首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The retention of particulate matter of the Odra River in flooded areas was estimated by determining suspended particulate matter (SPM) elimination and particle-bound nutrient retention in a polder area of the Lower Odra Valley national park. Water and suspended matter samples collected before, during, and after the 1997 summer flood at the inlet and the outlet of the investigated polder (Polder A/B close to Schwedt) offer the opportunity to balance the matter retention inside the floodplain. The maximum level of retained SPM (more than 80%) was calculated for the record flood of summer 1997, while in ordinary winter floods retention differs between 33% and 70%. Basic properties of the flowing particles like settling velocity, density, loss on ignition etc. change on their way through the polder area. In the investigated Polder A/B a retention of at least 50% of particle-bound phosphorus which was independent of the incoming suspended matter load from the Odra River was observed. The retention of particle-bound nitrogen and carbon varied seasonally to different extents. The presented balance demonstrates that particle-bound nutrient retention in polders is an important factor in the self-purification process of the river system. Some additional effort was done to study changes of plankton composition: during a joint field experiment in spring 1998, the authors determined biological parameters (abundance and biomass of phytoplankton and zooplankton) of water samples at polder inflow and outflow points.  相似文献   

2.
Because of the significant reduction of flow velocity relative to the main current there is an accumulation of sediment material in the centre of the groyne fields over time (years to decades) up to a maximum of 1.5 m. Based on the element‐ and compound‐specific depth functions of this fine‐grained material with high organic matter content the sedimentation history of the Elbe River sediments concerning the environmentally relevant nutrients and pollutants can be reconstructed. It could be shown that the fresh sediments are less polluted than the deeper older ones. During the extreme flood of the river Elbe in August 2002 the critical erosion shear stress in the groyne fields was high enough to remobilise a considerable portion of the sediment depot. The hazard to the environment is high due to the fact that a significant part of the remobilised polluted sediments was distributed over the recent floodplain which is normally used as pasture. Thus these groyne field sediments represent a temporary danger for the water quality of the river Elbe. But the hazard of the solids sedimented in the recent floodplain of the river can be viewed as long‐lasting.  相似文献   

3.
The embanked floodplains of the lower River Rhine in the Netherlands contain large amounts of heavy metals, which is a result of many years deposition of contaminated overbank sediments. Depending on local sedimentation rates and changing pollution trends in the past, the metal pollution varies greatly between different floodplain sections as well as vertically within the floodplain soil profiles. Maximum metal concentrations in floodplain soils vary from 30 to 130 mg/kg for Cu, from 70 to 490 mg/kg for Pb and from 170 to 1450 mg/kg for Zn. In the present study these metals were used as a tracer to reconstruct sedimentation rates at 28 sites on the lower River Rhine floodplains. The temporal trend in pollution of the lower River Rhine over the past 150 years was reconstructed on the basis of metal concentrations in sediments from small ponds within the floodplain area. Using a one‐dimensional sedimentation model, average sedimentation rates over the past century were determined using an inverse modelling calibration procedure. The advantage of this method is that it uses information over an entire profile, it requires only a limited number of samples, it accounts for post‐depositional redistribution of the metals, and it provides quantitative estimates of the precision of the sedimentation rates obtained. Estimated sedimentation rates vary between about 0·2 mm/year and 15 mm/year. The lowest metal concentrations are found in the distal parts of floodplain sections with low flooding frequencies and where average sedimentation rates have been less than about 5 mm/year. The largest metal accumulations occur in low‐lying floodplain sections where average sedimentation rates have been more than 10 mm/year. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Riparian floodplains are known to retain nutrients such as nitrogen and phosphorus. The main processes are denitrification (for nitrogen) and sedimentation (for phosphorus), which depend on the nutrient load and the flow velocity or residence time, respectively. Both are related to floodplain size and the current discharge conditions. However, it is not yet known, to which extent, how long and how often during a year riparian floodplains are inundated at the catchment scale. Small floods are not relevant for flood risk management, but they are important for the nutrient cycle. This study examined the flooding frequency, the extent and nutrient retention capacity of inundated riparian floodplains between Wittenberg and Wittenberge along the river Elbe in Germany, based on freely available data. The calculation of inundated areas was produced by the Software FLYS 2.1.3. On the basis of these results, we developed an empirical approach to predict the average yearly active floodplain as a share of the inundated floodplain on the potential floodplain depending on hydro-morphology. This hydrology dependent approach was applied to calculate the active floodplain as an average inundated floodplain area and coupled with a proxy-based nutrient retention calculation. Due to morphologic characteristics, riparian floodplains upstream and downstream from Magdeburg show significant differences in flooding frequencies, average inundated floodplain extent and floodplain widths. Assuming this average inundated floodplain as relevant for nutrient retention, we calculated an eight-fold higher retention for the downstream river section, despite a smaller potential floodplain, indicating how important regularly flooded areas are. The presented Q/MQ approach offers new options for modeling nutrient retention in floodplains even on a monthly basis and for other river systems. However, there is a strong need to consider the inflowing nutrient load for retention calculation instead of proxy values.  相似文献   

5.
