首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An almost continuous layer of Upper Cretaceous deposits up to 1000 m thick was probably deposited across much of SW England. Phases of uplift in the late Cretaceous and early Cenozoic, each of which was followed by extensive erosion and dissolution, resulted in the removal of all except a few outliers of Chalk Group that crop out in east Devon and south Somerset. Those on the Devon coast between Sidmouth and Lyme Regis are some of the best exposed Cenomanian to early Coniacian successions in NW Europe and include the most westerly chalks preserved onshore in England. They form an integral part of the Dorset and East Devon World Heritage Site. In contrast to the Chalk of much of southern England, the older formations in Devon, the Beer Head Limestone, Holywell Nodular Chalk and New Pit Chalk, show marked lateral lithological variations that result from a combination of penecontemporaneous movements on local faults and relatively shallow-water environments close to the western edge of the Chalk depositional basin. The younger parts of the succession, the Lewes Nodular Chalk and Seaford Chalk Formations, comprise chalks that do not appear to have been greatly affected by penecontemporaneous fault movements. These formations include lithological marker beds that have been correlated with marker beds in the Sussex type area. The principal sedimentary breaks in the Devon succession cannot be correlated with confidence with eustatic changes in sea level.  相似文献   

2.
The Upper Turonian Chalk Rock occurs within a nodular unit within the otherwise generally soft, white chalk that dominates the English Upper Cretaceous. The nodular unit is condensed, and contains a number of hardgrounds that are designated here as the Chalk Rock Formation. The Chalk Rock contains some seven or eight hardgrounds, most of which are lithologically distinctive and can be traced over distances of up to 250 km. Nine beds within the Chalk Rock are named, comprising six hardgrounds and three marl seams. The lowermost widespread hardground appears to be more or less equivalent to the “Spurious Chalk Rock” of the south coast of England. In two areas the thickness of the Chalk Rock is greatly diminished. The most marked area, in west Wiltshire, is located close to the Palaeozoic Mendip Hills and indicates that the Mendip structure has influenced Turonian sedimentation. The other region of thinning is a platform-like area in the eastern Chiltern Hills WNW of London.  相似文献   

3.
Based on integration of seismic reflection and well data analysis this study examines two major contourite systems that developed during the late Cretaceous in the southern Baltic Sea. The evolution of these Chalk Sea contourite systems between the Kattegat and the southern Baltic Sea started when Turonian to Campanian inversion tectonics overprinted the rather flat sea floor of the epeiric Chalk Sea. The Tornquist Zone and adjacent smaller blocks were uplifted and formed elongated obstacles that influenced the bottom currents. As a consequence of the inversion, the sea floor west of the Tornquist Zone tilted towards the north‐east, creating an asymmetrical sub‐basin with a steep marginal slope in the north‐east and a gentle dipping slope in the south‐west. A south‐east directed contour current emerged in the Coniacian or Santonian along the south‐western basin margin, creating contourite channels and drifts. The previously studied contourite system offshore Stevns Klint is part of this system. A second, deeper and north‐west directed counter‐flow emerged along and parallel to the Tornquist Zone in the later Campanian, but was strongest in the Maastrichtian. This bottom current moderated the evolution of a drift‐moat system adjacent to the elevated Tornquist Zone. The near surface Alnarp Valley in Scania represents the Danian palaeo‐moat that linked the Pomeranian Bay with the Kattegat. The previously studied contourite system in the Kattegat represents the north‐western prolongation of this system. This study links previous observations from the Kattegat and offshore Stevns Klint to the here inferred two currents, a more shallow, south‐east directed and a deeper, north‐west directed flow.  相似文献   

4.
东海陆架盆地南部中生界分布特征与油气勘探前景   总被引:1,自引:0,他引:1  
在充分利用前人对东海陆架盆地中生代油气勘探成果的基础上,对最新处理的地震剖面和重磁反演剖面进行了精细解释和综合研究,结合海陆中生界对比结果认为:东海陆架盆地南部中生界分布广、厚度大,平均厚度可达6 000 m,而且具有“东厚西薄、南厚北薄”的特征。侏罗系主要分布在闽江和基隆凹陷,厚度分布稳定,w(TOC)平均值>1.0%;而白垩系在整个陆架盆地南部均有分布,具有向基隆凹陷加厚的趋势,w(TOC)平均值<1.0%。东海陆架盆地南部的基隆凹陷是下一步油气资源战略选区的首选目标,而台北低凸起很可能具有良好的油气远景。  相似文献   

