首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
An equivalent layer magnetization model for Australia and adjacent oceanic areas is presented. The model is obtained by linear inversion of Magsat anomaly data measured in the altitude range 325–550 km. The anomaly data set has been isolated from the raw data set by use of models of the core field and very long wavelength external fields, and is internally consistent. Certain major structural features of the Australian continent are geographically associated with magnetization anomalies. A first-order difference is seen between the Tasman Zone and the Precambrian cratonic areas: magnetization anomalies are much more subdued in the former, possibly reflecting a shallowing of the Curie isotherm within the crust. A profile of the vertical integral of magnetization is presented for a crustal section extending from the Gawler Block to the southeast coast. It is shown that the magnetization variations are probably due partly, but not wholly, to depth to Curie isotherm variations; gross magnetization variations among at least three distinct crustal units must be involved.  相似文献   

2.
Distribution of apparent magnetization for Asia   总被引:1,自引:0,他引:1  
Magsat total field anomalies over Asia were used to construct an equivalent magnetization model, which represents the apparent magnetization distribution within an equivalent layer 40 km thick and correlates well with large-scale tectonics, for example, the Kazakhstan, Tarim, Yangtze, India, Sino-Korea and Indochina blocks. The basin, plain, sea basin, and islands are delineated by magnetization lows whereas the plateau and marine ridge correspond to magnetization highs. The boundary between Tibetan Plateau and India marked by a strong gradient along its length coincides with the Yarlung Zangbo River fault roughly. The Tanlu fault belt is the boundary between positive and negative anomalies. This boundary stretches in southwest direction and joins Sanjiang fault belt. The boundary between the Southeast China block and the Yangtze block is also clearly delineated by the magnetization anomalies. Generally, the magnetization boundaries are consistent with the collisional suture of blocks.  相似文献   

3.
The Cappadocia region, located in Central Turkey, is characterized by widespread lava flows and volcanoclastic deposits dating from Miocene to Quaternary. Gravity and aeromagnetic anomalies of the region appear to present similar high and low amplitude regions, although the aeromagnetic anomalies exhibit a rather complex pattern which is thought to be caused by remanent magnetization. The low-pass filtered aeromagnetic map shows a deep-seated magnetic anomaly which may be linked to the widespread volcanic activity at the surface. The pseudogravity transformation of the upward continued anomaly has been constructed. The pseudogravity anomaly demonstrates some form of clockwise rotation. This anomaly was modelled by means of a three-dimensional method. The top and bottom of the body are at 6.3km and 11km (including the flight height) from the ground surface, respectively. This deep body is ellipsoidal and extends along an E-W direction, which is in line with the regional stress direction deduced from GPS measurements. A new mobilistic dynamo-tectonic system appears to explain the body’s E-W elongation. The modelled body may be the source for the inferred geothermal energy of the region. Magnetic measurements were carried out on oriented rock samples collected from outcrops of ignimbrites and basalts, providing directions and intensities of remanent magnetization, susceptibilities and Koeningsberger (Q) ratios. Standard deviations of remanent directions of the Natural Remanent Magnetization (NRM) display a wide scatter implying unreliability of the surface data. Reduction to pole (RTP) transformation of magnetic anomalies was successful with the induced magnetization angle despite the complex pattern of magnetic anomalies.  相似文献   

4.
地壳磁化强度模型和居里等温面   总被引:3,自引:0,他引:3       下载免费PDF全文
利用卫星观测的长波磁异常,用等效偶极源方法推导了中国地区的视磁化强度分布.因卫星的高度远大于磁性地壳的厚度,将视磁化强度转换成磁化强度的垂直积分,它代表地壳内磁性物质的区域变化,利用视磁化强度与地表热流相应关系,计算了中国的新疆和东部一些地区居里等温面的深度.新疆地区的居里面深度为35-50km,其分布形态与塔里木盆地和准噶尔盆地的地貌比较相似;中国东部一些地区居里面深度在20-40km之间,与一些作者用航磁等数据得到的居里深度十分接近.  相似文献   

