首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wind erosion measurements were carried out in Nellis Dunes Recreation Area, southern Nevada, USA. Gross erosion (the total mass of sediment effectively blown away from a surface), gross deposition (the total mass of sediment effectively depositing on a surface) and net erosion (the difference in sediment mass before and after an event) were measured for 1 year, on 17 different types of surfaces developed on loose dune sand, compacted sand, loose silt, compacted and/or aggregated silt, rock‐covered sands and silts, mixtures of sand, silt and clay, exposed petrocalcic horizons, gravelly substrata and bedrock. Results showed that net erosion, which is the type of erosion measured in field and laboratory experiments, strongly differs from gross erosion. Activity on a surface is much higher than classic net erosion measurements suggest. Future studies on wind erosion should better acknowledge the distinction between the two types of process. Also, a grain diameter of maximum susceptibility to wind erosion (‘optimum deflation diameter’) near 70 µm as proposed by the aeolian literature only exists for net wind erosion. No such optimum diameter was found for gross wind erosion within the particle range 0–100 µm delineating the transport modes of suspension and modified saltation. In addition, desert surfaces predominantly composed of sand did not show an optimum deflation diameter (for net erosion) around 70 µm. Instead, there was a preferential grain size around 15 µm at which particles were most vulnerable to net emission. Desert surfaces poor in sand showed the classic value of 70 µm. This suggests that interactions exist between the type of surface and the susceptibility of particles to wind erosion. This study is solely based on field data. Although results are supported by two previous wind tunnel studies, more wind tunnel experiments documenting the interactions between gross erosion and gross deposition are necessary. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Wind regimes in the vicinity of the Namib Sand Sea are high energy unimodal near the coast, becoming bimodal or complex inland. There is an overall decrease in wind energy and sand transport rates from south to north and west to east, such that sand moves from coastal and southern source areas to accumulate in the northern and central parts of the sand sea. Such a pattern can explain much of the observed spatial variability in dune types, sizes, and sediment characteristics and lends support to a climatic model of sand sea formation in this region. Seasonal and daily cycles of wind velocity and direction give rise to episodic sand transport, most of which is generated by winds of moderate velocity and frequency.  相似文献   

3.
The unusual location of ventifacts, on a boulder‐built jetty at the mouth of the Siuslaw River, Oregon coast, western USA, allows ventifact age and wind abrasion rates to be estimated with some precision. The jetty was built mainly between 1892–1901 and extended throughout the twentieth century. Consideration of historical shoreline position and the history of jetty construction and repair suggests the ventifacts have formed since about 1930. Morphologically the ventifacts are aligned south‐to‐north reflecting winter winds and sediment transport from the adjacent beach. Wind‐parallel grooves and ridges with sharp, sinuous crests are developed on inclined boulder surfaces on top of the jetty and reflect suspended sand transport in wind vortices. Deeply pitted surfaces on steep boulder surfaces nearest the beach reflect impact by saltating sand grains. Based on present wind regimes (1992–2000) from three regional weather stations, southerly winds above the sand transport threshold occur for 21·9–29·6 per cent of the time. Based on estimated depth of loss from boulder surfaces, wind abrasion rates are calculated to be on the order of 0·24–1·63 mm a?1. This is the first well‐constrained field estimate of ventifact age and ventifaction rate from a modern coastal environment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Wind movement and velocity can have a profound effect on some aspects of the soil erosion process. In the case of wind‐driven rain, differences in raindrop trajectory are expected: wind‐driven raindrops achieve some degree of horizontal velocity, which increases their resultant impact velocity and they strike the soil surface at an angle deviated from the vertical under the effects of both gravitational and drag forces. However, not much is known about the physical impact of raindrops on a soil in situations where this impact is at an angle, and it is also not precise known if oblique raindrops have stronger erosive effects than vertical ones. A series of tests was conducted to assess the effect of wind velocities on sand detachment from splash cups in a wind tunnel facility equipped with a rainfall simulator. Splash cups packed with standard sand were exposed to windless rains and to rains driven by horizontal wind velocities of 6, 10 and 14 m s?1 to evaluate the sand detachment by wind‐driven raindrops. The average angle of rain inclination from vertical was calculated from the direct intensity measurements implemented with windward and leeward‐facing raingauges placed at different slopes. A kinetic energy sensor measured energy of windless and wind‐driven rains. Results showed that the kinetic energy flux calculated by the resultant impact velocity of drops adequately described the sand detachment from the splash cups by wind‐driven raindrops. However, an additional analysis of Pearson correlation coefficients using the velocity components rather than the resultant velocity of wind‐driven raindrops indicated that the energy flux related to the horizontal component of wind‐driven raindrops had a greater correlation with sand detachment than that related