首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
We have obtained the first estimates of the masses of the components of the Her X-1/HZ Her X-ray binary system taking into account non-LTE effects in the formation of the H γ absorption line: m x = 1.8 M and m v = 2.5 M . These mass estimates were made in a Roche model based on the observed radial-velocity curve of the optical star, HZ Her. The masses for the X-ray pulsar and optical star obtained for an LTE model lie are m x = 0.85 ± 0.15 M and m v = 1.87 ± 0.13 M . These mass estimates for the components of Her X-1/HZ Her derived from the radial-velocity curve should be considered tentative. Further mass estimates from high-precision observations of the orbital variability of the absorption profiles in a non-LTE model for the atmosphere of the optical component should be made.  相似文献   

2.
We analyze the late stages of evolution of massive (M 0 ? 8 M ) close binaries, from the point of view of possible mechanisms for the generation of gamma-ray bursts. It is assumed that a gamma-ray burst requires the formation of a massive (~1 M ), compact (R ? 10 km) accretion disk around a Kerr black hole or neutron star. Such Kerr black holes are produced by core collapses of Wolf-Rayet stars in very close binaries, as well as by mergers of neutron stars and black holes or two neutron stars in binaries. The required accretion disks can also form around neutron stars that were formed via the collapse of ONeMg white dwarfs. We estimate the Galactic rate of events resulting in the formation of rapidly rotating relativistic objects. The computations were carried out using the “Scenario Machine.”  相似文献   

3.
We have analyzed the observed radial-velocity curve for the X-ray binary M33 X-7 in a Roche model. We have analyzed the dependence between the component masses and the degree of filling of the optical star’s Roche lobe to obtain the ratio of the masses of the optical star and compact object. For the most probable mass of the optical star, m v = 70 M⊙, the mass of the compact object is m x = 15.55 ± 3.20 M⊙. It has been shown that black holes with masses of mx = 15 M⊙ and even higher can form in binaries. We present characteristic evolutionary tracks for binary systems passing through an evolutionary stage with properties similar to M33 X-7-type objects. According to population-synthesis analyses, such binaries should be present in galaxies with masses of at least 1011 M⊙. The present number of such systems in M33 should be of the order of unity. We have also studied the evolutionary status of the X-ray binary IC 10 X-1 with a Wolf-Rayet component, which may contain a massive black hole. The final stages of the evolution of the M33 X-7 and IC 10 X-1 systems should be accompanied by the radiation of gravitational waves.  相似文献   

4.
Orbital-period variations of the eclipsing binaries FK Aql and FZ Del are analyzed. For each of the systems, a superposition of two cyclic variations of their orbital periods is found. FK Aql may be a quadruple system that contains two more bodies, besides the eclipsing binary, with masses M 3 ? 1.75M and M 4 ? 1.47M , and the corresponding periods 15 and 82 yrs. This could also be a triple system with a third body of mass M 3 ? 1.75M and a period of the long-period orbit P 3 = 15 yrs, or with a third body of mass M 3 ? 1.30M and a period of the long-period orbit P 3 = 82 yrs. FZ Del may be a quadruple system with the additional componentmasses M 3 ? 0.2M and M 4 ? 0.3M , with the periods 10.2 and 53.7 yrs. This could also be a triple system with a third-body mass M 3 ? 0.2M and a period of the long-period orbit P 3 = 10.2 yrs. In both systems, the residual period variations could be due to magnetic cycles of the secondary. The period variations of the eclipsing binary FZ Del could also be due to apsidal motion, together with the influence of a third body or the effects of magnetic activity.  相似文献   

5.
It is shown that the approximation of the complex, tidally distorted shape of a star as a circular disc with local line profiles and a linear limb-darkening law, which is usually applied when deriving equatorial stellar rotation velocities from line profiles, leads to overestimation of the equatorial velocity V rot sin i and underestimation of the component mass ratio q = M x /M v . A formula enabling correction of the effect of these simplifying assumptions on the shape of a star is used to re-determine the mass ratios q and the masses of the black holes M x and visual components M v in low-mass X-ray binary systems containing black holes. Taking into account the tidal–rotational distortion of the stellar shape can significantly increase the mass ratios q = M x /M v , reducing M v , while M x changes only slightly. The resulting distribution of M v attains its maximum near M v ? 0.35M , in disagreement with the results of population synthesis computations realizing standard models for Galactic X-ray novae with black holes. Possible ways to overcome this inconsistency are discussed. The derived distribution of M x also differs strongly from the mass distribution for massive stars in the Galaxy.  相似文献   