5.
Heat flow anomalies and their interpretation   总被引:1,自引:0,他引:1  
More than 10,000 heat flow determinations exist for the earth and the data set is growing steadily at about 450 observations per year. If heat flow is considered as a surface expression of geothermal processes at depth, the analysis of the data set should reveal properties of those thermal processes. They do, but on a variety of scales. For this review heat flow maps are classified by 4 different horizontal scales of 10n km (n = 1, 2, 3 and 4) and attention is focussed on the interpretation of anomalies which appear with characteristic dimensions of 10(n − 1) km in the respective representations.The largest scale of 104 km encompasses heat flow on a global scale. Global heat loss is 4 × 1013 W and the process of sea floor spreading is the principal agent in delivering much of this heat to the surface. Correspondingly, active ocean ridge systems produce the most prominent heat flow anomalies at this scale with characteristic widths of 103 km. Shields, with similar dimensions, exhibit negative anomalies.The scale of 103 km includes continent wide displays. Heat flow patterns at this scale mimic tectonic units which have dimensions of a few times 102 km, although the thermal boundaries between these units are sometimes sharp. Heat flow anomalies at this scale also result from plate tectonic processes, and are associated with arc volcanism, back arc basins, hot spot traces, and continental rifting. There are major controversies about the extent to which these surface thermal provinces reflect upper mantle thermal conditions, and also about the origin and evolution of the thermal state of continental lithosphere.Beginning with map dimensions of 102 km thermal anomalies of scale 101 km, which have a definite crustal origin, become apparent. The origin may be tectonic, geologic, or hydrologic. Ten kilometers is a common wavelength of topographic relief which drives many groundwater flow systems producing thermal anomalies. The largest recognized continental geothermal systems have thermal anomalies 101 km wide and are capable of producing hundreds of megawatts of thermal energy.The smallest scale addressed in this paper is 101 km. Worldwide interest in exploiting geothermal systems has been responsible for a recent accumulation of heat flow data on the smallest of scales considered here. The exploration nature of the surveys involve 10's of drillholes and reveal thermal anomalies having widths of 100 km. These are almost certainly connected to surface and subsurface fluid discharge systems which, in spite of their restricted size, are typically delivering 10 MW of heat to the near surface environment.  相似文献   

6.
地壳磁化强度模型和居里等温面   总被引:1,自引:0,他引:1       下载免费PDF全文
利用卫星观测的长波磁异常,用等效偶极源方法推导了中国地区的视磁化强度分布.因卫星的高度远大于磁性地壳的厚度,将视磁化强度转换成磁化强度的垂直积分,它代表地壳内磁性物质的区域变化,利用视磁化强度与地表热流相应关系,计算了中国的新疆和东部一些地区居里等温面的深度.新疆地区的居里面深度为35-50km,其分布形态与塔里木盆地和准噶尔盆地的地貌比较相似;中国东部一些地区居里面深度在20-40km之间,与一些作者用航磁等数据得到的居里深度十分接近.  相似文献   

7.
The magnetic map of Slovakia used in the paper was compiled as part of a project titled Atlas of Geophysical maps and profiles in 2001. The residual magnetic data were analyzed to produce Curie point estimates. To remove distortion of magnetic anomalies caused by the Earth’s magnetic field, reduction to pole transformation was applied to the magnetic anomalies using the magnetization angle of the induced magnetization. Anomalies reduced to the pole tend to be better correlated with tectonic structures. We applied a 3-km upward continuation to the residually compiled magnetic anomalies in order to remove effects of topography. The depth of magnetic dipoles was calculated by an azimuthally averaged power spectrum method for the entire area. Such estimates can be indicative of temperatures in the crust, since magnetic minerals lose their spontaneous magnetization according to Curie temperature of the dominant magnetic minerals in the rocks. The computed Curie point depths in the Slovakia region vary between 15.2 km and 20.9 km. Heat flow higher than 100 mWm−2 occurs at the central volcanics and eastern part of Slovakia, where the Curie point depths values are shallow. The correlation between Curie point depths, heat flow and crust depth was investigated for two E-W cross sections. Heat flow and Curie point depth values are correlated with each other however, these values could not be correlated with crust depth. The Curie point isotherm, which separates magnetic and non-magnetic parts of the crust, is represented in two cross sections.  相似文献   

