首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 323 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Arsenic, iron and sulfur co-diagenesis in lake sediments   总被引:3,自引:0,他引:3  
Profiles of porewater pH and dissolved As, Fe, Mn, sulfate, total sulfide (ΣS−II), total zero-valent sulfur (ΣS0), organic carbon and major ion concentrations, as well as those of solid As, acid-volatile sulfide (AVS), total S, Fe, Mn, Al, organic C, 210Pb and 137Cs were determined in the sediment of four lakes spanning a range of redox and geochemical conditions. An inverse modeling approach, based on a one-dimensional transport-reaction equation assuming steady-state, was applied to the porewater As profiles and used to constrain the net rates of reactions involving As (). The model defines depth intervals where As is either released to (positive ) or removed from (negative ) the porewaters.At two of the sites, whose bottom water were oxygenated at sampling time, a production zone ( = 12 × 10−18 mol cm−3 s−1-71 × 10−18 mol cm−3 s−1) is inferred a few cm below the sediment-water interface, coincident with sharp porewater As and Fe peaks that indicate an intense coupled recycling of As and Fe. This process is confirmed by solid As and Fe maxima just below the sediment surface. In these two lakes a zone of As consumption ( = −5 × 10−18 mol cm−3 s−1 to −53 × 10−18 mol cm−3 s−1), attributed to the slow adsorption of As to authigenic Fe oxyhydroxides, occurs just above the production zone. A second-order rate constant of 0.12 ± 0.03 cm3 mol−1 s−1 is estimated for this adsorption reaction.Such features in the porewater and solid profiles were absent from the two other lakes that develop a seasonally anoxic hypolimnion. Thermodynamic calculations indicate that the porewaters of the four lakes, when sulfidic (i.e., ΣS−II ? 0.1 μM), were undersaturated with respect to all known solid As sulfides; the calculation also predicts the presence of AsV oxythioanions in the sulfidic waters, as suggested by a recent study. In the sulfidic waters, the removal of As ( = −1 × 10−18 mol cm−3 s−1 to −23 × 10−18 mol cm−3 s−1) consistently occurred when saturation, with respect to FeS(s), was reached and when AsV oxythioanions were predicted to be significant components of total dissolved As. This finding has potential implications for As transport in other anoxic waters and should be tested in a wider variety of natural environments.  相似文献   

11.
12.
13.
14.
15.
16.
The speciation of cobalt (II) in Cl and H2S-bearing solutions was investigated spectrophotometrically at temperatures of 200, 250, and 300 °C and a pressure of 100 bars, and by measuring the solubility of cobaltpentlandite at temperatures of 120-300 °C and variable pressures of H2S. From the results of these experiments, it is evident that CoHS+ and predominate in the solutions except at 150 °C, for which the dominant chloride complex is CoCl3. The logarithms of the stability constant for CoHS+ show moderate variation with temperature, decreasing from 6.24 at 120 °C to 5.84 at 200 °C, and increasing to 6.52 at 300 °C. Formation constants for chloride species increase smoothly with temperature and at 300°C their logarithms reach 8.33 for , 6.44 for CoCl3, 4.94 to 5.36 for , and 2.42 for CoCl+. Calculations based on the composition of a model hydrothermal fluid (Ksp-Mu-Qz, KCl = 0.25 m, NaCl = 0.75 m, ΣS = 0.3 m) suggest that at temperatures ?200 °C, cobalt occurs dominantly as CoHS+, whereas at higher temperatures the dominant species is .  相似文献   

17.
18.
19.
20.
Ammonium was injected from the subseafloor hydrothermal system at the Endeavour Segment, Juan de Fuca Ridge, into the deep-sea water column resulting in an -rich (?177 nM) neutrally buoyant hydrothermal plume. This was quickly removed by both autotrophic ammonia oxidation and assimilation. The former accounted for at least 93% of total net removal, with its maximum rate in the neutrally buoyant plume (?53 nM d−1) up to 10-fold that in background deep water. Ammonia oxidation in this plume potentially added 26-130 mg into the deep-sea water column. This oxidation process was heavily influenced by the presence of organic-rich particles, with which ammonia-oxidizing bacteria (AOB) were often associated (40-68%). AOB contributed up to 10.8% of the total microbial communities within the plume, and might constitute a novel lineage of β-proteobacterial AOB based on 16S rRNA and amoA phylogenetic analyses. Meanwhile, assimilation rates were also substantially enhanced within the neutrally buoyant plume (?26.4 nM d−1) and accounted for at least 47% of total net removal rates. The combined oxidation and assimilation rates always exceeded total net removal rates, suggesting active in situregeneration rates of at least an order of magnitude greater than the particulate nitrogen flux from the euphotic zone. Ammonia oxidation is responsible for turnover of 0.7-13 days and is probably the predominant in situ organic carbon production process (0.6-13 mg C m−2 d−1) at early stages of Endeavour neutrally buoyant plumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号