首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Source history of the 1905 great Mongolian earthquakes (Tsetserleg, Bolnay)   总被引:1,自引:0,他引:1  
Two great Mongolian earthquakes, Tsetserleg and Bolnay, occurred on 1905 July 9 and 23. We determined the source history of these events using body waveform inversion. The Tsetserleg rupture (azimuth N60°) correspond to a N60° oriented branch of the long EW oriented Bolnay fault.
Historical seismograms recorded by Wiechert instruments are digitized and corrected for the geometrical deformation due to the recording system. We use predictive filters to recover the signals lost at the minute marks.
The total rupture length for the Tsetserleg earthquake may reach up to 190 km, in order to explain the width of the recorded body waves. This implies adding 60 km to the previously mapped fault. The rupture propagation is mainly eastward. It starts at the southwest of the central subsegment, showing a left lateral strike-slip with a reverse component. The total duration of the modelled source function is 65 s. The seismic moment deduced from the inversion is 1021 N m, giving a magnitude   M w = 8  .
The nucleation of the Bolnay earthquake was at the intersection between the main fault (375 km left lateral strike-slip) and the Teregtiin fault (N160°, 80 km long right lateral strike-slip with a vertical component near the main fault). The rupture was bilateral along the main fault: 100 km to the west and 275 km to east. It also propagated 80 km to the southeast along the Teregtiin fault. The source duration was 115 s. The moment magnitude Mw varies between 8.3 and 8.5.
The nucleation and rupture depths remain uncertain. We tested three cases: (1) nucleation and rupture depth limited to the seismogenic zone; (2) nucleation in the seismogenic zone and rupture propagation going to the base of the crust and (3) nucleation within the crust–upper mantle interface and rupture propagation within the upper mantle.  相似文献   

2.
Using the viscoelastic correspondence principle, we utilize the surface coseismic spheroidal deformation fields (i.e. vertical displacements, potential perturbations and gravity changes) of SNREI earth models caused by four typical types of point dislocation, derived by Sun & Okubo (1993 ), to deduce the fundamental formulas for spheroidal fields relevant to viscoelastic earth models. In computations, we employ a strike-slip dislocation on a vertical plane buried at the bottom of the lithosphere to estimate the maximal viscous relaxation responses to this kind of source that possibly exist on the surface of the earth. We take the seismic moment as 1022  N  m, which is characteristic of an average large earthquake. The numerical results demonstrate that, if we take the viscosity as 1019  Pa  s in the asthenosphere, and 1021  Pa  s in the other mantle layers, the rates of surface vertical displacements and gravity changes within about 2.5° for the 10 postseismic years are respectively 1.5–8.1  cm  yr−1 and 4.0–14.9  μgal  yr−1 : the viscous relaxation for this mantle viscosity profile proceeds much faster than for a constant mantle viscosity of 1021  Pa  s.  相似文献   

3.
Seismic sources with observable glut moments of spatial degree two   总被引:1,自引:0,他引:1  
Let ζΛ and r Λ. be the hypocentral position and time of an extended indigenous seismic source. Backus showed that the force moment tensors of the source, Γ( m +1, n )Λ, r Λ), determine and are determined by the motion which the source produces. For small m + n , only the long-period motion is relevant. The glut moment tensor Λ( m,n )Λ, r Λ.) can be calculated uniquely from γ( m +1, n )Λ r Λ) only if m = 0 or m = 1. The tensor G =Λ(2,0)Λ) gives the spatial variance tensor WΛ of the source, and WΛ. roughly describes the size, shape and orientation of the source region. Therefore the failure of the observed F =Γ(3,0)Λ) to determine G uniquely is of seismological interest. In the present paper we show that F determines G uniquely if we assume the source to be a simple straight line source (SSLS) or an ideal fault in an isotropic medium with isotropic prestress (IFIMIP). We give tests on F which determine whether it can come from a SSLS, from an IFIMIP or from a simple plane surface source (SPSS). If we assume the source to be a SPSS then knowing F and the fault plane determines G to within an unknown scalar multiple of a certain tensor tangent to the fault plane. Moreover F determines the fault plane uniquely unless F can come from a SSLS. If it can, then F determines this virtual source line uniquely, and F permits the fault plane to be any plane containing the virtual source line.  相似文献   