8.
Variations in crustal magnetization along a seismic section across the Archean Yilgarn block of Western Australia inferred from Magsat data are interpreted as a subtle thermal effect arising from variations in depth to the Curie isotherm. The isotherm lies deep within the mantle of the eastern part of the province, but transects the crust-mantle transition and rises well into the crust on the western side. The model is consistent with heat flow variations along the section line. The mean crustal magnetization implied by the model is approximately 2 A/m. The temperature variation implied by the model is consistent with the hypothesis that the crust-mantle transition seen seismically corresponds to the mafic granulite-eclogite phase transition within a zone of igneous crustal underplating.  相似文献   

9.
The aeromagnetic values over the study region are relatively uniform except for a few anomalies in the northeastern and southwestern areas. Analyses of aeromagnetic data were performed in NW Turkey, in order to have a look into the subsurface regional thermal structure of the region. For this purpose, power spectra, reduced to pole (RTP), and band-pass filtered anomalies were produced using geophysical techniques. Band-pass filtered data were produced from the RTP aeromagnetic anomalies to isolate near surface and undesired deep effects. Based on the aeromagnetic data interpretation, the thickness of the magnetized crust, named the Curie Point Depth (CPD), in the study area lies between 9.7 and 20.3 km. The CPD estimates in the Thrace region of Turkey indicate two shallow CPD (SCPD1 and SCPD2) zones (the Istranca Massif and the Saros Graben area). The deep CPD are located within the Thrace Basin with sediment thickness of about 9 km. The corresponding heat flow map prepared from the averaged thermal conductivities and thermal gradients from the CPD reveals the existence of one low heat flow zone (75 mW/m2) over the center of Thrace Basin, and two high heat flow zones over the Istranca Masif (100–125 mW/m2) in the northern side and Saros Graben (125–135 mW/m2) areas in the southern side of the Thrace Basin.  相似文献   

10.
A method is developed for determining the depth to the centroid (the geometric center) of ‘semi-compact' sources. The method, called the anomaly attenuation rate (AAR) method, involves computing radial averages of AARs with increasing distances from a range of assumed source centers. For well-isolated magnetic anomalies from ‘semi-compact' sources, the theoretical AARs range from 2 (close to the sources) to 3 (in the far-field region); the corresponding theoretical range of AARs for gravity anomalies is 1 to 2. When the estimated source centroid is incorrect, the AARs either exceed or fall short of the theoretical values. The levelling-off of the far-field AARs near their theoretical maximum values indicates the upper (deeper) bound of the centroid location. Similarly, near-field AARs lower than the theoretical minimum indicate the lower (shallower) bound of the centroid location. It is not always possible to determine usable upper and lower bounds of the centroids because the method depends on characteristics of sources/anomalies and the noise level of the data. For the environmental magnetic examples considered in this study, the determined deeper bounds were within 4% of the true centroid-to-observation distance. For the case of the gravity anomaly from the Bloomfield Pluton, Missouri, USA, determination of only the shallower bound of the centroid location (7 km) was possible. This estimate agrees closely with the centroid of a previously determined three-dimensional model of the Bloomfield Pluton. For satellite magnetic anomalies, the method is appropriate only for high-amplitude, near-circular anomalies due to the inherent low signal-to-noise ratio of satellite magnetic anomalies. Model studies indicate that the AAR method is able to place depths within ±20–30 km of actual center locations from a 400-km observation altitude. Thus, the method may be able to discriminate between upper crustal, lower crustal, and mantle magnetic sources. The results from the prominent Kentucky anomaly are relatively well-resolved (centroid depth 30 km below the Earth's surface). For the Kiruna Magsat anomaly, the deleterious effects from neighboring anomalies make a determination difficult (possible depth could be between 20 and 30 km). The centroid depths are deeper for the Kursk anomaly (40–50 km). These depths may indicate that magnetic anomalies from the near-surface Kursk iron formations (a known contributor) and deep crustal magnetic sources could combine to form the Kursk Magsat anomaly.  相似文献   

