首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Organization of pre-Variscan basement areas at the north-Gondwanan margin   总被引:3,自引:3,他引:3  
Pre-Variscan basement elements of Central Europe appear in polymetamorphic domains juxtaposed through Variscan and/or Alpine tectonic events. Consequently, nomenclatures and zonations applied to Variscan and Alpine structures, respectively, cannot be valid for pre-Variscan structures. Comparing pre-Variscan relics hidden in the Variscan basement areas of Central Europe, the Alps included, large parallels between the evolution of basement areas of future Avalonia and its former peri-Gondwanan eastern prolongations (e.g. Cadomia, Intra-Alpine Terrane) become evident. Their plate-tectonic evolution from the Late Proterozoic to the Late Ordovician is interpreted as a continuous Gondwana-directed evolution. Cadomian basement, late Cadomian granitoids, late Proterozoic detrital sediments and active margin settings characterize the pre-Cambrian evolution of most of the Gondwana-derived microcontinental pieces. Also the Rheic ocean, separating Avalonia from Gondwana, should have had, at its early stages, a lateral continuation in the former eastern prolongation of peri-Gondwanan microcontinents (e.g. Cadomia, Intra-Alpine Terrane). Subduction of oceanic ridge (Proto-Tethys) triggered the break-off of Avalonia, whereas in the eastern prolongation, the presence of the ridge may have triggered the amalgamation of volcanic arcs and continental ribbons with Gondwana (Ordovician orogenic event). Renewed Gondwana-directed subduction led to the opening of Palaeo-Tethys.  相似文献   

2.
古亚洲洋不是西伯利亚陆台和华北地台间的一个简单洋盆,而是在不同时间、不同地区打开和封闭的多个大小不一的洋盆复杂活动(包括远距离运移)的综合体.其北部洋盆起始于新元古代末-寒武纪初(573~522Ma)冈瓦纳古陆裂解形成的寒武纪洋盆.寒武纪末-奥陶纪初(510~480Ma),冈瓦纳古陆裂解的碎块、寒武纪洋壳碎块和陆缘过渡壳碎块相互碰撞、联合形成原中亚-蒙古古陆.奥陶纪时,原中亚-蒙古古陆南边形成活动陆缘,志留纪形成稳定大陆.泥盆纪初原中亚-蒙古古陆裂解,裂解的碎块在新形成的泥盆纪洋内沿左旋断裂向北运动,于晚泥盆世末到达西伯利亚陆台南缘,重新联合形成现在的中亚-蒙古古陆.晚古生代时,在现在的中亚-蒙古古陆内发生晚石炭世(318~316Ma)和早二叠世(295~285Ma)裂谷岩浆活动,形成双峰式火山岩和碱性花岗岩类.蒙古-鄂霍次克带是西伯利亚古陆和中亚-蒙古古陆之间的泥盆纪洋盆,向东与古太平洋连通,洋盆发展到中晚侏罗世,与古太平洋同时结束,其洋壳移动到西伯利亚陆台边缘受阻而向陆台下俯冲,在陆台南缘形成广泛的陆缘岩浆岩带,从中泥盆世到晚侏罗世都非常活跃.古亚洲洋的南部洋盆始于晚寒武世.此时,华北古陆从冈瓦纳古陆裂解出来,在其北缘形成晚寒武世-早奥陶世的被动陆缘和中奥陶世-早志留世的沟弧盆系.志留纪腕足类生物群的分布表明,华北地台北缘洋盆与塔里木地台北缘、以及川西、云南、东澳大利亚有联系,而与上述的古亚洲洋北部洋盆没有关连,两洋盆之间有松嫩-图兰地块间隔.晚志留世-早泥盆世,华北地台北部发生弧-陆碰撞运动,泥盆纪时,在松嫩地块南缘形成陆缘火山岩带,晚二叠世-早三叠世华北地台与松嫩地块碰撞,至此古亚洲洋盆封闭.古亚洲洋的南、北洋盆最后的褶皱构造,以及与塔里木地台之间发生的直接关系,很可能是后期的构造运动所造成的.  相似文献   