to the normal component. This finding contradicted the general assumption that the component of velocity normal to the surface is related to the detachment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The Wind Erosion Prediction System (WEPS) and Revised Wind Erosion Equation (RWEQ) are widely used for estimating wind‐induced soil erosion at a field scale. Wind is the principal erosion driver in the two models. Wind erosivity, which describes the capacity of wind to cause soil erosion, is defined as erosive wind power density (WPD) in WEPS, and wind value (W) in RWEQ. In this study, the daily average WPD (AWPD) and the daily average W (Wf) were chosen to investigate the effect of averaging time on wind erosivity estimation based on observed wind data. We compare the daily AWPD and Wf calculated from 1, 5, 10, 15, 30, and 60 minute average wind speed data. The results of comparisons indicate that averaging wind speed can significantly influence estimates of wind erosivity. Compared with the daily AWPD and Wf calculated from one minute average wind speed data, all daily AWPD and Wf values calculated from 5, 10, 15, 30, and 60 minute averaged wind speeds tend to be significantly lower than values calculated from one minute values. In general, longer averaging times tend to produce smaller values of daily AWPD or Wf, which may lead to an under‐estimation of wind erosion. Further studies are needed to extend and apply the findings obtained in this study to actual wind erosion predictions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Wind erosion characteristics of Sahelian surface types   总被引:1,自引:0,他引:1  
The assessment of wind erosion magnitudes for a given area requires knowledge of wind erosion susceptibilities of the dominant local surface types. Relative wind erosion potentials of surfaces can hardly be compared under field conditions, as each erosion event is unique in terms of duration, intensity and extent. The objective of this study was to determine and compare relative wind erosion potentials of the most representative surface types over a transect comprising most parts of southwestern Niger. For this purpose, mobile wind tunnel experiments were run on 26 dominant surface types. The effects of surface disturbance were additionally determined for 13 of these surfaces. The results, namely measurements of wind fields and mass fluxes, can be classified according to specific surface characteristics. Three basic surface groups with similar emission behaviour and aerodynamic characteristics were identified: (1) sand surfaces, (2) rough stone surfaces and (3) flat crusted surfaces. Sand surfaces feature a turbulent zone close to the surface due to the development of a saltation layer. Their surface roughness is medium to high, as a consequence of the loss of kinetic energy of the wind field to saltating particles. Sand surfaces show the highest mass fluxes due to the abundance of loose particles, but also fairly high PM10 fluxes, as potential dust particles are not contained in stable crusts or aggregates. Rough stone surfaces, due to their fragmented and irregular surface, feature the highest surface roughness and the most intense turbulence. They are among the weakest emitters but, due to their relatively high share of potential dust particles, PM10 emissions are still average. Flat crusted surfaces, in contrast, show low turbulence and the lowest surface roughness. This group of surfaces shows rather heterogeneous mass fluxes, which range from moderate to almost zero, although the share of PM10 particles is always relatively high. Topsoil disturbance always results in higher total and PM10 emissions on sand surfaces and also on flat crusted surfaces. Stone surfaces regularly exhibit a decrease in emission after disturbance, which can possibly be attributed to a reorganization which protects finer particles from entrainment. The results are comparable with field studies of natural erosion events and similar wind tunnel field campaigns. The broad range of tested surfaces and the standardized methodology are a precondition for the future regionalization of the experimental point data. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Field experiments were carried out over a five year period with the aim of understanding contemporary weathering and erosional environments in the Sør Rondane Mountains, an Antarctic cold desert region. These include observations of (1) scaling from rockwalls, (2) disintegration of tuff blocks with or without saline solutions, and (3) abrasion of artificial walls by wind. Monitoring was also made of rock surface temperature and wind speed. Despite frequent temperature oscillations across 0°C, rock scaling due to frost action was generally very slow because of low moisture content in the rockwalls. Exposure to the cold, dry climate led to the rapid disintegration of porous tuff blocks including soluble salts like halite and thenardite. This indicates that rates of weathering are increased greatly with the accumulation of such salts in the bedrock. Although gypsum did not cause any visible damage over four years, its widespread occurrence in heavily damaged rocks demonstrates that increasing gypsum contents may also intensify rock breakdown. The snow-laden katabatic wind resulted in rapid wearing of the windward face of an asbestos board with the peak erosion at 30–40 cm above the ground. Nonetheless, the landforms expected from the unidirectional wind characteristics are by no means common features because of lack of abrasive materials, such as snow and sand particles. These experiments suggest that frost weathering and wind erosion are only locally effective where plenty of moisture or an abrasive material is available, whilst salt weathering and removal of the waste by wind play a major role in constructing erosional landforms over the mountains.  相似文献   

8.