It is often believed that extreme but infrequent events are most important in the development of landforms. When evaluating the overall effect of large floods on floodplain sedimentation, quantitative measurements of both high- and low-magnitude events should be considered. To analyse the role of flood magnitude on floodplain sedimentation, we measured overbank sedimentation during floods of different magnitude and duration. The measurements were carried out on two embanked floodplain sections along the rivers Rhine and Meuse in The Netherlands, using sediment traps made of artificial grass. The results showed an increase in total sediment accumulation with flood magnitude, mainly caused by enhanced accumulation of sand. At low floodplain sections the increase in sediment deposition was smaller than expected from the strong increase in suspended sediment transport in the river. Spatial variability in sediment accumulation was found to depend both on flood magnitude and duration. Deposition of sand on natural levees mainly takes place during high-magnitude floods, whilst low floods and slowly receding floods are important for the deposition of silt and clay in low-lying areas, at greater distance from the main channel. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
This article addresses spatial variability of comtemporary floodplain sedimentation at the event scale. Measurements of overbank deposition were carried out using sediment traps on 11 floodplain sections along the rivers Waal and Meuse in The Netherlands during the high-magnitude flood of December 1993. During the flood, sand sheets were locally deposited behind a natural levee. At distances greater than 50 to 100 m from the river channel the deposits consisted mainly of silt- and clay-sized material. Observed patterns of deposition were related to floodplain topography and sediment transporting mechanisms. Though at several sites patterns were observed that suggest transport by turbulent diffusion, convection seems the dominant transporting mechanism, in particular in sections that are bordered by minor embankments. The average deposition of overbank fines ranged between 1·2 and 4·0 kg m−2 along the river Waal, and between 1·0 and 2·0 kg m−2 along the river Meuse. The estimated total accumulation of overbank fines (not including sand sheets) on the entire river Waal floodplain was 0·24 Mton, which is 19 per cent of the total suspended sediment load transported through the river Waal during the flood. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Determining the extent of flooding is an important role of the hydrological research community and provides a vital service to planners and engineers. For large river systems located within distant settings it is practical to utilize a remote sensing approach. This study combines a remote sensing and geomorphic approach to delineate the extent of a large hurricane generated flood event in the lower Pánuco basin (98,227 km2), the seventh largest river system draining into the Gulf of Mexico. The lower Pánuco basin is located within the coastal plain of eastern Mexico and has a complex alluvial valley. Data sources included a Landsat 5TM and Landsat 7ETM+ scene, and topographic and particle size data from fieldwork and laboratory analysis. The Landsat 5TM image was acquired after the peak of a large flood event in 1993, whereas the Landsat 7ETM+ scene was acquired during the dry season in 2000. The increasing number of days between flood crest and the date of flood image acquisition along the river valley provided the opportunity to examine several methods of flood delineation and to consider differences in floodplain geomorphology. Backswamp environments were easily delineated in flooded reaches within the Panuco and Tamuin valleys, whereas in the Moctezuma valley more sophisticated methods were required because of the greater time between image acquisition and flood peak, and the complex floodplain topography. This included Principal Component (PC) analysis and image classification. Within the floodplain, residual Holocene terraces complicated flood mapping. Classification of both images allowed consideration of the influence of permanent standing water. Although the flooded areas were greater in the lower reaches of the study area, because this portion of the valley contained large floodplain lakes, the amount of inundation was actually lower. Remote sensing offers the ability to examine large alluvial valleys in distant settings but does not imply that geomorphic criteria should be excluded. Indeed, because of heterogeneous floodplain topography this study illustrates the importance of including field based geomorphic analysis so that the complexity of distinct floodplain environments are considered. The findings from this study are significant because most remote sensing data obtained for the purpose of flood mapping will not coincide with the flood crest. Thus, this study provides an appropriate method for mapping flood inundation in large and complex floodplain settings after flood crest recession.  相似文献   

8.