11.
We present the results of twenty heat flow stations in the Gulf of Oman which are used to infer the first reliable age estimates for the basin. A mean surface heat flux of 42.6±3.6 mW m?2 exhibits no significant regional variation. After correction for thick and rapidly deposited sediments this yields an age of 70 to 100 Ma according to oceanic thermal models. This age is also consistent with the sediment corrected basement depths of 5.5–6.0 km and with formation during the Cretaceous quiet zone. The latter can explain the absence of magnetic sea-floor spreading lineations. Heat flow measurements are also used to confirm the presence of gas hyrdate layers. The measured thermal gradient yields a depth for the solid to free gas phase transition which is the same as that deduced from “bright spots” seen on seismic reflection profiles.  相似文献   

12.
In this study, we aim to map the Curie point depth surface for the northern Red Sea rift region and its surroundings based on the spectral analysis of aeromagnetic data. Spectral analysis technique was used to estimate the boundaries (top and bottom) of the magnetized crust. The Curie point depth (CPD) estimates of the Red Sea rift from 112 overlapping blocks vary from 5 to 20 km. The depths obtained for the bottom of the magnetized crust are assumed to correspond to Curie point depths where the magnetic layer loses its magnetization. Intermediate to deep Curie point depth anomalies (10–16 km) were observed in southern and central Sinai and the Gulf of Suez (intermediate heat flow) due to the uplifted basement rocks. The shallowest CPD of 5 km (associated with very high heat flow, ~235 mW m?2) is located at/around the axial trough of the Red Sea rift region especially at Brothers Island and Conrad Deep due to its association with both the concentration of rifting to the axial depression and the magmatic activity, whereas, beneath the Gulf of Aqaba, three Curie point depth anomalies belonging to three major basins vary from 10 km in the north to about 14 km in the south (with a mean heat flow of about 85 mW m?2). Moreover, low CPD anomalies (high heat flow) were also observed beneath some localities in the northern part of the Gulf of Suez at Hammam Fraun, at Esna city along River Nile, at west Ras Gharib in the eastern desert and at Safaga along the western shore line of the Red Sea rift. These resulted from deviatoric tensional stresses developing in the lithosphere which contribute to its further extension and may be due to the opening of the Gulf of Suez and/or the Red Sea rift. Furthermore, low CPD (with high heat flow anomaly) was observed in the eastern border of the study area, beneath northern Arabia, due to the quasi-vertical low-velocity anomaly which extends into the lower mantle and may be related to volcanism in northern Arabia. Dense microearthquakes seem to occur in areas where the lateral gradients of the CPD are steep (e.g. entrance of the Gulf of Suez and Brothers Island in the Red Sea). These areas may correspond to the boundaries between high and low thermal regions of the crust. Thus, the variations in the microseismic activity may be closely related to thermal structures of the crust. Indeed, shallow cutoff depths of seismicity can also be found in some geothermal areas (e.g. western area of Safaga city along the Red Sea coastal region and at Esna city along the River Nile). These facts indicate that the changes in the thickness of the seismogenic layer strongly depend on temperature. Generally, the shallow Curie point depth indicates that some regions in our study area are promising regions for further geothermal exploration particularly in some localities along the River Nile, Red Sea and Gulf of Suez coastal regions.  相似文献   