6.
The results of a systematic analysis of master radial-velocity curves for the X-ray binary 4U 1700-37 are presented. The dependence of the mass of the X-ray component on the mass of the optical component is derived in a Roche model based on a fit of the master radial-velocity curve. The parameters of the optical star are used to estimate the mass of the compact object in three ways. The masses derived based on information about the surface gravity of the optical companion and various observational data are 2.25 ?0.24 +0.23 M and 2.14 ?0.56 +0.50 M. The masses based on the radius of the optical star, 21.9R, are 1.76 ?0.21 +0.20 M and 1.65 ?0.56 +0.78 M. The mass of the optical component derived from the mass-luminosity relation for X-ray binaries, 27.4M, yields masses for the compact object of 1.41 ?0.08 + M and 1.35 ?0.18 +0.18 M.  相似文献   

7.
The results of hydrodynamical calculations of radially pulsating helium stars with masses 0.5MM≤0.9M, bolometric luminosities 600L≤5×103L, and effective temperatures 1.5×104 K≤Teff≤3.5×104 K are presented. The pulsation instability of these stars is due to the effects of ionization of iron-group elements in layers with temperatures T~2×105 K. The calculations were carried out using opacities for the relative mass abundances of hydrogen and heavy elements X=0 and Z=0.01, 0.015, and 0.02. Approximate formulas for the pulsation constant Q over the entire range of pulsation instability of the hot helium stars in terms of the mass M, radius R, effective temperature Teff, and heavy-element abundance Z are derived. The instability of BX Cir to radial pulsations with the observed period Π=0.1066 d occurs only for a mass M≥0.55M, effective temperature Teff≥23000 K, and heavy-element abundance Z≥0.015. The allowed mass of BX Cir is in the range 0.55MM≤0.8M, which corresponds to luminosities 800LM≤1400L and mean radii 1.7R?R?2.1R.  相似文献   

8.
Theoretical absorption-line profiles and radial-velocity curves for tidally deformed optical stars in X-ray binary systems are calculated assuming LTE. The variations in the profile shapes and radial-velocity curve of the optical star are analyzed as a function of the orbital inclination of the X-ray binary system. The dependence of the shape of the radial-velocity curve on the orbital inclination i increases with decreasing component-mass ratio q = m x /m v . The integrated line profiles and radial-velocity curves of the optical star are calculated for the Cyg X-1 binary, which are then used to estimate the orbital inclination and mass of the relativistic object: i < 43° andm x = 8.2–12.8 M. These estimates are in good agreement with earlier results of fitting the radial-velocity curve of Cyg X-1 using a simpler model (i < 45°, m x = 9.0–13.2 M).  相似文献   

9.
We consider the formation of massive stars under the assumption that a young star accretes material from the protostellar cloud through its accretion disk while losing gas in the polar directions via its stellar wind. The mass of the star reaches its maximum when the intensity of the gradually strengthening stellar wind of the young star becomes equal to the accretion rate. We show that the maximum mass of the forming stars increases with the temperature of gas in the protostellar cloud T 0, since the rate at which the protostellar matter is accreted increases with T 0. Numerical modeling indicates that the maximum mass of the forming stars increases to ~900 M for T 0 ~ 300 K. Such high temperatures of the protostellar gas can be reached either in dense star-formation regions or in the vicinity of bright active galactic nuclei. It is also shown that, the lower the abundance of heavy elements in the initial stellar material Z, the larger the maximum mass of the star, since the mass-loss rate due to the stellar wind decreases with decreasing Z. This suggests that supermassive stars with masses up to 106 M could be formed at early stages in the evolution of the Universe, in young galaxies that are almost devoid of heavy elements. Under the current conditions, for T 0 = (30–100) K, the maximum mass of a star can reach ~100M , as is confirmed by observations. Another opportunity for the most massive stars to increase their masses emerges in connection with the formation and early stages of evolution of the most massive close binary systems: the most massive stars can be produced either by coalescence of the binary components or via mass transfer in such systems.  相似文献   

10.
The results of numerical studies of the evolution of a close binary system containing a black hole with a mass of ~3000M are presented. Such a black hole could form in the center of a sufficiently rich and massive globular cluster. The secondary could be a main-sequence star, giant, or degenerate dwarf that fills or nearly fills its Roche lobe. The numerical simulations of the evolution of such a system take into account the magnetic wind of the donor together with the wind induced by X-ray irradiation from the primary, the radiation of gravitational waves by the system, and the nuclear evolution of the donor. Mass transfer between the components is possible when the donor fills its Roche lobe, and also via the black hole’s capture of some material from the induced stellar wind. The computations show that the evolution of systems with solar-mass donors depends only weakly on the mass of the accretor. We conclude that the observed ultra-luminous X-ray sources (L X ? 1038 erg/s) in nearby galaxies could include accreting black holes with masses of 102?104M. Three scenarios for the formation of black holes with such masses in the cores of globular clusters are considered: the collapse of superstars with the corresponding masses, the accretion of gas by a black hole with a stellar initial mass (<100M), and the tidal accumulation of stellar black holes. We conclude that the tidal accumulation of stellar-mass black holes is the main scenario for the formation of intermediate-mass black holes (102?104M) in the cores of globular clusters.  相似文献   