3.
The Variscan fold belt of Europe resulted from the collision of Africa, Baltica, Laurentia and the intervening microplates in early Paleozoic times. Over the past few years, many geological, palaeobiogeographic and palaeomagnetic studies have led to significant improvements in our understanding of this orogenic belt. Whereas it is now fairly well established that Avalonia drifted from the northern margin of Gondwana in Early Ordovician times and collided with Baltica in the late Ordovician/early Silurian, the nature of the Gondwana derived Armorican microplate is more enigmatic. Geological and new palaeomagnetic data suggest Armorica comprises an assemblage of terranes or microblocks. Palaeobiogeographic data indicate that these terranes had similar drift histories, and the Rheic Ocean separating Avalonia from the Armorican Terrane Assemblage closed in late Silurian/early Devonian times. An early to mid Devonian phase of extensional tectonics along this suture zone resulted in formation of the relatively narrow Rhenohercynian basin which closed progressively between the late Devonian and early Carboniferous. In this contribution, we review the constraints provided by palaeomagnetic data, compare these with geological and palaeobiogeographic evidence, and present a sequence of palaeogeographic reconstructions for these circum-Atlantic plates and microplates from Ordovician through to Devonian times.  相似文献   

4.
A Cordilleran model for the evolution of Avalonia   总被引:2,自引:0,他引:2  
Striking similarities between the late Mesoproterozoic–Early Paleozoic record of Avalonia and the Late Paleozoic–Cenozoic history of western North America suggest that the North American Cordillera provides a modern analogue for the evolution of Avalonia and other peri-Gondwanan terranes during the late Precambrian. Thus: (1) The evolution of primitive Avalonian arcs (proto-Avalonia) at 1.2–1.0 Ga coincides with the amalgamation of Rodinia, just as the evolution of primitive Cordilleran arcs in Panthalassa coincided with the Late Paleozoic amalgamation of Pangea. (2) The development of mature oceanic arcs at 750–650 Ma (early Avalonian magmatism), their accretion to Gondwana at ca. 650 Ma, and continental margin arc development at 635–570 Ma (main Avalonian magmatism) followed the breakup of Rodinia at ca. 755 Ma in the same way that the accretion of mature Cordilleran arcs to western North America and the development of the main phase of Cordilleran arc magmatism followed the Early Mesozoic breakup of Pangea. (3) In the absence of evidence for continental collision, the diachronous termination of subduction and its transition to an intracontinental wrench regime at 590–540 Ma is interpreted to record ridge–trench collision in the same way that North America's collision with the East Pacific Rise in the Oligocene led to the diachronous initiation of a transform margin. (4) The separation of Avalonia from Gondwana in the Early Ordovician resembles that brought about in Baja California by the Pliocene propagation of the East Pacific Rise into the continental margin. (5) The Late Ordovician–Early Silurian sinistral accretion of Avalonia to eastern Laurentia emulates the Cenozoic dispersal of Cordilleran terranes and may mimic the paths of future terranes transferred to the Pacific plate.This close similarity in tectonothermal histories suggests that a geodynamic coupling like that linking the evolution of the Cordillera with the assembly and breakup of Pangea, may have existed between Avalonia and the late Precambrian supercontinent Rodinia. Hence, the North American Cordillera is considered to provide an actualistic model for the evolution of Avalonia and other peri-Gondwanan terranes, the histories of which afford a proxy record of supercontinent assembly and breakup in the late Precambrian.  相似文献   

5.
中国西南三江北段的松潘-甘孜褶皱带和义敦地体以强烈的晚三叠世构造-岩浆活动为特征。松潘-甘孜褶皱带的岩浆活动主要发生在228~190 Ma(峰期时代为约210 Ma),略晚于义敦地体的岩浆活动(236~200 Ma,峰期时代为约216 Ma)。金沙江洋可能经历了西向和东向的双向俯冲,于晚二叠世末—早三叠世初闭合,甘孜-理塘洋可能是金沙江洋东向俯冲背景下形成的弧后盆地,在217 Ma以前已经闭合。松潘-甘孜褶皱带和义敦地体晚三叠世岩浆岩均属于碰撞后岩浆作用的产物,可能分别与岩石圈拆沉和东向俯冲的金沙江洋俯冲板片的断离有关。这些晚三叠世碰撞后岩浆活动记录了地幔物质的贡献,幔源镁铁质岩浆的结晶分异作用在中酸性岩浆岩的形成过程中起到了重要作用,反映了地壳的净生长。三叠纪不同地体之间的碰撞导致了明显造山作用,造成了具有空间差异性的地壳增厚和山脉隆升。  相似文献   