4.
Previous investigations of the causal relationship between postglacial rebound and earthquakes in eastern Canada have focused on the mode of failure and the observed timing of the pulse of earthquake/faulting activity following deglaciation. In this study, the observational database has been extended to include observed orientations of the contemporary stress field and the rotation of stress since deglacial times. It is shown that many of these observations can be explained by a realistic ice history and a viscoelastic earth with a uniform 1021 Pa s mantle.
The effects of viscosity structure on the above predictions are also examined. It is shown that, since most of the above observations are found within the ice margin, they are not very sensitive to lithospheric thickness. Also, the inclusion of a 25 or 50 km ductile layer within the lithosphere will not decouple the seismogenic upper crust. High viscosity (1022 Pa s) in the lower mantle is rejected by the stress orientation and rotation observations. A low-viscosity (6 times 1020Pa s) upper mantle with 1.6 times 1021 Pa s in the upper part of the lower mantle and 3 times 1021 Pa s in the lower part of the lower mantle below 1200 km depth has been found to give predictions that are in general agreement with the observations.  相似文献   

5.
Summary. A variety of near-regional (300 km) data, including spectral amplitudes of Pg , surface-wave forms, and close-in (5–10 km) accelerograms have been used to build an elastic seismic source model for a 1-Mton explosion in tuff at near-regional distances. The model consists of: (1) a pressure pulse which injects 3 × 1012 cm3 of volume into the medium, (2) a vertical, upward force impulse that imparts 1018 dyn-s of momentum to the medium, each source component having a time duration of 0.6 s and a depth of 1.3 km. The force impulse appears to be required by two considerations: (a) the striking similarity, apart from sign, of explosion surface waves with those of their cavity collapses, (b) the observation of considerable SV energy leaving the source of the 1-Mton explosions JORUM and HANDLEY . Scaling curves have been constructed which fit the proposed source model. These scaling curves employ: very slow decrease, as (yield)−0.10 of the primary corner frequency; decay as (frequency)4 or (frequency)3 to high frequency. While these scaling curves are unconventional, they appear to be the only ones which can satisfy the near-regional data. The slow scaling with yield of the spectral carner frequency suggests that it is caused by something other than the equivalent elastic radius, e.g. the time duration of motion at the source. The results, at odds with similar studies at teleseismic distances, suggest that significantly different equivalent elastic sources are required at near-regional (as compared with teleseismic) distances; therefore, the effect of the upward impulse might not be seen at teleseismic distances. Consequently, these results probably do not pertain to the seismic discrimination problem at teleseismic distances.  相似文献   

6.
From a large collection of Ethiopian flood basalts (~30  Myr old) sampled for magnetostratigraphy, 40Ar/39Ar geochronology and geochemical investigations, 47 samples were selected in order to test their suitability for Thellier palaeointensity experiments. Only 17 samples from eight individual flows yielded reliable palaeointensity estimates, with flow-mean virtual dipole moments ranging from 3.0 to 10.5 × 1022  A  m2 .
  A critical review of the Oligocene palaeointensity data set, including these new Ethiopian data, indicates an Oligocene mean virtual dipole moment of 5.1 ± 2.5 × 1022  A  m2 for the complete data set. After applying mild selection criteria, the reduced data set yields a mean value of only 4.6 ± 1.9 × 1022  A  m2 . This value is significantly lower than the present-day field strength but is higher than the Mesozoic dipole low mean field. This low Oligocene field might be in agreement with the high palaeosecular variation and rather high non-dipole field invoked around 30  Ma. However, the Oligocene data set is largely dependent on the palaeointensity determinations from Armenia, obtained mainly from baked contacts, which show amazingly low dispersion at both flow and between-flow levels. More data are needed to reduce the weight of these determinations on the mean value and avoid a possible bias.  相似文献   

7.
Micromonas pusilla (Butcher) Manton & Parke appears to be a prominent member of the Barents Sea picoplankton community as revealed by the serial dilution culture method. Cell numbers frequently exceeded 107 cells 1−1, though they usually varied between 103and 106 cells l−1. A number of other identified and unidentified taxa were recorded and quantified. Distribution relative to the marginal ice zone is reported.  相似文献   