11.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

12.
We present the results of spectroscopic observations of the X-ray binary V404 Cyg obtained on the 6-m telescope of the Special Astrophysical Observatory in 2001–2002. We have used a statistical approach to interpret the radial-velocity curve of V404 Cyg. We derived the dependence of the mass of the X-ray emitting component mx on the mass of the optical component mv via an analysis of the radial-velocity curve based on profiles of the CaI 6439.075 Å absorption line synthesized in a Roche model. Using the orbital inclination estimated from the ellipticity of the optical component, i=54°–64°, and the component-mass ratio q=mx/mv=16.7 found from the rotational broadening of the spectral lines, we obtain m s =10.65±1.95M for the mass of the black hole.  相似文献   

13.
We show that semi-detached close binary systems with massive (4–25M) black holes are formed in the evolution of massive stellar binaries in which the initial mass of the primary exceeds ~25M. The mass exchange in such systems is maintained by the nuclear evolution of the donor and by its magnetic and induced stellar winds. The donor in such systems can be a main-sequence star, subgiant, non-degenerate helium star, or white dwarf. The evolution of corresponding systems with black-hole masses of 10M is investigated.  相似文献   

14.
Variations of the orbital periods of the eclipsing binaries TU Cnc, VZ Leo, and OS Ori are analyzed. Secular period decreases were earlier believed to occur in these systems. It is demonstrated that the period variations of TU Cnc can be represented using the light-time effect corresponding to the orbital motion of the eclipsing binary with a period of 78.6 years around the center ofmass of the triple system, with the mass of the third body being M 3 > 0.82M . With the same accuracy, the period variations of VZ Leo and OS Ori can be represented either solely using the light-time effect, or a superposition of a secular period decrease and the light-time effect. For VZ Leo, the period of the long-term orbit is 63.8 years in the former case and 67.9 years in the latter case. Similar masses for the third body are indicated in both cases: M 3 > 0.55M and M 3 > 0.61M . For OS Ori, the period of the long-term orbit is 46 years and M 3 > 0.5M in the former case, and the period is 36 years and M 3 > 0.6M in the latter case.  相似文献   

15.
We consider the evolution of close binaries in which the initial secondary component is a nondegenerate helium star with mass MHe = 0.4–60 M, while the initially more massive primary has evolved into a black hole, neutron star, or degenerate dwarf. The neutron star is assumed to originate as a result of the evolution of a helium star with a mass of 2.5 MMHe ≤ 10 M after the explosion of a type Ib,c supernova. If the axial rotation of the helium star before the explosion is rigid-body and synchronized with the orbital rotation, for Porb ≤ 0.16 day, the rotational energy of the young neutron star will exceed the energy of an ordinary supernova. If the magnetic field of the neutron star is sufficiently strong, the necessary conditions for a magnetic-rotational supernova are provided. The initial rotational period of a young neutron star originating in a system with an orbital period shorter than ~50 days is shorter than ~4 s, which, according to observations, is required for the appearance of a radio pulsar. A helium star whose mass exceeds ~10 M in a close binary with an orbital period shorter than one day and with the axial rotation of the helium presupernova synchronous with the orbital rotation evolves into a Kerr black hole, whose formation is likely to be accompanied by a gamma-ray burst with a duration longer than two seconds. In particular, we consider close binaries in which the second supernova results in the formation of a neutron star that remains in the binary. The theoretical distribution of orbital periods and eccentricities for such systems is consistent with that observed for radio pulsars in the Galactic disk in binaries with compact components and orbital eccentricities exceeding ~0.09, providing an explanation for the observed correlation between the orbital eccentricities and orbital periods for these systems.  相似文献   

16.
A dynamical estimate of the mass of the black hole in the LMC X-1 binary system is obtained in the framework of a Roche model for the optical star, based on fitting of the He I 4471 Å and He II 4200 Å absorption lines assuming LTE. The mass of the black hole derived from the radial-velocity curve for the He II 4200 Å line is mx = 10.55 M, close to the value found earlier based on a model with two point bodies [1].  相似文献   

