with river waters (including baseflow), as the net groundwater recharge in the studied catchments is usually low, and its contribution to the exports of salts is insignificant. For the purpose of this study, a 25-year-long time series of discharge and chloride content (from 1951 to 1975) is processed, as the quality of river waters for this period is considered natural and unaffected by human activity in the studied catchments. The obtained value of the atmospheric chloride deposition for North Bulgaria is in the range of 2.5–2.8 g/m2/a based on representative stations. This is the first estimate of the atmospheric chloride deposition in the country, which may be used for assessment of the long-term groundwater recharge in North Bulgaria.  相似文献   

4.
Groundwater recharge was investigated in the most extensive sand and gravel aquifer (area of approximately 200 km2) in the Republic of Ireland as part of a wider study seeking to derive recharge estimates using aquifer vulnerability mapping. The proportion of effective rainfall (total rainfall minus actual evapotranspiration) that leads to recharge is known as the recharge coefficient. The recharge investigation involved a variety of approaches, including soil moisture budgeting, well hydrograph analysis, numerical modelling and a catchment water balance. The adoption of multiple techniques provided insights on recharge and also on aquifer properties. Comparison of two soil moisture budgeting approaches (FAO Penman-Monteith with Penman-Grindley) showed how variations in the effective rainfall values from these methods influence groundwater levels simulated in a numerical groundwater model. The catchment water balance estimated the recharge coefficient to be between 81 and 85%, which is considered a reasonable range for this aquifer, where overland flow is rarely observed. The well hydrograph analysis, using a previous estimate of specific yield (0.13), gave recharge coefficients in the range of 40–80%, considered low for this aquifer: a revised specific yield of 0.19 resulted in a more reasonable range of recharge coefficients of between 70 and 100%.  相似文献   

5.
基于霍顿下渗能力曲线的流量过程线连续分割方法研究   总被引:2,自引:0,他引:2  
林凯荣  郭生练  张文华 《水文》2008,28(1):10-14
在用前期影响雨量代替流域蓄水量的基础上,提出了基于霍顿下渗能力曲线的流量过程线的连续分割方法.选择西峡、猴子岩和东湾三个流域的降雨径流资料,采用该方法对流量过程线进行分割,并与现行的数字滤波法、非线性水库法和Boussinesq方程法相比较.结果表明,该方法具有一定的物理基础、符合产汇流基本规律,而且能够减少涨洪段流量过程线分割的主观性,对于流域时段单位线和降雨径流关系的推求均有重要的意义.  相似文献   

6.
Hydrograph Separation of the Amazon River: A Methodological Study   总被引:1,自引:0,他引:1  
The hydrograph separation of the Amazon river was performed using three different methodologies. Were applied isotopic, filter-separation, and mixing methods to estimate the contributions of the surface runoff (event water) and baseflow (pre-event water) components to the total river flow, during the 1973–1974 hydrological years. The importance of the baseflow contribution, mainly during the peak discharge, suggesting that the groundwater plays a much more active and important role in the storm dynamics, was verified. Similar results were obtained for all the methods used, and the applicability of each one was discussed in detail. For the Amazon river basin, the average contribution of the baseflow was 56% of the total river flow, at peak discharge. The average surface runoff contribution, which represents the water capable of mechanical erosion in drainage basins, expressed in terms of the surface runoff coefficient (Kr), was 31.9%, while the mean contribution of the baseflow, expressed by the baseflow coefficient (Kb), was 68.1%.  相似文献   