6.
《Gondwana Research》2013,24(4):1429-1454
Different hypotheses have been proposed for the origin and pre-Cenozoic evolution of the Tibetan Plateau as a result of several collision events between a series of Gondwana-derived terranes (e.g., Qiangtang, Lhasa and India) and Asian continent since the early Paleozoic. This paper reviews and reevaluates these hypotheses in light of new data from Tibet including (1) the distribution of major tectonic boundaries and suture zones, (2) basement rocks and their sedimentary covers, (3) magmatic suites, and (4) detrital zircon constraints from Paleozoic metasedimentary rocks. The Western Qiangtang, Amdo, and Tethyan Himalaya terranes have the Indian Gondwana origin, whereas the Lhasa Terrane shows an Australian Gondwana affinity. The Cambrian magmatic record in the Lhasa Terrane resulted from the subduction of the proto-Tethyan Ocean lithosphere beneath the Australian Gondwana. The newly identified late Devonian granitoids in the southern margin of the Lhasa Terrane may represent an extensional magmatic event associated with its rifting, which ultimately resulted in the opening of the Songdo Tethyan Ocean. The Lhasa−northern Australia collision at ~ 263 Ma was likely responsible for the initiation of a southward-dipping subduction of the Bangong-Nujiang Tethyan Oceanic lithosphere. The Yarlung-Zangbo Tethyan Ocean opened as a back-arc basin in the late Triassic, leading to the separation of the Lhasa Terrane from northern Australia. The subsequent northward subduction of the Yarlung-Zangbo Tethyan Ocean lithosphere beneath the Lhasa Terrane may have been triggered by the Qiangtang–Lhasa collision in the earliest Cretaceous. The mafic dike swarms (ca. 284 Ma) in the Western Qiangtang originated from the Panjal plume activity that resulted in continental rifting and its separation from the northern Indian continent. The subsequent collision of the Western Qiangtang with the Eastern Qiangtang in the middle Triassic was followed by slab breakoff that led to the exhumation of the Qiangtang metamorphic rocks. This collision may have caused the northward subduction initiation of the Bangong-Nujiang Ocean lithosphere beneath the Western Qiangtang. Collision-related coeval igneous rocks occurring on both sides of the suture zone and the within-plate basalt affinity of associated mafic lithologies suggest slab breakoff-induced magmatism in a continent−continent collision zone. This zone may be the site of net continental crust growth, as exemplified by the Tibetan Plateau.  相似文献   

7.
The Malay Peninsula is characterised by three north–south belts, the Western, Central, and Eastern belts based on distinct differences in stratigraphy, structure, magmatism, geophysical signatures and geological evolution. The Western Belt forms part of the Sibumasu Terrane, derived from the NW Australian Gondwana margin in the late Early Permian. The Central and Eastern Belts represent the Sukhothai Arc constructed in the Late Carboniferous–Early Permian on the margin of the Indochina Block (derived from the Gondwana margin in the Early Devonian). This arc was then separated from Indochina by back-arc spreading in the Permian. The Bentong-Raub suture zone forms the boundary between the Sibumasu Terrane (Western Belt) and Sukhothai Arc (Central and Eastern Belts) and preserves remnants of the Devonian–Permian main Palaeo-Tethys ocean basin destroyed by subduction beneath the Indochina Block/Sukhothai Arc, which produced the Permian–Triassic andesitic volcanism and I-Type granitoids observed in the Central and Eastern Belts of the Malay Peninsula. The collision between Sibumasu and the Sukhothai Arc began in Early Triassic times and was completed by the Late Triassic. Triassic cherts, turbidites and conglomerates of the Semanggol “Formation” were deposited in a fore-deep basin constructed on the leading edge of Sibumasu and the uplifted accretionary complex. Collisional crustal thickening, coupled with slab break off and rising hot asthenosphere produced the Main Range Late Triassic-earliest Jurassic S-Type granitoids that intrude the Western Belt and Bentong-Raub suture zone. The Sukhothai back-arc basin opened in the Early Permian and collapsed and closed in the Middle–Late Triassic. Marine sedimentation ceased in the Late Triassic in the Malay Peninsula due to tectonic and isostatic uplift, and Jurassic–Cretaceous continental red beds form a cover sequence. A significant Late Cretaceous tectono-thermal event affected the Peninsula with major faulting, granitoid intrusion and re-setting of palaeomagnetic signatures.  相似文献   