13.
Summary A geometrically simple volcano is considered, havig a spherical magma chamber of 2.5 km radius centred at 10 km depth. The Curie point isotherm is assumed to be a plane at 20 km depth, except for the spherical volume which is also non-magnetic. The stress pattern in the vicinity of the spherical chamber, due to regional stress of sufficient intensity to cause an eruptions, is used to calculate the change in magnetization which results from the piezomagnetic effect through the volume of solid rock. The consequent magnetic field anomaly at the surface is then obtaied by numerical integration of the dipole law of force over the stressed volume. For rocks of the type found on the volcanic island of St. Vincent (West Indies), this model gives a maximum local volcano-magnet c effect of about 7 gammas.  相似文献   

14.
A high resolution lithospheric magnetic field model over China   总被引:4,自引:0,他引:4  
CHAMP satellite data and ground-based magnetic observations are used and combined to map the lithospheric magnetic field over China by means of the revised spherical cap harmonic analysis(R-SHCA)modeling technique.The magnetic field is described to a spatial resolution of 150 km at the mean Earth’s radius,which represents a good compromise between the resolutions afforded by surface and satellite data.We compare the magnetic anomalies modeled at the regional scale with composite regions containing large-scale of tectonic structures.These regions,including the Tarim Basin and the Tibetan Plateau,are correlated with regional magnetic anomalies at satellite altitude but contain a significant number of small-scale and complex magnetic structures at the mean Earth’s radius.These magnetic anomalies are globally consistent with the known geological features in China but also offer a way to delineate the contours of the geological blocks and to discuss the connection between magnetic anomalies and the heat flow distribution in this region.  相似文献   

15.
Regional groundwater flow in deep aquifers adds advective components to the surface heat flow over extensive areas within the Great Plains province. The regional groundwater flow is driven by topographically controlled piezometric surfaces for confined aquifers that recharge either at high elevations on the western edge of the province or from subcrop contacts. The aquifers discharge at lower elevations to the east. The assymetrical geometry for the Denver and Kennedy Basins is such that the surface areas of aquifer recharge are small compared to the areas of discharge. Consequently, positive advective heat flow occurs over most of the province. The advective component of heat flow in the Denver Basin is on the order of 15 mW m−2 along a zone about 50 km wide that parallels the structure contours of the Dakota aquifer on the eastern margin of the Basin. The advective component of heat flow in the Kennedy Basin is on the order of 20 mW m−2 and occurs over an extensive area that coincides with the discharge areas of the Madison (Mississippian) and Dakota (Cretaceous) aquifers. Groundwater flow in Paleozoic and Mesozoic aquifers in the Williston Basin causes thermal anomalies that are seen in geothermal gradient data and in oil well temperature data. The pervasive nature of advective heat flow components in the Great Plains tends to mask the heat flow structure of the crust, and only heat flow data from holes drilled into the crystalline basement can be used for tectonic heat flow studies.  相似文献   

16.
In 2000, a 3D MCS survey was carried out on the Eastern Nankai Trough. A strong and widespread bottom-simulating reflector (BSR) was observed and mapped after a preserved amplitude 3D prestack migration of the seismic data. We use this BSR to calculate a heat flow map over the 3D survey area. This map presents some high and low heat flow areas, that cannot be correlated to known active wedge faults and previously observed fluid venting sites. Since the heat flow anomalies are not correlated to known major faults or fluid venting sites, large fluid circulation is not likely to explain the varying BSR-derived heat flow distribution. In order to explain this heat flow distribution quantitatively, we calculate the rates of erosion and sedimentation that are necessary to create these anomalies. These rates are in good agreement with observations on seismic profiles, and are locally consistent with a sedimentation rate calculated from slope basin depth, and reflect the distribution of erosion, landsliding and deposition on the margin slope. We therefore propose that the observed BSR-derived heat flow anomalies are mainly due to active erosion and sedimentation, and that heat flow distribution on the margin section of the 3D survey is controlled by surface processes. Fluid migration could occur where a BSR is absent, but is probably episodic or limited where a BSR is present, and does not affect the BSR-derived heat flow in this part of the margin. These surface processes are the consequence of the tectonic and seismic activity of the wedge and are influenced by the subduction of a wide oceanic ridge below the Eastern Nankai margin.  相似文献   