The wind‐driven‐rain effect refers to the redistribution of rainfall over micro‐scale topography due to the existence of local perturbed wind‐flow patterns. Rainfall measurements reported in the literature point to the fact that the wind‐driven‐rain distribution can show large variations over micro‐scale topography. These variations should be taken into account in hillslope hydrology, in runoff and erosion studies and in the design of rainfall monitoring networks. In practice, measurements are often not suitable for determining the wind‐driven‐rain distribution. Therefore, a few researchers have employed numerical modelling. In order to provide confidence in using numerical models, experimental verification for a range of different topographic features is imperative. The objective of this study is to investigate the adequacy of a two‐dimensional Computational Fluid Dynamics (CFD) model to predict the wind‐driven‐rain distribution over small‐scale topography. The numerical model is applied to a number of topographic features, including a succession of cliffs, a small isolated hill, a small valley and a field with ridges and furrows. The numerical results are compared with the corresponding measurement results reported in the literature. It is shown that two‐dimensional numerical modelling can provide a good indication of the wind‐driven‐rain distribution over each type of micro‐scale topography that is considered in this study. It is concluded that more detailed verification procedures are currently inhibited due to the lack of available and detailed spatial and temporal rainfall data from field measurements. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Aeolian abrasional, depositional and deflational features indicate exceptionally strong southwesterly winds in a giant sandstone weathering pit in Grand Staircase Escalante Monument, about 22 km southeast of Escalante, Utah. The 60 m wide, 5–20 m deep pit has developed near the summit of a broad, barren 160‐m‐high dome on the Lower Jurassic Navajo Sandstone. Unlike other giant weathering pits (10–30 m diameter) in the region, the bedrock floor of this pit is undulatory, and there is a cylindrical, 10‐m‐high rock pedestal in the centre of the pit. An active dune surrounds the central pedestal and at times has as much as 8 m of local relief. The dune shifts considerably over brief (<1 year) periods of time. Fine‐grained (<250 µm) dunal sand on the pit floor is periodically removed by deflation, leaving coarser sand (>250 µm) trapped in the pit. Dunal sand is typically derived from external sources (other than the pit walls and floor). Centimetre to metre‐scale abrasional features such as grooves, flutes and dedos occur on the bedrock walls and floor of the pit. These dedos and other streamlined aeolian sculpted host‐rock features occur in clusters and typically form in the lee of iron concretions. The dedos are similar to the controversial stalked blueberries on Mars. Above the western rim of the pit there is a 29‐m‐long, 5‐m‐wide aeolian groove with a fluted bedrock floor. A 1·2‐km‐long bedrock valley descends to the southwest from the pit and groove, amplifying southwesterly winds. Data from hand‐held anemometers suggest that southwesterly winds can be accelerated 200–300 per cent or more by local topography. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

10.
Studies on soil wind erosion began with single factors affecting soil wind erosion; with increasing quantities of data being accumulated,the wind erosion equation(WEQ),the revised wind erosion equation(RWEQ),the wind erosion prediction system(WEPS),and other soil wind erosion models have been successively established,and great advances have been achieved.Here we briefly review the soil wind erosion research course and analyze the advantages and disadvantages of the current soil wind erosion models.From the perspective of the dynamics of wind erosion,we classified the factors affecting soil wind erosion into three categories,namely,wind erosivity factors(WEF),soil antierodibility factors(SAF),and roughness interference factors(RIF).We proposed the concept of a standard plot of soil wind erosion to solve the problem of uncertainty of the soil wind erosion modulus on a spatial scale,and provided methods to set similarity conditions in wind tunnel simulation experiments and to convert the spatial scale of the wind erosion modulus from the standard plot to a large scale field.We also proposed a conceptual model on the basis of the dynamics of soil wind erosion with the theoretical basis that wind produces a shear force on the soil surface.This shear force is partitioned by barely erodible soil surfaces and roughness elements on the ground,and the amount of soil loss by wind should be calculated by comparing the shear force of the wind on barely erodible soil surfaces with the anti-erosion force of the surface soil.One advantage of this conceptual model is that the calculated soil wind erosion modulus is not subject to changes of spatial scale.Finally,we recommended continual improvement of the existing models while also establishing new models.  相似文献   

11.