8.
The Truong Son Fold Belt (TSFB) is characterised by Late Carboniferous-Late Triassic metamorphic, volcanic and plutonic rocks, the product of accretion of the Indochina Terrane onto the South China Terrane and a range of composite subduction, collision and extensional events. This study discusses geochronological and geochemical data obtained from a dioritic intrusion and rhyolitic tuff mapped in the Donken area of SE Laos, and previously assigned to the Permian Antoum Granodiorite rock suite within the TSFB. Magmatic zircon U-Pb Q-ICP-MS dating undertaken in this study suggests ages of ca 470 ± 2 Ma for the diorite and ca 476 ± 1.5 Ma for a proximal rhyolitic tuff.Whole-rock geochemistry of both units suggests a subduction-related island arc environment, with calc-alkaline and tholeiitic affinities for the diorite and tuff respectively. The intrusion also exhibits an adakitic signature (high Sr, low Y and HREE contents) suggesting that Ordovician magmatism also occurred within the Indochina Terrane, associated with an enigmatic, early Gondwana subduction event. This intrusion appears part of a broader, bilateral Early Ordovician magmatism, newly linked to the south-east subduction of the Tamky-Phuoc Son Ocean underneath the Kontum terrane, and a north-west subduction beneath the Truong Son terrane. Significantly, sub-economic hydrothermal Cu mineralisation observed within the dioritic intrusion, hints at the presence of local Ordovician, porphyry-style base metal enrichment.  相似文献   

9.
Early Ordovician (Late Arenig) limestones from the SW margin of Baltica (Scania–Bornholm) have multicomponent magnetic signatures, but high unblocking components predating folding, and the corresponding palaeomagnetic pole (latitude=19°N, LONGITUDE=051°E) compares well with Arenig reference poles from Baltica. Collectively, the Arenig poles demonstrate a midsoutherly latitudinal position for Baltica, then separated from Avalonia by the Tornquist Sea.Tornquist Sea closure and the Baltica–Avalonia convergence history are evidenced from faunal mixing and increased resemblance in palaeomagnetically determined palaeolatitudes for Avalonia and Baltica during the Mid-Late Ordovician. By the Caradoc, Avalonia had drifted to palaeolatitudes compatible with those of SW Baltica, and subduction beneath Eastern Avalonia was taking place. We propose that explosive vents associated with this subduction and related to Andean-type magmatism in Avalonia were the source for the gigantic Mid-Caradoc (c. 455 Ma) ash fall in Baltica (i.e. the Kinnekulle bentonite). Avalonia was located south of the subtropical high during most of the Ordovician, and this would have provided an optimum palaeoposition to supply Baltica with large ash falls governed by westerly winds.In Scania, we observe a persistent palaeomagnetic overprint of Late Ordovician (Ashgill) age (pole: LATITUDE=4°S, LONGITUDE=012°E). The remagnetisation was probably spurred by tectonic-derived fluids since burial alone is inadequate to explain this remagnetisation event. This is the first record of a Late Ordovician event in Scania, but it is comparable with the Shelveian event in Avalonia, low-grade metamorphism in the North Sea basement of NE Germany (440–450 Ma), and sheds new light on the Baltica–Avalonia docking.  相似文献   

10.
新生代阿尔卑斯是非洲和欧洲之间的陆陆碰撞造山带。强烈的造山作用使大量前中生代基底出露地表,尽管这些基底被强烈逆冲推覆和走滑叠置,但是仍保留较丰富的前中生代基底演化信息。结合近几年对东阿尔卑斯原-古特提斯的研究,本文梳理和重建了阿尔卑斯前中生代基底的构造格局,认为前阿尔卑斯基底受原特提斯、南华力西洋、古特提斯洋构造体系影响而经历了多期造山过程。新元古代-早古生代的原阿尔卑斯作为环冈瓦纳地块群的组成部分,受原特提斯洋俯冲的制约,是新元古-早古生代环冈瓦纳活动陆缘的组成部分,其中,海尔微-彭尼内基底组成外缘增生系统,包括卡多米期地壳碎片在内的陆缘弧/岛弧以及大量增生楔组成内缘增生系统。早奥陶世瑞亚克洋打开,随后原阿尔卑斯从冈瓦纳陆缘裂离,在泥盆纪-石炭纪受南华力西洋控制,海尔微-彭尼内-中、下奥地利阿尔卑斯从冈瓦纳分离。在早石炭世(维宪期)南阿尔卑斯(或与之相当的冈瓦纳源地块)与北部阿莫里卡地块群拼贴增生于古欧洲大陆南缘,共同组成华力西造山带(广义),华力西期缝合带保留在绍山-科尔山南侧。晚石炭世-早二叠世,阿尔卑斯受古特提斯洋的俯冲影响,在华力西造山带南侧形成安第斯山型活动大陆边缘,古特提斯洋在阿尔卑斯的演化至少持续到早三叠世,消亡遗迹保留在中奥地利阿尔卑斯基底的Plankogel杂岩中。  相似文献   