7.
Recharge is a key parameter in groundwater resources management, and a reliable estimate of recharge is required for their sustainable development. Several methods are available to evaluate recharge; however, selecting the appropriate one is made difficult because each method has its advantages and drawbacks, and results can vary greatly from one method to another. Recharge methods can actually refer to different processes. This paper compares and discusses the results obtained from five regional-scale recharge assessment approaches applied to a fractured rock aquifer in a region with a temperate and humid climate (Annapolis Valley, Nova Scotia, Canada). These methods are distinguished between those providing estimates of the net infiltration (I) into the subsurface (river hydrograph separation and soil moisture balance) from those considering the net recharge (W) to the regional bedrock aquifer (river 7-day low-flows, the corrected soil moisture balance, a numerical groundwater flow model developed with FEFLOW and an infiltration model developed with HELP). The estimated net infiltration ranges from 160 to 250 mm/year, whereas the net recharge estimates range from 80 to 175 mm/year for the entire study area. Although different assessment methods were used, the estimated recharge range is still quite large, demonstrating the importance of using several methods. This case study should provide guidance on choices to be made in the development of a strategy for assessing representative values of aquifer recharge at the regional scale under similar geological and climatic conditions. The use of multiple complementary approaches should lead to a better understanding of the system dynamics and to better defined a representative range of recharge estimates.  相似文献   

8.
For water resources management, many studies for investigating flow paths from rainfall to subsurface have been conducted for last half century. A hydrograph separation based on end member mixing was carried out to evaluate the importance of the hydrological pathways providing the main sources of a small granitic watershed, Dorim-cheon, Seoul. An analysis of chloride, oxygen-18 and deuterium isotopes from precipitation and stream water during three storms was conducted with high-resolution data using 129 samples. Stream water, collected in advance of rain event, was assumed as a pre-event water (baseflow) component according to its dry condition and isotopic values compared with the values of different time periods. The contribution from vadose water was ignored due to the thin soil layer covering the study area. Using a two-component mixing model, hydrograph separation of the stream water in Dorim-cheon was conducted based on weighted mean values of rain water and pre-event water component with the high-resolution datasets. As a result of the analysis with water isotopes, contribution of groundwater was dominant during the entire study period (73–74%) except of instant dominance of rainfall at the earliest period. Using chloride as a tracer for hydrograph separation, a significant difference for the amount of pre-event water contribution was identified. This might be caused by the large variation of chloride concentration during the rain event and the end member determination.  相似文献   

9.
Estimating ground-water recharge from streamflow records   总被引:3,自引:2,他引:1  
The purpose of this paper is to estimate ground-water recharge based on the investigation of the balance between ground-water recharge and discharge from streamflow hydrographs. Two methods of hydrograph analysis are employed in a case study of Cho-Shui River basin, Taiwan. The first is the recession-curve-displacement method, which assumes the linearity of the master recession curve while the profile of the ground-water head distribution is nearly stable. The second method is the base-flow-record estimation, which uses a relatively arbitrary procedure to estimate a continuous record of ground-water discharge (baseflow) under the streamflow hydrograph. Through implementing these two methods, the annual rates of ground-water recharge and infiltration in the area of Cho-Shui River basin are examined as our case study. Results showed that the discharge calculated by the method of base-flow-record estimation is about 16% average less than the recharge calculated by the recession-curve-displacement method in the mountain region.  相似文献   

10.
Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and δ13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years).This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.  相似文献   

11.
岩溶含水系统降水入渗补给研究进展   总被引:5,自引:1,他引:4       下载免费PDF全文
王树芳 《水文》2014,34(6):1-8
岩溶含水系统中赋存着丰富的优质地下水,而大气降水是浅部可供开采的岩溶地下水的最主要补给来源。受岩溶含水系统各向异性、不均一性和直接观测难度大等因素的影响,降水入渗补给量的计算是一个非常复杂的过程。确定岩溶含水系统的汇水范围是降水入渗补给计算的首要问题,示踪法与经验公式法被证明是最有效的两种方法。降水入渗补给量的计算方法主要包括水文过程线法分析法、氧同位素法、氯质量平衡法、基于GIS的多变量综合分析法和模型法。本文对目前岩溶含水系统降水入渗补给计算方法的关键点和适用条件进行了总结和对比,同时指出大气降水物理化学性质的时空特征以及水-岩反应可以作为未来研究岩溶含水系统降水补给的研究方向之一。  相似文献   