Wind erosion depends on the ease with which particles can be detached from the soil surface, but suitable tests to characterize this property are not available. Two possible methods to determine surface soil strength in the field were therefore compared on a range of artificially ‘crusted’ surfaces. These were made by spraying or tension wetting aggregates (10–2, 2–0.5 and <0.5 mm) from a structurally unstable sandy loam, followed by drying. Each test involved measuring the force exerted on a probe driven at a steady rate into the surface, using either a flat-tipped 0.6 mm diameter penetrometer or a flat-ended cylindrical punch with inner and outer diameters of 5 and 6 mm, respectively. Both probes showed that crusts could be produced reproducibly. Depending on the probe and aggregate size, penetration mainly occurred either as a result of aggregates being deflected out of the pathway of the probe or by genuine rupture of aggregates or of the crusted surface. The penetrometer, because it was comparable to the size of sand grains, gave results that can be used to characterize surface erodibility to saltating particles. The punch gave results that would be unsuitable for this purpose, as would other strength tests that are on too large a scale. Penetrometer results were analyzed to calculate the energy required for penetration. It was thus possible to demonstrate that only the spray-wetted fine aggregates had a surface that could undergo large-scale rupture by saltating sand grains. For all other surfaces, saltating particles would be unable to supply sufficient energy to rupture aggregates or the crusted surface. Erosion could only occur by a slower process of abrasion in which smaller particles or aggregates are chipped away from the surface. However, it is shown that saltating particles could rupture the interaggregate bonding in the 2–0.5 mm aggregate surfaces, thus permitting creep. An alternative and potentially simpler way of characterizing surface erodibility by using a surface modulus of elasticity is also discussed. Our results demonstrate that the small diameter penetrometer is a promising technique for characterizing erodibility of aggregated and crusted surfaces. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
Glacier and ice sheet retreat exposes freshly deglaciated terrain which often contains small‐scale fragile geomorphological features which could provide insight into subglacial or submarginal processes. Subaerial exposure results in potentially rapid landscape modification or even disappearance of the minor‐relief landforms as wind, weather, water and vegetation impact on the newly exposed surface. Ongoing retreat of many ice masses means there is a growing opportunity to obtain high resolution geospatial data from glacier forelands to aid in the understanding of recent subglacial and submarginal processes. Here we used an unmanned aerial vehicle to capture close‐range aerial photography of the foreland of Isfallsglaciären, a small polythermal glacier situated in Swedish Lapland. An orthophoto and a digital elevation model with ~2 cm horizontal resolution were created from this photography using structure from motion software. These geospatial data was used to create a geomorphological map of the foreland, documenting moraines, fans, channels and flutes. The unprecedented resolution of the data enabled us to derive morphological metrics (length, width and relief) of the smallest flutes, which is not possible with other data products normally used for glacial landform metrics mapping. The map and flute metrics compare well with previous studies, highlighting the potential of this technique for rapidly documenting glacier foreland geomorphology at an unprecedented scale and resolution. The vast majority of flutes were found to have an associated stoss‐side boulder, with the remainder having a likely explanation for boulder absence (burial or erosion). Furthermore, the size of this boulder was found to strongly correlate with the width and relief of the lee‐side flute. This is consistent with the lee‐side cavity infill model of flute formation. Whether this model is applicable to all flutes, or multiple mechanisms are required, awaits further study. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

13.