8.
We examine quantitatively the ranges of applicability of the equation Ω= A+B [1− t/t f ] m for predicting 'system-sized' failure times t f in the Earth. In applications Ω is a proxy measure for strain or crack length, and A , B and the index m are model parameters determined by curve fitting. We consider constitutive rules derived from (a) Charles' law for subcritical crack growth; (b) Voight's equation; and (c) a simple percolation model, and show in each case that this equation holds only when m < 0. When m > 0, the general solution takes the form Ω = A + B [1 + t / T  ] m , where T   is a positive time constant, and no failure time can be defined. Reported values for volcanic precursors based on rate data are found to be within the range of applicability of time-to-failure analysis ( m < 0). The same applies to seismic moment release before earthquakes, at the expense of poor retrospective predictability of the time of the a posteriori -defined main shock. In contrast, reported values based on increasing cumulative Benioff strain occur in the region where a system-sized failure time cannot be defined ( m > 0; commonly m ≈ 0.3). We conclude on physical grounds that cumulative seismic moment is preferred as the most direct measure of seismic strain. If cumulative Benioff strain is to be retained on empirical grounds, then it is important that these data either be re-examined with the independent constraint m < 0, or that for the case 0 < m + 1 < 1, a specific correction for the time-integration of cumulative data be applied, of the form ΣΩ = At + B '{1 − [1 − t/t f ] m+1 }.  相似文献   

9.
Summary. The viscoelastic response of the Earth to the mass displacements caused by late Pleistocene deglaciation and concomitant sea level changes is shown to be capable of producing the secular motion of the Earth's rotation pole as deduced from astronomical observations. The calculations for a viscoelastic Earth yield a secular motion in the direction of 72° W meridian which is in excellent agreement with observed values. The average Newtonian viscosity and the relaxation time obtained from polar motion data are about (1.1 ± 0.6)1023 poise (P) and 104 (1 ± 0.5) yr. The non-tidal secular acceleration of the Earth can also be attributed to the viscoelastic response to deglaciation and results in an independent viscosity estimate of 1.6 × 1023 P with upper and lower limits of 1.1 × 1023 and 2.8 × 1023 P. These values are in agreement with those based on the polar drift analysis and indicate an average mantle viscosity of 1–2 × 1023 P.  相似文献   

10.
Summary. Seismic travel times for extrema, zero-crossings, or entire body waves need to be determined precisely to one part in 103 or better in several varieties of seismic studies employing an impulsive artificial source. Examples are crosshole surveys which delineate rock crack distribution separating the holes and monitoring of crustal seismic travel times in earthquake precursor studies. A timing resolution of one part in 103 has been achieved previously using digitally recorded seismic data. These methods, however, do not use interpolation between digitized data points as a method to increase the timing resolution. We report travel-time determinations based on interpolation between digitized points which achieve a precision of two parts in 104, a five-fold improvement over the existing methods. In addition, the effects of seismic noise on travel-time measurement have been compared for the extremum location, the unnormalized correlation, and the normalized correlation method. The following conclusions are drawn from this comparison: (1) the normalized correlation method provides an 18–55 per cent improvement in the standard deviation of the mean over the extremum location method, and (2) results as accurate as those by the normalized correlation can be obtained by the unnormalized correlation if a complete up-and-down swing of the waveform is used as the master trace and if the master trace is close to being sinusoidal. The advantage of the unnormalized correlation over the normalized correlation is speed; the unnormalized correlation is faster by a factor of 28 in computing time.  相似文献   

11.
The traveltime perturbation equations for the quasi-compressional and the two quasi-shear waves propagating in a factorized anisotropic inhomogeneous (FAI) media are derived. The concept of FAI media simplifies considerably these equations. In the FAI medium, the density normalized elastic parameters a ijkl ( X i ) can be described by the relation a ijkl ( X i) = f 2( x i ) A ijkl, where A ijkl are constants, independent of coordinates x i and f 2( x i) is a continuous smooth function of x i . The types of anisotropy ( A ijkl ) and inhomogeneity [ f ( x i)] are not restricted. The traveltime perturbations of individual seismic body waves ( q P , qS 1 and qS 2) propagating in the FAI medium depend, of course, both on the structural pertubations [δ f 2( x i)] and on the anisotropy perturbations (δ A ijkl ), but both these effects are fully separated. The perturbation equations for the time delay between the two qS -waves propagating in the FAI medium are simplified even more. If the unperturbed (background) medium is isotropic, the perturbation of the time delay does not depend on the structural perturbations (δ f 2( x i) at all. This striking result, valid of course only in the framework of first-order perturbation theory, will simplify considerably the interpretation of the time delay between the two split qS -waves in inhomogeneous anisotropic media. Numerical examples are presented.  相似文献   