5.
重力密度反演通过将地下剖分为多个网格,计算每个网格密度的方式来实现,现今方法计算结果分辨率较低。本文提出自适应权函数三维密度反演方法,通过上半空间不同高度异常凸显不同埋深地质体的特征,建立相应的空间异常权函数进行迭代反演,从而提升结果的收敛性和分辨率。模型试验表明,自适应异常权函数密度反演方法相对已有方法能有效提升分辨率和精度,且具有良好的抗噪声干扰能力。利用所提出的反演方法重建东海陆架盆地东部坳陷带空间密度结构,分析东部坳陷带中生界残留分布特征。结果表明,东部坳陷带内中生界分布南北差异明显,南部钓北凹陷中生界广泛分布,厚度较大,约4 km,颠覆了以往盆地北部西湖凹陷中生界较薄、两个凹陷中生界特征一致的认识。因此钓北凹陷中生界为陆缘坳陷型盆地,盆地范围局限于现今盆地中南部。  相似文献   

6.
The SW Baltic Sea occupies an area where crustal-scale regional tectonic zones of different age merge and overlap, creating a complex tectonic pattern. This pattern influenced the evolution of the Mesozoic sedimentary basin in this area. We present an interpretation of new high-resolution seismic data from the SW Baltic Sea which provided new information both on modes of the Late Cretaceous inversion of this part of the Danish–Polish Mesozoic basin system as well as on relationship between tectonic processes and syn-tectonic depositional systems. Within the Bornholm–Dar owo Fault Zone, located between the Koszalin Fault and Christiansø Block, both strike-slip and reverse faulting took place during the inversion-related activity. The faulting was related to reactivation of extensional pre-Permian fault system. Syn-tectonic sedimentary features include a prominent, generally S- and SE-directed, progradational depositional system with the major source area provided by uplifted basement blocks, in particular by the Bornholm Block. Sediment progradation was enhanced by downfaulting along a strike-slip fault zone and related expansion of accommodation space. Closer to the Christiansø Block, some syn-tectonic deposition also took place and resulted in subtle thickness changes within the hinge zones of inversion-related growth folds. Lack of significant sediment supply from the inverted and uplifted offshore part of the Mid-Polish Trough suggests that in this area NW–SE-located marginal trough parallel to the inversion axis of the Mid-Polish Trough did not form, and that uplifted Bornholm Block played by far more prominent role for development of syn-inversion depositional successions.  相似文献   

7.
通过华北克拉通东部北缘和南缘盆地充填序列和盆地分布演化对比研究,解析了该区中生代构造转折过程。研究发现两侧盆地均大致从早侏罗世开始发育,约以晚侏罗世为界,之前盆地充填记录反映以挤压作用、岩石圈增厚为主,之后以陆内伸展、岩石圈减薄为主,显示晚侏罗世明显的构造转折,并且地壳浅部的构造体制转变均滞后于岩石圈深部构造环境的变化。然而,两侧盆地演化也有明显差别:①北缘燕辽地区从早侏罗世到白垩纪,发育了多层系的从基性、中基性到中酸性的火山岩及火山碎屑岩组合,而南缘合肥盆地仅在晚侏罗世早白垩世产出钙碱性火山岩及火山碎屑岩组合,反映出不同的深部构造过程和源区特征;②北缘的岩石圈减薄可能始于约163 Ma,南缘明显的岩石圈减薄则始于约149 Ma,而反映在盆地构造与充填尺度上的伸展作用分别对应于大约145 Ma和132 Ma;③晚侏罗世构造转折期,北缘燕辽地区粗碎屑沉积以河流体系为主,反映盆山地势高差较小;而南缘该期发育冲积扇体系,盆山地势高差较大;④北缘盆地沉积中心迁移规律复杂,而南缘总体呈现由南向北的迁移趋势。显然,大别山碰撞造山和后造山期强烈的隆升和剥露对南缘盆地演化具有极大的主导和制约作用,而北缘则显示出强烈的壳幔相互作用并伴有区域性的陆内挤压推覆(转折前)和张裂 伸展(转折后)交替的特点。华北克拉通晚中生代构造转折的时限北缘较南缘早,说明诱发这一转折事件的区域构造动力可能首先与华北北部壳幔相互作用密切关联。  相似文献   