Aeolian sand transport is a complicated process that is affected by many factors (e.g. wind velocity, sand particle size, surface microtopography). Under different experimental conditions, erosion processes will therefore produce different results. In this study, we conducted a series of wind tunnel experiments across a range of wind velocities capable of entraining sand particles (8.0, 10.0, 12.0, and 14.0 m s-1) to study the dynamic changes of the shear velocity, aerodynamic roughness length, and sand transport. We found that the shear velocity and aerodynamic roughness length are not constant; rather, they change dynamically over time, and the rules that describe their changes depend on the free-stream air velocity. For wind tunnel experiments without feeding sand into the airflow, the sand bed elevation decreases with increasing erosion time, and this change significantly affected the values of shear velocity and aerodynamic roughness length. A Gaussian distribution function described the relationships between the sand transport rate (qT) and the duration of wind erosion (T). It is therefore necessary for modelers to consider both deflation of the bed and the time scale used when calculating sand transport or erosion rates. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
A previously unknown field of large‐scale sedimentary bodies has been mapped and studied on the continental shelf off the Cape Trafalgar near the Strait of Gibraltar with particular emphasis on the relationship between large‐scale sediment bodies and the superimposed bedforms. This study is based on a grid of 975 km of high‐resolution seismic profiles collected at water depths ranging between 15 and 60 m. High variability of large‐scale sedimentary bodies is attributed to the complex interaction of hydrodynamic agents. The most prominent sedimentary features are sand banks and ridges that indicate long‐term southwest and southward‐directed sediment transport patterns, possibly due to the interplay of two dominant current systems flowing southward and westward. These sediment bodies evolve laterally to distinct external geometries, such as sand shoals in shallow water and sand sheets in the vicinity of larger sand banks that indicate moderate current velocities. In addition, pre‐existing physiography is considered to play a role in the generation of certain sediment bodies, developed over inclined surfaces or confined laterally by elevations. Relationships between superimposed bedforms (mostly very large dunes) and underlying sediment bodies vary across the study area. Most superimposed bedforms occur over the complex mosaic of sediment banks and sheets, suggesting the interaction of several high‐energy currents with different directions, such as tidal and/or wind‐driven currents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
More than 4000 hourly wind profiles measured on three topographically different foredunes are analysed and discussed. Wind flow over the foredunes is studied by means of the relative wind speed: the ratio between wind speed at a certain location and the reference wind speed at the same height. Relative wind speeds appear to be independent of general wind speed but dependent on wind direction. For perpendicular onshore winds the flow over the foredune is accelerated due to topographic changes and decelerated due to changes in surface roughness. Accelerations dominate over decelerations on the seaward slope. The pattern of acceleration and deceleration in relation to wind direction is more or less comparable for different foredunes, but the magnitudes differ. An increase in foredune height from 6 to 10m leads to an increase in speed-up near the top of the seaward slope from 110 to 150 per cent during onshore wind, but further increase of foredune height from 10 to 23m appears to have little effect, due to increased roughness and deflection of flow. Topography also influences the direction of the flow. Between beach and top, the flow deflects in the direction of the normal during onshore winds. During offshore winds the flow is deflected to the parallel. Near the dunefoot, deflection is always in the direction of the parallel, and increases with steeper topography. The maximum deflection near the dunefoot was 90°, over a 23 m high dune, observed during offshore winds. Patterns of erosion and sedimentation resulting from winds from different directions can be explained by the observed accelerations and decelerations. Owing to speed-up on the seaward front of the foredune, sand transport capacity of the wind increases, which results in erosion if vegetation is absent. During strong onshore wind, sand is lifted near the dunefoot and moves over the foredune in suspension. During weaker winds, vertical wind velocities do not exceed fall velocities of the sand grains, and most of the sand is deposited near the dunefoot.  相似文献   

16.
The endemic argan woodlands cover large parts of South Morocco and create a characteristic landscape with areas of sparsely vegetated and bare soil surfaces between single trees. This unique ecosystem has been under extensive agrosilvopastoral management for centuries and is now at risk of degradation caused by overgrazing and increasing scarcity and variability of rainfall. To investigate susceptibility to wind erosion, we conducted an experimental–empirical study including wind tunnel tests and a drone-generated digital elevation model and quantified wind-erodible material on five different associated surface types by means of sediment catchers. The highest emission flux was measured on freshly ploughed surfaces (1875 g m–2 h–1), while older ploughed areas with a re-established crust produced a much lower emission flux (795 g m–2 h–1). Extensive tillage may have been a sustainable practice for generations, but increasing drought and uncertainty of rainfall now lead to an acute risk of severe soil erosion and dust production. The typical crusted surfaces characterized by residual rock fragment accumulation and wash processes produced the second highest emission flux (1,354 g m–2 h–1). Material collected from tree-shaded areas (933 g m–2 h–1) was revealed to be a considerable source of organic material, possibly affecting substrate conditions positively on a larger regional scale. The lowest flux was measured on rock fragment-covered surfaces (301 g m–2 h–1). The data show that open argan woodland may be a considerable source for wind erosion and dust production, depending on surface characteristics strongly related to management. An adapted management must include the conservation of argan trees to offer a promising approach to prevent severe wind erosion and dust production and mitigate possible impacts of land-use change and climate change related shifts in wind and rainfall patterns. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

17.