17.
A numerical method is used to investigate the effect of topographic and local thermal conductivity anomalies on near-surface heat flow for two-dimensional models. Heat flow associated with a sloping topographic structure is calculated. Also, the effects of a fault structure associated with the sloping topography are considered. Vertical and horizontal heat flow components are calculated alone; the surface of the earth as well as throughout the whole region of interest. The results indicate that surface heat flow is substantially affected by topographic relief and the horizontal heat flow component associated with topographic features can be large. Also, regional heat flow is greatly perturbed by local thermal conductivity anomalies and the effect of topographic features may be considerably modified by the subsurface structure.  相似文献   

18.
An attempt is made to obtain a combined geophysical model along two regional profiles: Black Sea— White Sea and Russian Platform—French Central Massif. The process of the model construction had the following stages: 1. The relation between seismic velocity (Vp, km/s) and density (σ, g/cm3) in crustal rocks was determined from seismic profiles and observed gravity fields employing the trial and error method. 2. Relations between heat production HP (μW/m3), velocity and density were established from heat flow data and crustal models of old platforms where the mantle heat flow HFM is supposed to be constant. The HFM value was also determined to 11 ± 5 mW/m2. 3. A petrological model of the old platform crust is proposed from the velocity-density models and the observed heat flow. It includes 10–12 km of acid rocks, 15–20 km of basic/metamorphic rocks and 7–10 km of basic ones. 4. Calculation of the crustal gravity effects; its substraction from the observed field gave the mantle gravity anomalies. Extensively negative anomalies have been found in the southern part of Eastern Europe (50–70 mgal) and in Western Europe (up to 200 mgal). They correlate with high heat flow and lower velocity in the uppermost mantle. 5. A polymorphic advection mechanism for deep tectonic processes was proposed as a thermal model of the upper mantle. Deep matter in active regions is assumed to be transported (advected) upwards under the crust and in its place the relatively cold material of the uppermost mantle descends. The resulting temperature distribution depends on the type of endogeneous regime, on the age and size of geostructure. Polymorphic transitions were also taken into account.  相似文献   

19.
南海北部陆缘珠江口盆地岩石圈热结构   总被引:1,自引:0,他引:1       下载免费PDF全文
沉积盆地岩石圈热结构特征是岩石圈构造-热演化过程的综合反映和盆地热史恢复的约束条件,对盆地动力学研究和油气资源评价具有重要意义.由于海洋勘探难度大、勘探程度低,相对于大陆地区,边缘海盆地比较缺乏岩石圈热结构方面的研究.本文在收集整理珠江口盆地及邻区大地热流数据的基础上,补充收录了自2003年以来发表的新数据,绘制了研究区最新版的大地热流等值线图;基于中美合作双船地震剖面揭示的深部地壳结构计算了研究区的壳-幔热流、深部温度以及"热"岩石圈厚度.研究表明,珠江口盆地地壳热流介于18.7~28.6 mW·m-2,地幔热流介于36.9~91.4 mW·m-2,壳幔热流比值0.23~0.75;由陆架、陆坡至中央海盆,在地壳热流逐渐减小的情况下地表热流逐渐递增,说明地表热流分布主要受深部热作用控制;盆地"热"岩石圈厚度介于34.0~87.2 km,平均65.5 km,反映出显著拉张减薄的特征.  相似文献   

20.
卫星磁异常的理论模型   总被引:3,自引:3,他引:0  
本文介绍了计算卫星磁异常理论模型的数学方法 ,即球谐分析方法、冠谐分析方法、矩谐分析方法和等效源方法 .根据相同的 MAGSAT资料 ,计算的卫星磁异常冠谐模型、矩谐模型和等效源模型都能很好地表示卫星磁异常的分布 .由于在整个研究区域 ( 1 0°N~60°N,70°E~ 1 40°E)都有卫星资料 ,所以这些理论模型没有所谓的“边界效应”.这一结论对计算地磁场的区域模型是很有意义的 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号