8.
The positioning of the Turonian/Senonian boundary has been highly discussed since the introduction of the Senonian stage by d'Orbigny. In England the Early Senonian is conventionally represented by white chalks at the base of the Micraster cortestudinarium zone which to some has meant the top surface on the Top Rock or Navigation Hardgrounds. New macro- and microfaunal data on the Sussex White Chalk of Southern England, while providing a suitable framework for the comparison between the microfaunal zonation of the Paris basin chalks and macro- and microfaunal zonations commonly used in England, emphasize the positioning of the Turonian/Senonian boundary in the Anglo-Paris basin. This boundary falls within the interval Chalk Rock/Top Rock and is outlined by distinct changes in Micraster lineage (appearance of M. normanniae) and in benthic foraminiferal associations.  相似文献   

9.
Inversion tectonic episodes are identified in the Upper Turonian - Lower Coniacian, Santonian - Lower Campanian and later Lower Campanian Chalk. It is suggested that episodic tectonism created the seabed topography on which sea levels and erosional currents acted. Marked differentiation into linear belts of local basins and swells with a greater variety of sediments is present in the Santonian and Lower Campanian. During this same period the locus of sedimentation shifts westwards from the southern margin of the Weald to Wessex as Weald Basin inversion increases. Tectonic episodes also produced synsedimenary fracturing of the Chalk and evolution of vein networks and stylolytes. Upper Cretaceous tectonic and sea-level events also affected the platform of Europe, the Carpathians and the Syrian Arc where sedimento-tectonic scenarios provide analogues for the Chalk. Linking sea-level oscillations and tectonic episodes with microtectonic studies suggests a frequency of events within the range of 0.35-1.5 Ma.  相似文献   

10.
The Chañarcillo Basin is an Early Cretaceous extensional basin in northern Chile (27–29°S). The folding style of the syn-rift successions along the eastern side of the basin reveals an architecture consisting of a NNE-trending anticline “Tierra Amarilla Anticlinorium”, associated with the inversion of the Elisa de Bordos Fault. A set of balanced cross sections and palinspastic restorations across the basin show that a partially inverted “domino-style” half-graben as the structural framework is most appropriate for reproducing the deformation observed at the surface. This inverted system provides a 9–14 km shortening in the basin. The ages of the synorogenic deposits preserved next to the frontal limb of the “Tierra Amarilla Anticlinorium” suggest that basin inversion occurred close to the “K–T” boundary (“K–T” phase of Andean deformation). We propose that tectonic inversion is the fundamental deformation mechanism, and that it emphasizes the regional importance of inherent Mesozoic extensional systems in the evolution of the northern Chilean Andes.  相似文献   

11.
New borehole geophysical log interpretations between Wiltshire and north Norfolk show detailed lateral changes in the spatial relationships of Chalk Group marker beds. They show how marker beds in the Turonian and Coniacian Chalk Group in East Anglia pass laterally into their correlatives further west, and reveal unusual lateral thickness changes affecting stratigraphical intervals in the East Anglian succession. Newly enhanced regional gravity and magnetic data indicate that these thickness changes are probably related to WNW to ESE trending structural lineaments in the Palaeozoic basement rocks of the buried Anglo-Brabant Massif.The later part of the Mid Turonian and early part of the Late Turonian succession across East Anglia is greatly thickened, and shows almost no lateral variability. These relatively soft, smooth-textured chalks equate with thinner, hard, nodular beds formed in both shallow marine and deeper basinal settings elsewhere in southern England. Since it seems unlikely that there was greater sediment accommodation space across East Anglia at this time compared to basinal areas, this thickening may reflect a localised coccoliths productivity pulse, or perhaps a sheltered palaeogeographical position that protected the area from sediment-winnowing marine currents.A residual gravity low across north Norfolk, previously interpreted as a granite pluton, may instead represent two elongated (fault-bounded) sedimentary basins.  相似文献   

12.
合肥盆地中新生代三维埋藏史分析   总被引:2,自引:0,他引:2  
在合肥盆地地震资料的基础上,求得现今盆地内部中新生代各个地层的厚度分布。并通过回剥技术模拟盆地埋藏史,获得合肥盆地中生代以来三维演化历史。结果显示中生代以来,合肥盆地沉积地层最厚超过万米,中上侏罗统为主要沉积地层;三维埋藏史揭示合肥盆地的中新生代沉积演化历史受大别造山带和郯庐断裂带的共同控制,盆地沉积中心的迁移与大别造山带和郯庐断裂的活动密切相关。  相似文献   