11.
The Lachlan Fold Belt of southeastern Australia developed along the Panthalassan margin of East Gondwana. Major silicic igneous activity and active tectonics with extensional, strike-slip and contractional deformation have been related to a continental backarc setting with a convergent margin to the east. In the Early Silurian (Benambran Orogeny), tectonic development was controlled by one or more subduction zones involved in collision and accretion of the Ordovician Macquarie Arc. Thermal instability in the Late Silurian to Middle Devonian interval was promoted by the presence of one or more shallow subducted slabs in the upper mantle and resulted in widespread silicic igneous activity. Extension dominated the Late Silurian in New South Wales and parts of eastern Victoria and led to formation of several sedimentary basins. Alternating episodes of contraction and extension, along with dispersed strike-slip faulting particularly in eastern Victoria, occurred in the Early Devonian culminating in the Middle Devonian contractional Tabberabberan Orogeny. Contractional deformation in modern systems, such as the central Andes, is driven by advance of the overriding plate, with highest strain developed at locations distant from plate edges. In the Ordovician to Early Devonian, it is inferred that East Gondwana was advancing towards Panthalassa. Extensional activity in the Lachlan backarc, although minor in comparison with backarc basins in the western Pacific Ocean, was driven by limited but continuous rollback of the subduction hinge. Alternation of contraction and extension reflects the delicate balance between plate motions with rollback being overtaken by advance of the upper plate intermittently in the Early to Middle Devonian resulting in contractional deformation in an otherwise dominantly extensional regime. A modern system that shows comparable behaviour is East Asia where rollback is considered responsible for widespread sedimentary basin development and basin inversion reflects advance of blocks driven by compression related to the Indian collision.  相似文献   

12.
The eastern segment of Central Asian Orogenic Belt underwent not only a long evolution history related to the Paleo-Asian Ocean during Paleozoic but also the tectonic overprinting by the westward subduction of Paleo-Pacific Ocean crust during Mesozoic. When the subduction of Paleo-Pacific Ocean crust started has been long debated issue for understanding the tectonic evolution of the eastern Asian continental margin. The eastern margin of the Jimusi Block (Wandashan Terrane) preserved complete records for the accretionary process of the westward subduction of Paleo-Pacific Ocean crust. Comprising the Yuejinshan Complex and Raohe Accretionary Complex (RAC), the Wandashan Terrane is located in the eastern margin of Jiamusi Block, NE China, and is considered to be an accretionary wedge of the westward subducting oceanic crust. To reconstruct the marginal accretion processes of the Jiamusi Block, the structural deformation of the Wandashan Terrane was investigated in the field and the geochronology of the Dalingqiao and Yongfuqiao formations were studied, which were formed syn-and-post RAC accretion respectively. The Yuejinshan and Raohe complexes were discontinuously accreted to the eastern margin of the Jiamusi Block. Contrary to the previous consideration of the Late Triassic to Early Jurassic, this study suggests that the Yuejianshan Complex in southwest Wandashan Terrane probably accreted from Late Carboniferous to Middle Permian, which was driven by unknown oceanic crust subduction existing to the east (present position) of the Jiamusi Block at that time. The siltstones of the Dalingqiao Fm. yield the youngest zircon U-Pb age of 142 ± 2 Ma, indicating the emplacement of the RAC not earlier than the Late Jurassic. Thus, the RAC might start to accrete from the Jurassic and emplace during 142–131 Ma, resulted from the Paleo-Pacific subduction which started from the Late Triassic to Early Jurassic.  相似文献   