12.
Groundwater recharge sets a constraint on aquifer water balance in the context of water management. Historical data on groundwater and other relevant hydrological processes can be used to understand the effects of climatic variability on recharge, but such data sets are rare. The climate of the Canadian prairies is characterized by large inter-annual and inter-decadal variability in precipitation, which provides opportunities to examine the response of groundwater recharge to changes in meteorological conditions. A decadal study was conducted in a small (250 km2) prairie watershed in Alberta, Canada. Relative magnitude of annual recharge, indicated by water-level rise, was significantly correlated with a combination of growing-season precipitation and snowmelt runoff, which drives depression-focussed infiltration of meltwater. Annual precipitation was greater than vapour flux at an experimental site in some years and smaller in other years. On average precipitation minus vapour flux was 10 mm y?1, which was comparable to the magnitude of watershed-scale groundwater recharge estimated from creek baseflow. Average baseflow showed a distinct shift from a low value (4 mm y?1) in 1982–1995 to a high value (15 mm y?1) in 2003–2013, indicating the sensitivity of groundwater recharge to a decadal-scale variability of meteorological conditions.  相似文献   

13.
Groundwater pumping and changes in climate-induced recharge lead to lower groundwater levels and significant changes in the water balance of a catchment. Water previously discharged as evapotranspiration can become a source of pumpage. Neglecting this effect leads to overestimated streamflow depletion. A small river basin (Sudogda River Basin, Russia) with a boreal climate and with long-term records of groundwater head and streamflow rate (showing that the measured stream depletion is less than the pumping rate) was investigated. The role of evapotranspiration in the water balance was analyzed by a hydrogeological model using MODFLOW-2005 with the STR package; the annual variation in recharge was obtained with the codes Surfbal and HYDRUS. The Sudogda River Basin was classified according to landscape and unsaturated-zone texture classes, and for each classified zone, the unsaturated-zone flow simulation was used to calculate the annual recharge dynamics for the observation period. Calibration of the regional flow model was conducted using flow and head observations jointly for two steady-state flow conditions—natural (before pumping started) and stressed (pumping). The simulations showed that pumped water originates from three sources: intercepted baseflow (75% of the annual total pumping rate), the capture of groundwater evapotranspiration discharge plus increased groundwater recharge (17%), and induced stream infiltration (8%). Additionally, multi-year precipitation records were analyzed to detect any long-term recharge and pumping water-budget changes. The results showed that increasing groundwater recharge by natural precipitation leads to (1) decreased intercepted baseflow and induced streamflow infiltration and (2) increased intercepted evapotranspiration discharge, thereby reducing stream depletion.  相似文献   

14.
流量过程线划分的同位素和水文化学方法研究进展   总被引:2,自引:0,他引:2  
简要介绍了同位素和水文化学划分流量过程线的原理,综述了国内外关于流量过程线分割各种模型的发展历程及其优缺点,最初的二水源模型分割出了降水和地下水两种组分,没有考虑土壤水;三水源模型主要包括降水,地下水和土壤水,应用较广;多水源模型适用于水源补给较复杂的流域.该方法从单纯的同位素示踪发展到同位素和水文化学示踪的结合,不确定性分析的方法逐渐多样化和精确化.国内在该领域的研究较少.今后应加强不同尺度不同水文地质条件流域的研究,综合利用多种方法分割过程线.  相似文献   