Six plains cottonwoods along the axis of a meander were excavated to determine if dendrochronology could identify the year and location of germination and date past overbank sedimentation events. Samples from all excavated trees showed clear anatomical changes associated with burial, including increased vessel size, decreased definition of annual ring boundaries, and decreased ring widths. Some of these burial signatures were created by deposition of only a few centimeters of sediment, and most burial events were detected by multiple samples from the same tree. Four of the trees germinated at or near the upper surfaces of bar deposits, while two germinated within thin overbank deposits draped over bar deposits, indicating that germination is closely associated with bars. Dates and inferred thicknesses of overbank sedimentation events are consistent with repeated topographic surveys and data obtained from cesium-137 (137Cs) analyses. However, the record of overbank sedimentation extracted from the trees does not entirely reflect the history of past peak discharges documented by stream gaging, largely because individual trees are progressively less likely to be flooded through time as the river migrates farther away. Germination dates and locations closely track past positions of the river channel. Germination elevations and the elevations of the tops of point bars appear to be decreasing with time as the bend migrates, implying vertical incision by Powder River at a rate of 7.1 ± 4.3 mm/yr. The rate of floodplain growth determined by elevation changes decreases progressively through time, ultimately reaching an apparent plateau after 0.8–1.3 m of vertical accretion. While similar patterns of vertical accretion have previously been interpreted as resulting from decreasing flood probability with increasing floodplain elevation, distance from the channel is also a first-order control on vertical floodplain growth. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Over ninety surface sediment samples (0...3 cm) were collected in the Odra river estuarine system – from the Oderhaff, the Pomeranian Bight, the Peenestrom, the Greifswald Bodden – and the Arkona Basin between 1994 and 1996 and analysed for polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/F) and biphenyls (PCB), and p,p′-dichlorodiphenyl-trichloroethane (DDT) including their metabolites. The contents of all investigated organochlorines in the sediments of the western part of the Oderhaff (Kleines Haff) were only slightly higher and more homogenously distributed compared to the values of the Pomeranian Bight and the Greifswald Bodden. PCB contents (sum of 23 congeners) in surface sediments ranged between <130 and 9 550 pg/g (given for dry weight, dw). The results of individual PCB congeners showed that high contents of hexa- and heptachlorinated compounds (PCB 138, 153, 180) were present in the entire area investigated. Generally, low levels of PCDD/F were found in surface sediments of the Odra river estuarine system due to small industrial activities in the catchment area. Contents of PCDF (sum) and PCDD (sum) varied from 2.5 to 820 pg/g (dw) and from 13 to 2 991 pg/g (dw), respectively. The congener contents of PCDF showed a nonuniform picture between the Oderhaff and the Arkona Basin. In contrast, the congener profiles of PCDD showed approximately similar patterns at nearshore and offshore stations, with highest values of OCDD (octa CDD). We assume that most of the particulate-bound micro-contaminants (PCB, PCDD/F) are deposited in the eastern part of the Oderhaff (Stettin Lagoon), which acts as a temporary trap and opurificationπ basin for the suspended particulate matter (SPM). One pathway for further transport of the particles seems to be the way on a small sedimentation strip along the island of Usedom via the “Saßnitz-trough” into the deeper parts of the western Baltic Sea.  相似文献   

10.