13.
Modern Tethyan, Mediterranean, and Pacific analogues are considered for several Appalachian, Caledonian, and Variscan terranes (Carolina, West and East Avalonia, Oaxaquia, Chortis, Maya, Suwannee, and Cadomia) that originated along the northern margin of Neoproterozoic Gondwana. These terranes record a protracted geological history that includes: (1) 1 Ga (Carolina, Avalonia, Oaxaquia, Chortis, and Suwannee) or 2 Ga (Cadomia) basement; (2) 750–600 Ma arc magmatism that diachronously switched to rift magmatism between 590 and 540 Ma, accompanied by development of rift basins and core complexes, in the absence of collisional orogenesis; (3) latest Neoproterozoic–Cambrian separation of Avalonia and Carolina from Gondwana leading to faunal endemism and the development of bordering passive margins; (4) Ordovician transport of Avalonia and Carolina across Iapetus terminating in Late Ordovician–Early Silurian accretion to the eastern Laurentian margin followed by dispersion along this margin; (5) Siluro-Devonian transfer of Cadomia across the Rheic Ocean; and (6) Permo-Carboniferous transfer of Oaxaquia, Chortis, Maya, and Suwannee during the amalgamation of Pangea. Three potential models are provided by more recent tectonic analogues: (1) an “accordion” model based on the orthogonal opening and closing of Alpine Tethys and the Mediterranean; (2) a “bulldozer” model based on forward-modelling of Australia during which oceanic plateaus are dispersed along the Australian plate margin; and (3) a “Baja” model based on the Pacific margin of North America where the diachronous replacement of subduction by transform faulting as a result of ridge–trench collision has been followed by rifting and the transfer of Baja California to the Pacific Plate. Future transport and accretion along the western Laurentian margin may mimic that of Baja British Columbia. Present geological data for Avalonia and Carolina favour a transition from a “Baja” model to a “bulldozer” model. By analogy with the eastern Pacific, we name the oceanic plates off northern Gondwana: Merlin (≡Farallon), Morgana (≡Pacific), and Mordred (≡Kula). If Neoproterozoic subduction was towards Gondwana, application of this combined model requires a total rotation of East Avalonia and Carolina through 180° either during separation (using a western Transverse Ranges model), during accretion (using a Baja British Columbia “train wreck” model), or during dispersion (using an Australia “bulldozer” model). On the other hand, Siluro-Devonian orthogonal transfer (“accordion” model) from northern Africa to southern Laurussia followed by a Carboniferous “Baja” model appears to best fit the existing data for Cadomia. Finally, Oaxaquia, Chortis, Maya, and Suwannee appear to have been transported along the margin of Gondwana until it collided with southern Laurentia on whose margin they were stranded following the breakup of Pangea. Forward modeling of a closing Mediterranean followed by breakup on the African margin may provide a modern analogue. These actualistic models differ in their dictates on the initial distribution of the peri-Gondwanan terranes and can be tested by comparing features of the modern analogues with their ancient tectonic counterparts.  相似文献   

14.
The Neoproterozoic-Early Cambrian evolution of peri-Gondwanan terranes (e.g. Avalonia, Carolinia, Cadomia) along the northern (Amazonia, West Africa) margin of Gondwana provides insights into the amalgamation of West Gondwana. The main phase of tectonothermal activity occurred between ca. 640–540 Ma and produced voluminous arc-related igneous and sedimentary successions related to subduction beneath the northern Gondwana margin. Subduction was not terminated by continental collision so that these terranes continued to face an open ocean into the Cambrian. Prior to the main phase of tectonothermal activity, Sm-Nd isotopic studies suggest that the basement of Avalonia, Carolinia and part of Cadomia was juvenile lithosphere generated between 0.8 and 1.1 Ga within the peri-Rodinian (Mirovoi) ocean. Vestiges of primitive 760–670 Ma arcs developed upon this lithosphere are preserved. Juvenile lithosphere generated between 0.8 and 1.1 Ga also underlies arcs formed in the Brazilide Ocean between the converging Congo/São Francisco and West Africa/Amazonia cratons (e.g. the Tocantins province of Brazil). Together, these juvenile arc assemblages with similar isotopic characteristics may reflect subduction in the Mirovoi and Brazilide oceans as a compensation for the ongoing breakup of Rodinia and the generation of the Paleopacific. Unlike the peri-Gondwanan terranes, however, arc magmatism in the Brazilide Ocean was terminated by continent-continent collisions and the resulting orogens became located within the interior of an amalgamated West Gondwana. Accretion of juvenile peri-Gondwanan terranes to the northern Gondwanan margin occurred in a piecemeal fashion between 650 and 600 Ma, after which subduction stepped outboard to produce the relatively mature and voluminous main arc phase along the periphery of West Gondwana. This accretionary event may be a far-field response to the breakup of Rodinia. The geodynamic relationship between the closure of the Brazilide Ocean, the collision between the Congo/São Francisco and Amazonia/West Africa cratons, and the tectonic evolution of the peri-Gondwanan terranes may be broadly analogous to the Mesozoic-Cenozoic closure of the Tethys Ocean, the collision between India and Asia beginning at ca. 50 Ma, and the tectonic evolution of the western Pacific Ocean.  相似文献   