13.
ABSTRACT

Albian–Cenomanian successions (Kazhdumi and Sarvak formations) represent remarkable variations in thickness, facies, fauna, and environments throughout the Zagros area. In the Coastal Fars (Charmu section), sedimentological and paleontological data evidence an intrashelf, with depths of 10s–100s m, surrounded by a shallow carbonate platform. Due to its depth, deposition of sequences in this setting has been controlled by eustatic sea-level changes rather than eurybathic changes, and several condensation episodes occurred related to marine transgressions. These observations are different from those in the adjacent sections in the Coastal Fars which recorded subaerial exposures instead. Combined with previous studies, this study denotes several intrashelf basins enclosed by a shallow carbonate platform on the southeastern margin of the Neo-Tethys during the Albian–Cenomanian. Development of intrashelf basins corresponds to basement faults in the Fars Salient. Likely, an extensional tectonic regime associated with a rifting event created horst–graben architecture by exerting extension along the basement faults and reactivating salt structures. Deposition on these troughs and highs led to the facies and thickness variations of the concomitant sequences. Development of several intrashelf basins on the southeastern margin of the Neo-Tethys indicates that syn-depositional continental rifting event could occur during the Albian–Cenomanian, prior to the tectonic inversion around the earliest Turonian.  相似文献   

14.
A relative water-depth model for the Chalk of the Paris Basin is proposed, based on the lateral variations of the high-frequency metre-scale cycles, which are characteristic features easily identified in the field. The studied outcrops are the Cenomanian–Middle Coniacian cliffs of Normandy. The main result of this study is to highlight the importance of storm activity in the deposition of the Chalk. The relative water-depth model is based on storm-induced shell concentrations observed within the two components of the metre-thick cycles: the depositional interval itself and the top hiatal surface.Six types of shell concentrations are defined, along with seven types of depositional facies making up the depositional units, as well as eight types of hiatal surface. Three cycle associations, differing in their thickness and the amount and type of non-carbonate constituents, can be identified in the Lower to Upper Cenomanian, the Upper Cenomanian to Lower Turonian and the Middle Turonian to Middle Coniacian.A relative water-depth profile model for all these cycles is based on the shell concentrations and a “water-depth equivalence” is proposed between the three cycle associations (lateral “facies” substitution diagram). This model is tested using palaeocological data (irregular echinoids) and by correlating field sections in terms of stacking patterns. Most of the studied deposits accumulated above the storm wave base (upper offshore zone or mid ramp).  相似文献   

15.
Paleogene thickness patterns across the Bouldnor Syncline and Porchfield Anticline in the northwestern Isle of Wight have been deduced using outcrop information, borehole correlation, gamma-ray logs and seismic reflection data. The thickness patterns provide evidence for an early phase of basin inversion at around the Bartonian-Priabonian boundary (Late Eocene) in the Isle of Wight. Paleogene strata older than the Becton Sand Formation show little evidence for significant lateral changes in thickness, even though the boreholes are located at various structural positions around the Bouldnor Syncline and Porchfield Anticline. In contrast, both seismic reflection and borehole data provide evidence for marked thinning of Paleogene strata onto the Porchfield Anticline at around the level of the Becton Sand Formation and basal Headon Hill Formation (Totland Bay Member) which probably results from an episode of basin inversion and growth folding. The inversion event was relatively minor and short-lived and continues to point toward the main phase of the basin inversion being late Oligocene or younger. However, it still has important implications for understanding structural control on sedimentation patterns in the Headon Hill Formation, with the migration of sandy channelised depositional systems into the axis of the Bouldnor Syncline, and the sequence stratigraphic significance of the important Bartonian-Priabonian regression event, which may related to tectonics rather than global sea-level change.  相似文献   

16.
Combined subsidence and thermal 1D modelling was performed on six well-sections located in the north-western Mid-Polish Trough/Swell in the eastern part of the Central European Basin system. The modelling allowed constraining quantitatively both the Mesozoic subsidence and the magnitude of the Late Cretaceous–Paleocene inversion and erosion. The latter most probably reached 2,400 m in the Mid-Polish Swell area. The modelled Upper Cretaceous thickness did not exceed 500 m, and probably corresponded to 200–300 m in the swell area as compared with more than 2,000 m in the adjacent non-inverted part of the basin. Such Upper Cretaceous thickness pattern implies early onset of inversion processes, probably in the Late Turonian or Coniacian. Our modelling, coupled with previous results of stratigraphic and seismic studies, demonstrates that the relatively low sedimentation rates in the inverted part of the basin during the Late Cretaceous were the net result of several discrete pulses of non-deposition and/or erosion that were progressively more pronounced towards the trough axis. The last phase of inversion started in the Late Maastrichtian and was responsible for the total amount of erosion, which removed also the reduced Upper Cretaceous deposits. According to our modelling results, a Late Cretaceous heat-flow regime which is similar to the present-day conditions (about 50 mW/m2) was responsible for the observed organic maturity of the Permian-Mesozoic rocks. This conclusion does not affect the possibility of Late Carboniferous–Permian and Late Permian–Early Triassic thermal events.  相似文献   