12.
The highest intermediate depth moment release rates in Indonesia occur in the slab beneath the largely submerged segment of the Banda arc in the Banda Sea to the east of Roma, termed the Damar Zone. The most active, western-part of this zone is characterized by downdip extension, with moment release rates (∼1018 Nm yr–1 per 50 km strike length) implying the slab is stretching at ∼10−14 s−1 consistent with near complete slab decoupling across the 100–200 km depth range. Differential vertical stretching along the length of the Damar Zone is consistent with a slab rupture front at ∼100–200 km depth beneath Roma propagating eastwards at ∼100 km Myr–1. Complexities in the slab deformation field are revealed by a narrow zone of anomalous in-plane P -axis trends beneath Damar, where subhorizontal constriction suggests extreme stress concentrations ∼100 km ahead of the slab rupture front. Such stress concentrations may explain the anomalously deep ocean gateways in this region, in which case ongoing slab rupture may have played a key role in modulating the Indonesian throughflow in the Banda Sea over the last few million years.  相似文献   

13.
The frequency–energy distribution of global seismicity is studied using broad-band radiated energy of shallow earthquakes from January 1987 to December 1994 estimated by NEIC. Rank-ordering statistics are applied to enhance the resolution in retrieving the power-law distribution with undersampled data, namely a few tens of events. Seen in the perspective of broad-band radiated energy with higher resolution, a single (Gutenberg–Richter-type) power-law distribution can fit the data. For earthquakes with energy larger than 1014 J, the number N of events with energy E depends on E via N∝E −B , with the scaling constant B = 0.64 ± 0.04, corresponding to b = 0.95 ± 0.06. This relation is different from that of scalar seismic moment, which shows a transition of power-law distributions between small and large earthquakes. To demonstrate such a difference we use the same set of earthquakes with both broad-band energy estimation and CMT estimation. It is found that for the same data set, the energy distribution and the moment distribution show different patterns. The moment distribution has a clear kink between small and large earthquakes, while the energy distribution shows a single power law with no convincing kink between small and large earthquakes. To investigate the effect of different focal mechanisms and different seismic regions, events with strike-slip mechanisms and events within the Japan–Kuril region are considered. For these subsets of events, a similar pattern exists, in which the moment distribution shows a kink between small and large earthquakes, while the energy distribution shows a single power law.  相似文献   

14.
The Pisco earthquake ( M w 8.0; 2007 August 15) occurred offshore of Peru's southern coast at the subduction interface between the Nazca and South American plates. It ruptured a previously identified seismic gap along the Peruvian margin. We use Wide Swath InSAR observations acquired by the Envisat satellite in descending and ascending orbits to constrain coseismic slip distribution of this subduction earthquake. The data show movement of the coastal regions by as much as 85 cm in the line-of-sight of the satellite. Distributed-slip model indicates that the coseismic slip reaches values of about 5.5 m at a depth of ∼18–20 km. The slip is confined to less than 40 km depth, with most of the moment release located on the shallow parts of the interface above 30 km depth. The region with maximum coseismic slip in the InSAR model is located offshore, close to the seismic moment centroid location. The geodetic estimate of seismic moment is 1.23 × 1021 Nm ( M w 8.06), consistent with seismic estimates. The slip model inferred from the InSAR observations suggests that the Pisco earthquake ruptured only a portion of the seismic gap zone in Peru between 13.5° S and 14.5° S, hence there is still a significant seismic gap to the south of the 2007 event that has not experienced a large earthquake since at least 1687.  相似文献   

15.
Summary. The ascent of a hot spherical body through a fluid with a strongly temperature-dependent viscosity has been studied using an axisymmetric finite element method. Numerical solutions range over Peclet numbers of 10−1– 103 from constant viscosity up to viscosity variations of 105. Both rigid and stress-free boundary conditions were applied at the surface of the sphere. The dependence of drag on viscosity variation was shown to have no dependence on the stress boundary condition except for a Stokes flow scaling factor. A Nusselt number parameterization based on the stress-free constant viscosity functional dependence on the Peclet number scaled by a parameter depending on the viscosity structure fits both stress-free and rigid boundary condition data above viscosity variations of 100. The temperature scale height was determined as a function of sphere radius. For the simple physical model studied in this paper pre-heating is required to reduce the ambient viscosity of the country rock to less than 1022 cm2 s−1 in order for a 10 km diapir to penetrate a distance of several radii.  相似文献   