The internal riverine processes acting upon phosphorus and dissolved silicon were investigated along a 55 km stretch of the River Swale during four monitoring campaigns. Samples of river water were taken at 3 h intervals at sites on the main river and the three major tributaries. Samples were analysed for soluble reactive phosphorus, total dissolved phosphorus, total phosphorus, dissolved silicon and suspended solid concentration. Mass‐balances for each determinand were calculated by comparing the total load entering the river with the total load measured at the downstream site. The difference, i.e. the residual load, showed that there was a large retention of phosphorus and silicon within the system during the March 1998 flood event, but the other three campaigns produced net‐exports. Cumulative residual loads were calculated for each determinand at 6 h intervals throughout each campaign. This incremental approach showed that the mass‐balance residuals followed relatively consistent patterns under various river discharges. During stable low‐flow, there was a retention of particulate phosphorus within the system and also a retention of total dissolved phosphorus and soluble reactive phosphorus, most likely caused by the sorption of soluble phosphorus by bed‐sediments. In times of high river‐discharge, there was a mobilization and export of stored bed‐sediment phosphorus. During overbank flooding, there was a large retention (58% of total input) of particulate phosphorus within the system, due to the mass deposition of phosphorus‐rich sediment onto the floodplain. Soluble phosphorus was also retained within the system by sequestration from the water column by the high concentration of suspended solids. The dissolved silicon mass‐balance residuals had a less consistent pattern in relation to river discharge. There was a large retention of dissolved silicon during overbank flooding, possibly due to sorption onto floodplain soil, and net‐exports during periods of both stable low‐flow and rising limbs of hydrographs, due to release of dissolved silicon from pore‐waters. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Multidisciplinary studies of the dispersed sedimentary matter (suspended particulate matter) were carried out in the Volga delta during spring flood in two areas of the Astrakhan State Biosphere Reserve (Obzhorovskii and Damchikskii), allowing the authors to reveal some regularities in sedimentation conditions. Considerable differences were found to exist in the supply of sedimentary material into the sea through the branches and arms of the eastern and western parts of the river delta. Typical of the eastern part are appreciably higher concentrations of suspended particulate matter, biogenic components, and phytopigments, as well as greater phytoplankton abundance and biomass, and sedimentary material fluxes. A relationship was found to exist between the concentration of suspended particulate matter and the phytopigments under consideration. In May, almost entire chlorophyll “a” in suspended particulate matter was concentrated in the cells of small diatom algae, where it was distributed in proportion to diatom biomass. Overall, the suspended matter of the delta is mostly represented by mineral detrital particles (quartz and carbonates) with a relatively small share of clay materials against the background of a huge amount of diatom cells and biogenic detritus.  相似文献   

12.
The ecological functioning of floodplain lakes is largely influenced by the interaction with the river mainstem. In this study, seasonal variation in water chemistry and the relationship with the river conditions were compared between floodplain lakes that differ in the level of connection to the Usumacinta River, the largest river of Mesoamerica. Samples for suspended solids, nutrients, and chlorophyll a were collected through the year in lakes permanently connected to the river and in lakes that only received water from the Usumacinta for a short period during peak flow. Floodplain lakes showed higher total suspended solids than the river during the dry season while during the rainy season greater differences were observed between the river and the lakes, probably explained by higher concentrations in the river and greater sedimentation in the lakes. Greater organic matter content in the suspended solids was observed in the floodplain lakes, particularly in the more isolated lakes, likely related to high algal biomass. Nitrate concentrations were always higher in the river than in the lakes and lower nitrate concentrations occurred at the isolated lakes, suggesting that processes that remove nitrate occur through the year and are a common feature of floodplain lakes. Phosphorus in the connected lakes was higher than in the river only during the dry season, while in the isolated lakes concentrations were always greater than in the river. Chlorophyll a concentrations were higher in the connected lakes than in the river only during the dry season, while the more isolated lakes exhibited higher values through the year, showing signs of eutrophication. Suspended organic matter, nitrate, and chlorophyll showed larger differences between lake and river sites in the more isolated lakes, probably related to greater water residence time and its influence on primary production. Less connected lakes are more vulnerable to flow alteration because the brief period of connection to the river can be compromised and the effects of eutrophication exacerbated.  相似文献   

13.