15.
Understanding catchment-scale patterns of groundwater and stream salinity are important in land- and water-salinity management. A large-scale assessment of groundwater and stream data was undertaken in the eastern Mt Lofty Ranges of South Australia using geographical information systems (GIS), regional scale hydrologic data, hydrograph separation and hydrochemical techniques. Results of the study show: (1) salts were mostly of marine origin (75%), while sulfate and bicarbonate from mineral weathering comprised most of the remainder, (2) elevated groundwater salinities and stable water isotopic compositions similar to mean rainfall indicated that plant transpiration was the primary salt accumulation mechanism, (3) key factors explaining groundwater salinity were geology and rainfall, with overall catchment salinity inversely proportional to average annual rainfall, and groundwater salinity ‘hotspots’ (EC >8 mS/cm) associated with geological formations comprising sulfidic marine siltstones and shales, (4) shallow groundwater correlated with elevated stream salinity, implying that baseflow contributed to stream salt loads, with most of the annual salt load (estimated to be 24,500 tonnes) occurring in winter when baseflow volume was highest. Salt-load analysis using stream data could be a practical, low-cost technique to rapidly target the investigation of problem areas within a catchment.  相似文献   

16.
Recharge and groundwater models: an overview   总被引:7,自引:2,他引:7  
Recharge is a fundamental component of groundwater systems, and in groundwater-modeling exercises recharge is either measured and specified or estimated during model calibration. The most appropriate way to represent recharge in a groundwater model depends upon both physical factors and study objectives. Where the water table is close to the land surface, as in humid climates or regions with low topographic relief, a constant-head boundary condition is used. Conversely, where the water table is relatively deep, as in drier climates or regions with high relief, a specified-flux boundary condition is used. In most modeling applications, mixed-type conditions are more effective, or a combination of the different types can be used. The relative distribution of recharge can be estimated from water-level data only, but flux observations must be incorporated in order to estimate rates of recharge. Flux measurements are based on either Darcian velocities (e.g., stream baseflow) or seepage velocities (e.g., groundwater age). In order to estimate the effective porosity independently, both types of flux measurements must be available. Recharge is often estimated more efficiently when automated inverse techniques are used. Other important applications are the delineation of areas contributing recharge to wells and the estimation of paleorecharge rates using carbon-14. Electronic Publication  相似文献   

17.
Investigation of water sources and flow pathways is crucial to understand and evaluate the characteristics of surface water and groundwater systems. This article aims to identify the hydrochemical and hydrological processes in different landscape zones based on hydrochemical analyses of various samples, including samples from glacier, snow, frozen soil meltwater, surface water, groundwater, and precipitation, in the alpine cold region of China. Hydrochemical tracers indicated that chemical compositions are characterized by the Ca-HCO3 type in the glacier-snow zone; the Mg-Ca-SO4 type in the alpine cold desert zone; the Ca-HCO3-SO4 type in the marsh meadow zone; the Ca-Mg-HCO3 type in the alpine shrub zone; and the Ca-Na-SO4 type in the mountain grassland zone. An end-member mixing model was used for hydrograph separation. The results showed that the Mafengou River in the wet season was recharged by groundwater in the alpine cold desert and alpine shrub zones (67%), surface runoff in the glacier-snow zone (11%), surface runoff in the alpine cold desert zone (8%), thawed water from frozen soil in the marsh meadow and mountain grassland zones (9%), and direct precipitation on the river channel (5%). This study suggests that precipitation from the whole catchment yielded little direct surface runoff; precipitation was mostly transformed into groundwater or interflow and was then concentrated into the river channel. This study provides a scientific basis for evaluation and management of water resources in the basin.  相似文献   