15.
Geological evidence, supported by biogeographical data and in accord with palaeomagnetic constraints, indicates that “one ocean” models for the Variscides should be discarded, and confirms, instead, the existence of three Gondwana-derived microcontinents which were involved in the Variscan collision: Avalonia, North Armorica (Franconia and Thuringia subdivided by a failed Vesser Rift), and South Armorica (Central Iberia/Armorica/Bohemia), all divided by small oceans. In addition, parts of south-eastern Europe, including Adria and Apulia, are combined here under the new name of Palaeo-Adria, which was also Peri-Gondwanan in the Early Palaeozoic. Oceanic separations were formed by the break-up of the northern Gondwana margin from the Late Cambrian onwards. Most of the oceans or seaways remained narrow, but – much like the Alpine Cenozoic oceans – gave birth to orogenic belts with HP-UHP metamorphism and extensive allochthons: the Saxo-Thuringian Ocean between North and South Armorica and the Galicia-Moldanubian Ocean between South Armorica and Palaeo-Adria. Only the Rheic Ocean between Avalonia and peri-Gondwana was wide enough to be unambiguously recorded by biogeography and palaeomagnetism, and its north-western arm closed before or during the Emsian in Europe. Ridge subduction under the northernmost part of Armorica in the Emsian created the narrow and short-lived Rheno-Hercynian Ocean. It is that ocean (and not the Rheic) whose opening and closure controlled the evolution of the Rheno-Hercynian foldbelt in south-west Iberia, south-west England, Germany, and Moravia (Czech Republic). Devonian magmatism and sedimentation set within belts of Early Variscan deformation and metamorphism are probably strike-slip-related. The first arrival of flysch on the forelands and/or the age of deformation of foreland sequences constrains the sequential closure of the Variscan seaways (Galicia-Moldanubian in the Givetian; Saxo-Thuringian in the Early Famennian; Rheno-Hercynian in the Tournaisian). Additional Mid- to Late Devonian and (partly) Early Carboniferous magmatism and extension in the Rheno-Hercynian, Saxo-Thuringian and Galicia-Moldanubian basins overlapped with Variscan geodynamics as strictly defined. The Early Carboniferous episode was the start of episodic anorogenic heating which lasted until the Permian and probably relates to Tethys rifting.  相似文献   

16.
东亚原特提斯洋(Ⅰ):南北边界和俯冲极性   总被引:1,自引:1,他引:0  
原特提斯洋是从新元古代Rodinia裂解到早古生代发育于滇缅泰/保山微陆块以北、塔里木-华北陆块以南的一个复杂成因的洋盆。长期以来对原特提斯洋的南、北边界及其早古生代末俯冲极性还存在争论,而这是恢复重建Pangea超大陆聚合前构造背景的关键。本文综合利用野外地质、构造、岩浆、沉积学、地球化学、构造年代学和层析成像等最新成果,以期界定原特提斯域的南、北边界位置,确定原特提斯洋边界俯冲极性。集成分析结果表明,北界为古洛南-栾川缝合线(或宽坪缝合线)及其直至西昆仑的西延部分;南界为龙木措-双湖-昌宁-孟连缝合线。原特提斯洋北部在华北-阿拉善-塔里木陆块泥盆纪向南俯冲并与冈瓦纳大陆北缘拼合过程中,形成了一个巨型弯山构造,现保存在祁连-阿尔金-柴达木地区的中国中央造山带内。原特提斯洋南部分支也可能在泥盆纪闭合,使得包括羌北、若尔盖、扬子、华夏、布列亚-佳木斯等在内的大华南陆块、印支陆块等也向南俯冲与冈瓦纳北缘发生了聚合。  相似文献   

17.
The Early Ordovician brachiopods of south-west Wales (Pembrokeshire and Carmarthenshire) are identified, in most cases for the first time. That period is termed the local Arenig Stage in Britain, but it is now correlated with the Floian, Dapingian, and earlier half of the Darriwilian, which are more recently established international stages in the system of stratigraphical nomenclature. The rocks in south-west Wales were laid down as turbidites in a backarc basin which formed part of the margin of the relatively small independent microcontinent of Avalonia at that time. However, since the Rheic Ocean between Avalonia and the immense Gondwana continent was relatively narrow in the Arenig, the brachiopods reviewed here can be established to be part of the Mediterranean Province, which was also extensive in the higher-latitude sectors in and around Gondwana in the Early Ordovician. The 17 brachiopod species identified within the Arenig brachiopod faunas of south-west Wales are described, including the new species Aporthophyla prisca, Tritoechia bolohaulensis, Skenidoides pontyfennensis and Paurorthis? llangynogensis.  相似文献   