Wind Data Tabulator and Sand Rose Plotter (WDTSRP) is an interactive developed computer program accessible for estimating sand transport potential by winds in barren sandy deserts. The Fryberger (1979) formula for determining sand drift potential (DP) was adopted to create and develop the computer program. WDTSRP is capable of working out weighting factors (WFs), frequency of wind speed occurrence (t), drift potential (DP), resultant drift potential (RDP) and directional variability of winds (DV) and of plotting sand roses. The developed computer program is built up of a simplified system driven by a group of options and dialogue boxes that allow users to input and handle data easily and systematically. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Wind tunnel experiments were conducted with a well mixed, flat sand bed, 5·7 m in length, to study the initial sand flux response at three different shear velocities. In some experiments, the bed was allowed to deplete without replenishment; in others, sand was fed 10·8 m upstream of the monitored cross-section. The results indicated that the transport rate increases rapidly during the first minute, and then adjusts slowly towards a steady rate. The time to reach such an equilibrium was observed to be on the order of 2–4 min in non-fed experiments and on the order of 8–9 min in fed experiments. Many factors may affect such development and bring about non-stationarity in total sand transport rate. Among these factors are differences in the natural composition of the sand bed, changes in both the topographical features of the sand bed (ripples) and its surface texture, and any artificial features that influence the adjustment between the boundary layer profile and the sand load on the wind. A useful key to the influence of each factor is obtained by noting that each has a typical and distinct ‘time constant’. The nature and relative importance of each is discussed by reference to the reported wind tunnel experiments and to the behaviour of saltation cloud numerical models. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Accurate knowledge of the contacts between surface roughness and the resultant wind speed are important for climatic models, wind power meteorology, agriculture and erosion hazards especially on sand saltation in arid and semi-arid environments, where vegetation cover is scarce. In this study, synchronous measurements of three-dimensional wind speed below 5 m are carried out in three different surface roughness conditions in Minqin, China, and the difference in the turbulence statistics and the structure of the very large-scale motions (VLSMs) were revealed. The results show that the slope of the mean wind profile (MVP), the turbulent kinetic energy (TKE) and Reynolds stress increase with the surface roughness. The roughness seems to suppress the ejection events and the surface roughness will not only weaken the energy of the VLSMs, but also reduce the scale values of VLSMs near the wall. These influences may cause some changes regarding the dust transportation in streamwise and vertical directions during the sand and dust storm (SDS). That is, the decrease of the mean velocity near the ground will reduce the dust transportation in the streamwise direction and influence of the roughness on the ejection and sweep events will change the dust transportation in the vertical direction. Furthermore, the increase of roughness will weaken the scale and energy of VLSMs, which will lead to the decrease of the capacity of dust transportation. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Recently disturbed and ‘control’ (i.e. less recently disturbed) soils in the Mojave Desert were compared for their vulnerability to wind erosion, using a wind tunnel, before and after being experimentally trampled. Before trampling, control sites had greater cyanobacterial biomass, soil surface stability, threshold friction velocities (TFV; i.e. the wind speed required to move soil particles), and sediment yield than sites that had been more recently disturbed by military manoeuvres. After trampling, all sites showed a large drop in TFVs and a concomitant increase in sediment yield. Simple correlation analyses showed that the decline in TFVs and the rise in sediment yield were significantly related to cyanobacterial biomass (as indicated by soil chlorophyll a). However, chlorophyll a amounts were very low compared to chlorophyll a amounts found at cooler desert sites, where chlorophyll a is often the most important factor in determining TFV and sediment yield. Multiple regression analyses showed that other factors at Fort Irwin were more important than cyanobacterial biomass in determining the overall site susceptibility to wind erosion. These factors included soil texture (especially the fine, medium and coarse sand fractions), rock cover, and the inherent stability of the soil (as indicated by subsurface soil stability tests). Thus, our results indicate that there is a threshold of biomass below which cyanobacterial crusts are not the dominant factor in soil vulnerability to wind erosion. Most undisturbed soil surfaces in the Mojave Desert region produce very little sediment, but even moderate disturbance increases soil loss from these sites. Because current weathering rates and dust inputs are very low, soil formation rates are low as well. Therefore, soil loss in this region is likely to have long‐term effects. Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号