18.
Appropriate quantification and identification of the groundwater distribution in a hydrological basin may provide necessary information for effective management, planning and development of groundwater resources. Groundwater potential assessment and delineation in a highly heterogeneous environment with limited Spatiotemporal data derived from Gelana watershed of Abaya Chamo lake basin is performed, using integrated multi-criteria decision analysis (MCDA), water and energy transfer between soil and plant and atmosphere under quasi-steady state (WetSpass) models. The outputs of the WetSpass model reveal a favorable structure of water balance in the basin studied, mainly using surface runoff. The simulated total flow and groundwater recharge are validated using river measurements and estimated baseflow at two gauging stations located in the study area, which yields a good agreement. The WetSpass model effectively integrates a water balance assessment in a geographical information system (GIS) environment. The WetSpass model is shown to be computationally reputable for such a remote complex setting as the African rift, with a correlation coefficient of 0.99 and 0.99 for total flow and baseflow at a significant level of p-value<0.05, respectively. The simulated annual water budget reveals that 77.22% of annual precipitation loses through evapotranspiration, of which 16.54% is lost via surface runoff while 6.24% is recharged to the groundwater. The calibrated groundwater recharge from the WetSpass model is then considered when determining the controlling factors of groundwater occurrence and formation, together with other multi-thematic layers such as lithology, geomorphology, lineament density and drainage density. The selected five thematic layers through MCDA are incorporated by employing the analytical hierarchy process (AHP) method to identify the relative dominance in groundwater potential zoning. The weighted factors in the AHP are procedurally aggregated, based on weighted linear combinations to provide the groundwater potential index. Based on the potential indexes, the area then is demarcated into low, moderate, and high groundwater potential zones (GWPZ). The identified GWPZs are finally examined using the existing groundwater inventory data (static water level and springs) in the region. About 70.7% of groundwater inventory points are coinciding with the delineated GWPZs. The weighting comparison shows that lithology, geomorphology, and groundwater recharge appear to be the dominant factors influence on the resources potential. The assessment of groundwater potential index values identify 45.88% as high, 39.38% moderate, and 14.73% as low groundwater potential zones. WetSpass model analysis is more preferable in the area like Gelana watershed when the topography is rugged, inaccessible and having limited gauging stations.  相似文献   

19.

There is a scarcity of long-term groundwater hydrographs from sub-Saharan Africa to investigate groundwater sustainability, processes and controls. This paper presents an analysis of 21 hydrographs from semi-arid South Africa. Hydrographs from 1980 to 2000 were converted to standardised groundwater level indices and rationalised into four types (C1–C4) using hierarchical cluster analysis. Mean hydrographs for each type were cross-correlated with standardised precipitation and streamflow indices. Relationships with the El Niño–Southern Oscillation (ENSO) were also investigated. The four hydrograph types show a transition of autocorrelation over increasing timescales and increasingly subdued responses to rainfall. Type C1 strongly relates to rainfall, responding in most years, whereas C4 notably responds to only a single extreme event in 2000 and has limited relationship with rainfall. Types C2, C3 and C4 have stronger statistical relationships with standardised streamflow than standardised rainfall. C3 and C4 changes are significantly (p <?0.05) correlated to the mean wet season ENSO anomaly, indicating a tendency for substantial or minimal recharge to occur during extreme negative and positive ENSO years, respectively. The range of different hydrograph types, sometimes within only a few kilometres of each other, appears to be a result of abstraction interference and cannot be confidently attributed to variations in climate or hydrogeological setting. It is possible that high groundwater abstraction near C3/C4 sites masks frequent small-scale recharge events observed at C1/C2 sites, resulting in extreme events associated with negative ENSO years being more visible in the time series.

  相似文献   

20.
黑河流域走廊平原地下水补给源组成及其变化   总被引:15,自引:1,他引:15       下载免费PDF全文
通过环境同位素、水文分割法和相关分析研究表明,祁连山区降水、冰川雪融水和基岩裂隙水通过出山口地表径流补给构成黑河流域走廊平原地下水主要补给源,具有年际和年内丰枯动态变化规律,与祁连山区降水量和气温的关联度分别为0.97和0.79,与平原张掖站降水量和气温的关联度分别为0.43和0.60。在自然径流条件下,祁连山区降水量变化是改变走廊平原地下水补给的主导因素,约占91%权重;气温变化是重要影响因素,约占9%权重。20世纪80年代以来祁连山区各补给源处于偏丰期。因此,近年来走廊平原地下水补给量相对50年代减少27.1%,人类活动是重要影响因素,急需加强科学调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号