16.
We use GPS displacements collected in the 15 months after the 1999 Chi-Chi, Taiwan earthquake  ( M w 7.6)  to evaluate whether post-seismic deformation is better explained by afterslip or viscoelastic relaxation of the lower crust and upper mantle. We find that all viscoelastic models tested fail to fit the general features in the post-seismic GPS displacements, in contrast to the satisfactory fit obtained with afterslip models. We conclude that afterslip is the dominant mechanism in the 15-month period, and invert for the space–time distribution of afterslip, using the Extended Network Inversion Filter. Our results show high slip rates surrounding the region of greatest coseismic slip. The slip-rate distribution remains roughly stationary over the 15-month period. In contrast to the limited coseismic slip on the décollement, afterslip is prominent there. Maximum afterslip of 0.57 m occurs downdip and to the east of the hypocentral region. Afterslip at hypocentral depths is limited to the southern part of the main shock rupture, with little or no slip on the northern section where coseismic slip was greatest. Whether this results from along strike variations in frictional properties or dynamic conditions that locally favour stable sliding is not clear. In general, afterslip surrounds the area of greatest coseismic slip, consistent with post-seismic slip driven by the main shock stress change. The total accumulated geodetic afterslip moment is  3.8 × 1019 N m  , significantly more than the seismic moment released by aftershocks,  6.6 × 1018 N m  . Afterslip and aftershocks appear to have different temporal evolutions and some spatial correlations, suggesting that aftershock rates may not be completely controlled by the rate of afterslip.  相似文献   

17.
Summary. Some lavas of Early Carboniferous age from Scotland and Derbyshire have been analysed for palaeofield magnitude by the application of a new correction to data obtained by the Shaw method. Its application has yielded field magnitude values from data which had previously been rejected. A modern pottery specimen and recent lavas from Sicily and Westman Island have also been analysed.
An average virtual dipole moment (VDM, Smith) of 2.5 ± 0.4 × 1022 A m2 was determined for the Early Carboniferous. This is only 30 per cent of the present-day VDM.  相似文献   

18.
Summary . The great Etorofu earthquake of 1958 November 6 is characterized by a relatively small aftershock area (70 × 150 km2) and an extremely large felt area. The felt area is more extensive than those of any other large earthquakes which have occurred in the southern Kurile to northern Japan arc since the beginning of this century. The mechanism is a pure thrust fault typical of most great earthquakes in island arcs. A body wave magnitude of m b = 8.2 is obtained at periods around 6 s using more than 40 observations, although an m b value of only 7.6–7.7 would be expected empirically from the observed surface wave magnitude of M s= 8.1–8.2. Both an unusually large felt area and a high m b indicate a dominance of high-frequency components in the seismic waves. A seismic moment of M o= 4.4 × 1028 dyne cm is determined from long-period surface waves from which a high stress drop of Δσ = 78 bar is obtained using a relatively small aftershock area. Historic data indicate an anomalously long time interval between the 1958 event and any earlier great earthquake from the same source region. The observed high stress drop can be interpreted as a consequence of this long intervening period through which strain built up. The dominance of the high-frequency seismic waves can then be interpreted as a result of this high stress drop. Stress drops, seismic wave spectra and recurrence intervals of great earthquakes are in this way closely related to each other. The 1958 event may represent a high strength extreme of stochastic fluctuation of fracture strength relevant to great earthquakes.  相似文献   

19.
A geomagnetic precursor to the 1979 Carlisle earthquake   总被引:3,自引:0,他引:3  
Summary. A study of horizontal field transfer functions, in the period range 10–104s, has been made for the 2 yr period preceding the 1979 Carlisle earthquake (magnitude 5). The study using two sites, local to and remote from the earthquake epicentre, reveals that a precursory effect is observed at short periods (<102s) some 35 km from the main epicentre. The results indicate a change from two-dimensional geolectric anisotropy to a more conductive three-dimensional geoelectric configuration during the period immediately preceding the earthquake.  相似文献   

20.
Summary. As part of integrated marine geophysical studies in the Western Somali Basin, we performed 118 sonobuoy experiments to define better the crustal structure of the margins and basin created by the separation of Madagascar and Africa. After using T 2/ X 2, conventional slope-intercept methods, and slant-stacked t-p techniques to analyse the data, we combined our solutions with all previous velocity information for the area. Velocity functions were derived for the sediment coiumn, and we detected a high-velocity (4.58 ± 0.29 km s–1) sediment layer overlying acoustic basement. We confirmed that the crust is indeed seismically oceanic, and that it may be considered either in terms of a layered model – layers 2B (5.42 ± 0.19 km s–1), 2C (6.23 ± 0.22 km s–1), 3 (7.03 ± 0.25 km s–1), and mantle (7.85 ± 0.32 km s–1) were identified – or a more complex gradient model in which layer 2 is marked by a steeper velocity gradient than underlying layer 3. Integrated igneous crustal thicknesses (1.62 ± 0.22 s, 5.22 ± 0.64 km) are significantly less than what is considered normal. We present a revised seismic transect across the East African margin, as well as total sediment thickness, depth to basement and crustal thickness maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号