17.
The evolution of Population I stars with initial masses 60 M M ZAMS ≤ 120 M is computed up to the Wolf-Rayet stage, when the central helium abundance decreases to Y c ≈ 0.05. Several models from evolutionary sequences in the core helium-burning stage were used as initial conditions when solving the equations of radiative hydrodynamics for self-exciting stellar radial pulsations. The low-density envelope surrounding the compact core during the core helium burning is unstable against radial oscillations in a wide range of effective temperatures extending to T eff ~ 105 K. The e-folding time of the amplitude growth is comparable to the dynamical time scale of the star, and, when the instability ceases growing, the radial displacement of the outer layers is comparable to the stellar radius. Evolutionary changes of the stellar radius and luminosity are accompanied by a decrease in the amplitude of radial pulsations, but, at the effective temperature T eff ≈ 105 K, the stellar oscillations are still nonlinear, with a maximum expansion velocity of the outer layers of about one-third the local escape velocity. The period of the radial oscillations decreases from 9 hr to 4 min as stellar mass decreases from M = 28 M to M = 6 M in the course of evolution. The nonlinear oscillations lead to a substantial increase of the radii of the Lagrangian mass zones compared to their equilibrium radii throughout the instability region. The instability of Wolf-Rayet stars against radial oscillations is due to the action of the κ mechanism in the iron-group ionization zone, which has a temperature of T ~ 2 × 105 K.  相似文献   

18.
Five regions of massive-star formation have been observed in various molecular lines in the frequency range~85?89 GHz. The studied regions comprise dense cores, which host young stellar objects. The physical parameters of the cores are estimated, including the kinetic temperatures (~20?40 K), the sizes of the emitting regions (~0.1?0.6 pc), and the virial masses (~40?500 M). The column densities and abundances of various molecules are calculated assuming Local Thermodynamical Equilibrium(LTE). The core in 99.982+4.17, which is associated with the weakest IRAS source, is characterized by reduced molecular abundances. The molecular line widths decrease with increasing distance from the core centers (b). For b ? 0.1 pc, the dependences ΔV (b) are close to power laws (∝b?p), where p varies from ~0.2 to ~0.5, depending on the object. In four cores, the asymmetries of the optically thick HCN(1–0) and HCO+(1–0) lines indicates systematicmotions along the line of sight: collapse in two cores and expansion in two others. Approximate estimates of the accretion rates in the collapsing cores indicate that the forming stars have masses exceeding the solar mass.  相似文献   

19.
The paper analyzes the mass distribution of stellar black holes derived from the light and radial-velocity curves of optical stars in close binary systems using dynamical methods. The systematic errors inherent in this approach are discussed. These are associated primarily with uncertainties in models for the contribution from gaseous structures to the optical brightness of the systems under consideration. The mass distribution is nearly flat in the range 4–15M . This is compared with the mass distribution for black holes in massive close binaries, which can be manifest as ultrabright X-ray sources (L x >1039 erg/s) observed in other galaxies. If the X-ray luminosities of these objects correspond to the Eddington limit, the black-hole mass distribution should be described by a power law, which is incompatible with the flat shape derived dynamically from observations of close binaries in our Galaxy. One possible explanation of this discrepancy is the rapid evaporation of stellar-mass black holes predicted in recent multi-dimensional models of gravity. This hypothesis can be verified by refining the stellar black-hole mass spectrum or finding isolated or binary black holes with masses below ~3M .  相似文献   

20.
We analyze models for quasi-stationary, ultraluminous X-ray sources (ULXs) with luminosities 1038–1040 erg/s exceeding the Eddington limit for a ~1.4M neutron star. With the exception of relatively rare stationary ULXs that are associated with supernova remnants or background quasars, most ULXs are close binary systems containing a massive stellar black hole (BH) that accretes matter donated by a stellar companion. To explain the observed luminosities of ~1040 erg/s, the mass of the BH must be ~40M if the accreted matter is helium and ~60M if the accreted matter has the solar chemical composition. We consider donors in the form of main-sequence stars, red giants, red supergiants, degenerate helium dwarfs, heavy disks that are the remnants of disrupted degenerate dwarfs, helium nondegenerate stars, and Wolf-Rayet stars. The most common ULXs in galaxies with active star formation are BHs with Roche-lobe-filling main-sequence companions with masses ~7M or close Wolf-Rayet companions, which support the required mass-exchange rate via their strong stellar winds. The most probable candidate ULXs in old galaxies are BHs surrounded by massive disks and close binaries containing a BH and degenerate helium-dwarf, red-giant, or red-supergiant donor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号