18.
This paper describes late Cambrian dikes and Early Ordovician volcano-sedimentary successions of the Prague Basin, Bohemian Massif, to discuss the timing and kinematics of breakup of the northern margin of Gondwana. Andesitic dikes indicate minor E–W crustal extension in the late Cambrian, whereas the Tremadocian to Dapingian lithofacies distribution and linear array of depocenters suggest opening of this Rheic Ocean rift-related basin during NW–SE pure shear-dominated extension. This kinematic change was associated with the onset of basic submarine volcanism, presumably resulting from decompression mantle melting as the amount of extension increased. We conclude from these inferences and from a comparison with other Avalonian–Cadomian terranes that the rifting along the northern Gondwana margin was a two-stage process involving one major pulse of terrane detachment in the early Cambrian and one in the Early Ordovician. While the geodynamic cause for the former phase remains unclear, but still may include effects of Cadomian subduction (roll-back, slab break-off), isostatic rebound, or mantle plume, the incipient stage of the latter phase may have been triggered by the onset of subduction of the Iapetus Ocean at around 510 Ma, followed by advanced extension broadly coeval (Tremadocian to Darriwilian) in large portions of the Avalonian–Cadomian belt. Unequal amounts of extension resulted in the separation and drift of some terranes, while other portions of the belt remained adjacent to Gondwana.  相似文献   

19.
Neoproterozoic rocks in the Saxo-Thuringian part of Armorica formed in an active margin setting and were overprinted during Cadomian orogenic processes at the northern margin of Gondwana. The Early Palaeozoic overstep sequence in Saxo-Thuringia was deposited in a Cambro-Ordovician rift setting that reflects the separation of Avalonia and other terranes from the Gondwana mainland. Upper Ordovician and Silurian to Early Carboniferous shelf sediments of Saxo-Thuringia were deposited at the southern passive margin of the Rheic Ocean. SHRIMP U/Pb geochronology on detrital and inherited zircon grains from pre-Variscan basement rocks of the northern part of the Bohemian Massif (Saxo-Thuringia, Germany) demonstrates a distinct West African provenance for sediments and magmatic rocks in this part of peri-Gondwana. Nd-isotope data of Late Neoproterozoic to Early Carboniferous sedimentary rocks show no change in sediment provenance from the Neoproterozoic to the Lower Carboniferous, which implies that Saxo-Thuringia did not leave its West African source before the Variscan Orogeny leading to the Lower Carboniferous configuration of Pangea. Hence, large parts of the pre-Variscan basement of Western and Central Europe often referred to as Armorica or Armorican Terrane Assemblage may have remained with Africa in pre-Pangean time, which makes Armorica a remnant of a Greater Africa in Gondwanan Europe. The separation of Armorica from the Gondwana mainland and a long drift during the Palaeozoic is not supported by the presented data.  相似文献   

20.
博罗科努成矿带位于新疆西天山北缘,近年来找矿成果突出.在充分收集前人研究成果的基础上,初步总结了博罗科努带岩浆岩时空分布特点及其年龄资料,重点分析了与成矿关系密切的晚古生代岩浆作用的性质.博罗科努带地质历史与北天山洋的演化密切相关,前寒武纪统一基底形成,北天山洋打开.寒武纪为被动陆缘环境,北天山持续扩张.奥陶纪北天山洋向伊犁地块之下俯冲,该带进入大陆弧演化阶段.泥盆纪—晚石炭世早期为俯冲高峰期,引发了一系列钙碱性的岩浆活动;早二叠世该带已进入陆相环境,但北天山洋残余洋盆的俯冲持续到中二叠世;晚二叠世全面进入陆内演化阶段,区域构造应力性质由挤压变为伸展.伴随洋-陆构造演化,形成了莱历斯高尔和阿希两大矿集区,分别对应2套成矿系统:与侵入岩浆活动有关的矽卡岩-斑岩-热液脉型铁、铜、钼、金、锑、铅、锌成矿系统和与次火山热液活动有关的浅成低温热液-斑岩型金、铅、锌、铜成矿系统.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号