Q. He  D. E. Walling 《水文研究》1998,12(7):1079-1094
River floodplains have been widely recognized as important sinks for storing suspended sediment and associated contaminants transported by river systems. The grain size composition of floodplain deposits exerts an important influence on contaminant concentrations, and commonly exhibits significant spatial variability in response to the dynamic nature of overbank flow and sediment transport. Information on the spatial variability of the grain size composition of overbank deposits is therefore essential for developing an improved understanding of the processes controlling sediment transport on floodplains, and for investigating the fate of sediment-associated contaminants. Such information is also important for validating existing floodplain sedimentation models. This paper reports the results of a study aimed at investigating the spatial variability of the grain size composition of floodplain sediments at different spatial scales, through analysis of surface sediment samples representative of contemporary floodplain deposits collected from frequently inundated floodplain sites on five British lowland rivers. Significant lateral and downstream variations in the grain size composition of the sediment deposits have been identified in the study reaches. An attempt has been made to relate the observed spatial distribution of the grain size composition of the overbank deposits to the local floodplain geometry and topography. The importance of the particle size characteristics of the suspended sediment transported by the rivers in influencing the spatial variability of the grain size composition of the overbank sediments deposited on these floodplains is also considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
This paper reports on the erosion, transport, and deposition processes associated with an overbank deposit formed by the flooding of the Abu River on July 28, 2013, in Yamaguchi City, Japan. At the study site, river flows overtopped the levee revetment upstream of a meander bend cutting it off and flowing back into the main channel downstream. In this sequential process, it deposited large amounts of sediments, ranging from mud to cobbles, on the floodplain. The surface of paddy fields adjacent to a railway line, located at the center of the affected floodplain, was severely eroded by the flood flows. Overbank deposits composed of both upstream finer sediments and eroded coarser terrestrial sediments are laid down in the affected area. Large amounts of pebbles and cobbles originating from the eroded terrestrial area formed a gravelly pile on top of the sand and gravel sediments derived from the river. This finding indicates that sands and gravels were deposited prior to the formation of the gravelly pile, probably before and during peak flood flows. An inverse grading structure is evident in the lower to middle part of these comparatively thick deposits, most likely due to differences in transport pattern between entrained terrestrial gravels and upstream finer sediments.  相似文献   

15.
Deposition and erosion play a key role in the determination of the sediment budget of a river basin, as well as for floodplain sedimentation. Floodplain sedimentation, in turn, is a relevant factor for the design of flood protection measures, productivity of agro‐ecosystems, and for ecological rehabilitation plans. In the Mekong Delta, erosion and deposition are important factors for geomorphological processes like the compensation of deltaic subsidence as well as for agricultural productivity. Floodplain deposition is also counteracting the increasing climate change induced hazard by sea level rise in the delta. Despite this importance, a sediment database of the Mekong Delta is lacking, and the knowledge about erosion and deposition processes is limited. In the Vietnamese part of the Delta, the annually flooded natural floodplains have been replaced by a dense system of channels, dikes, paddy fields, and aquaculture ponds, resulting in floodplain compartments protected by ring dikes. The agricultural productivity depends on the sediment and associated nutrient input to the floodplains by the annual floods. However, no quantitative information regarding their sediment trapping efficiency has been reported yet. The present study investigates deposition and erosion based on intensive field measurements in three consecutive years (2008, 2009, and 2010). Optical backscatter sensors are used in combination with sediment traps for interpreting deposition and erosion processes in different locations. In our study area, the mean calculated deposition rate is 6.86 kg/m2 (≈ 6 mm/year). The key parameters for calculating erosion and deposition are estimated, i.e. the critical bed shear stress for deposition and erosion and the surface constant erosion rate. The bulk of the floodplain sediment deposition is found to occur during the initial stage of floodplain inundation. This finding has direct implications on the operation of sluice gates in order to optimize sediment input and distribution in the floodplains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Since 1992, the Federal Institute of Hydrology (Bundesanstalt für Gewässerkunde – BfG) performs morphological investigations in the river Odra downstream from the confluence of the river Neiße (Nysa Luzycka). The results of these investigations give a clear insight into the morphodynamic behaviour of this part of the river and indicate that on average 380 000 t of suspended solids and 130 000 t of bed load are transported by the river Odra at Hohensaaten per year, with a distinct seasonal variability in the case of suspended solids. Detailed studies on type and composition of the bed substrates have revealed that the river bottom is composed of very fine material: at Ratzdorf already 75 % of the bed material is finer than 2 mm, at Widuchowa almost all of the river bed material consists of sand finer than 0.63 mm. Because of the high sensitivity of the river bottom to discharge increases and the corresponding increases of bottom shear stress sand was found to be the dominating fraction of the suspended load in case of extreme flood events.  相似文献   

17.