17.
中扬子区构造特征及勘探方向建议   总被引:11,自引:3,他引:8  
中扬子区经历了印支-喜山期四个构造变形、变位发展阶段:印支运动结束海相沉积,并形成了黄陵、潜江、洪湖古隆起,早燕山期全区挤压,奠定了本区中、古生界的基本构造格局,晚燕山期,构造负反转,中、古生界构造发生叠加改造,喜山期,构造正反转,总体表现为隆升挤压。印支期以来多期构造运动的叠加改造,形成了南、北两个弧形构造体系,平面上构造展布特征具有明显的差异性:北部(大洪山)弧形构造系呈现南北分带、东西分块的构造格局,南部弧形构造系东西差异明显,东部具双重结构特征,西部为"隔槽式"构造格局。近期应以江汉平原南部、湘鄂西区桑植石门复向斜为勘探重点,同时围绕深化地质认识,解剖区域结构,加强地震攻关,积极准备中扬子南、北逆冲推覆带勘探。  相似文献   

18.
柴达木盆地西部中生界原型盆地恢复   总被引:4,自引:2,他引:2  
勘探实践表明,对柴达木盆地西部中生界原型盆地认识不够,是导致该区侏罗系油气勘探难以取得重大突破的主要原因。以古流分析为主要手段,结合地表露头及地震解释资料研究认为,中生界在古阿拉巴斯套山与古昆仑山间发育一个大的近EW向展布的内陆山间坳陷(古泛茫崖坳陷)。坳陷演化可分为早—中侏罗世和晚侏罗世—白垩纪两个阶段,分别对应发育了伸展断陷和挤压坳陷两种原型盆地类型。早、中侏罗世,阿尔金山尚未隆升,为主要沉积区。沉积环境比较动荡,沉积物以暗色含煤建造为主。沉积中心在现今的阿尔金山区,坳陷西北部边界越过阿尔金山区与塔东南地区相通;东北部边界位于阿拉巴斯套山前;南部边界在煤沟—采石岭—黑石山—月牙山一线。晚侏罗世—白垩纪,阿尔金山快速隆升为物源区,开始分割塔东南和柴达木盆地西部沉积。坳陷沉积物以干旱气候下的红色粗碎屑岩建造为主,沉积、沉降中心由阿尔金山区向盆地内部发生迁移,南部边界已迁移至阿拉尔—红柳泉—红沟子—月3井一带。该研究对柴达木盆地资源潜力评价及勘探部署具有重要意义。  相似文献   

19.
运用区域地面地质、地震、钻测井等资料的综合分析,对库车坳陷中生界的盆地结构、构造样式、中生界各层序原始地层厚度和沉积相分布、古隆起形态、区域构造演化等方面进行研究,重建了库车坳陷中生代盆地构造古地理,并对盆地原型成因进行分析。库车坳陷残留中生界总体上为北厚南薄、北剥南超的地质结构,北部强烈角度不整合在南天山海西期褶皱带,南部微角度不整合面在寒武-奥陶系之上,南部边缘沿着温宿-西秋-牙哈古隆起有基底断裂活动。北部单斜带为冲积扇和辫状河三角洲,克拉苏构造带为深湖,南部沿着古隆起带为缓坡三角洲、浅湖。库车坳陷中生代原型盆地位于南天山海西期造山带和塔里木克拉通边缘过渡带之上,地壳均衡可能是盆地沉降的主要动力。南缘古隆起带在南天山洋扩张期为塔里木克拉通台地与被动大陆边缘的台地边缘,南天山洋闭合期为前陆隆起带,发育基底断裂和断块差异活动,在中生代有继承性活动,晚新生代新天山挤压隆升使古隆起带发生挤压变形,成为新天山逆冲变形造山楔的前锋。  相似文献   

20.
The Spiti basin together with the Zanskar basin forms the largest basin among the Tethyan Himalayan successions and forms one of the best-developed sec-tions in the Tethyan Tibetan belt. The basin is one of the classical areas, which depicts a continuous fos-siliferous Palaeozoic - Mesozoic successions. The present studies are focused on the Ordovician and Si-lurian successions of the Pin valley of the Spiti basin. Pin valley exposes richly fossiliferous lithological successions from Neoproterozoic to Cretaceous; therefore, it is an ideal section for the detail paleobi-ological and geological studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号