The Odra river flood of 1997 was a rare hydrological as well as an interesting sedimentological event. At Hohenwutzen (Lower Odra River) we observed the suspended particulate matter transport and the temporal development of water and solidsπ pollution with heavy metals and As. While the suspended particulate matter concentration decreased the trace element concentrations increased during the flood by fractionation of particles and solution processes. Because of a successive flooding of differently contaminated sedimentary sources and polluted regions the contents of heavy metals developed irregularly. Their median particulate concentrations did not exceed the values of older samples taken under mean discharge conditions between 1989 and 1995. The dissolved amounts correspond to those of the Elbe river in 1990. During the flood the dissolved share of all analyzed total element contents increased. The total loads increased 4fold (Cr) to 17fold (Cd).  相似文献   

18.
Both climate change and river rehabilitation projects induce changes in floodplain sedimentation. Notably along the lower River Rhine, the sediment deposition patterns and rates are subject to change. To assess the magnitude of these changes, we developed the MoCSED model, a floodplain sedimentation model within a geographical information system for the lower Rhine River. We based MoCSED on the ‘method of characteristics’ (MoC), a particle tracking method that minimizes numerical dispersion. We implemented the MoCSED model in the PCRaster dynamic modelling language. The model input comprises initial suspended sediment concentrations, water levels, flow velocities, and longitudinal and transverse dispersivities. We used a combination of the Krone and Chen concepts to calculate the subsequent sedimentation (SED routine). We compared the model results with sediment trap data for the Bemmel floodplain along the Dutch Waal River during the 2003 inundation. This comparison showed that MoCSED was able to simulate the pattern of sediment deposition. In addition, the model proved to be an improvement in comparison with a conventional raster‐based floodplain sedimentation model for the lower River Rhine. In future, MoCSED may serve well to study the impact of a changing discharge regime due to climate change and floodplain rehabilitation plans on deposition of sediments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, an approach is presented for handling hydraulic uncertainties in the prediction of floodplain. Different factors affect river flood characteristics. Furthermore, the high changeability of flooding conditions leads to high variability of the inundation. River morphology is one of the most effective factors in river flood characteristics. This factor is influenced by sedimentation and erosion in the river cross sections, which affects the discharge variation. The depth and the width of the river cross section lead to an increase or decrease in the river flow path. This results in changes in the extent of the floodplain based on the generated rainfall. The inundated region boundaries are determined by utilizing the mean first‐order second‐moment analysis. The proposed method is applied to the Kajoo River in the south‐eastern part of Iran. Determination of floodplain uncertainty is a damage‐reduction policy in this region. Also, it is useful to prepare the necessary activities for overcoming the flood hazards. Climate change is the second effective factor on the floodplain uncertainties. Climate change affects the magnitude, extent and depth of inundation and it may intensify the flood problem. Therefore, the future rainfall pattern of the study area under climate change is simulated to evaluate its impacts on the river flow characteristic. Subsequently, a hydraulic routing model is used to determine floodplain. Finally, the copula function is used to estimate the joint probability of the changes in the inundation area due to changes in river morphology and the rainfall changes due to impacts of climate change. Results show that the uncertainties of the extent of floodplain are affected by climate change and river morphology, leading to noticeable changes in the magnitude and frequency of floods. Evaluating these impacts and estimating corresponding river discharges will help in the study of river dynamics, and will also contribute towards devising effective mitigation and management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood‐dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re‐suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号