首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface distribution (0–100 m) of zooplankton biomass and specific aminoacyl-tRNA synthetases (AARS) activity, as a proxy of structural growth, were assessed during winter 2002 and spring 2004 in the Labrador Sea. Two fronts formed by strong boundary currents, several anticyclonic eddies and a cyclonic eddy were studied. The spatial contrasts observed in seawater temperature, salinity and fluorescence, associated with those mesoscale structures, affected the distributions of both zooplankton biomass and specific AARS activity, particularly those of the smaller individuals. Production rates of large organisms (200–1000 μm) were significantly related to microzooplankton biomass (63–200 μm), suggesting a cascade effect from hydrography through microzooplankton to large zooplankton. Water masses defined the biomass distribution of the three dominant species: Calanus glacialis was restricted to cold waters on the shelves while Calanus hyperboreus and Calanus finmarchicus were widespread from Canada to Greenland. Zooplankton production was up to ten-fold higher inside anticyclonic eddies than in the surrounding waters. The recent warming tendency observed in the Labrador Sea will likely generate weaker convection and less energetic mesoscale eddies. This may lead to a decrease in zooplankton growth and production in the Labrador basin.  相似文献   

2.
Mesozooplankton composition and distribution were investigated by Juday net hauls in the Pechora Sea (south-eastern Barents Sea) in July 2001. A total of 66 taxa were identified. The total mesozooplankton abundance varied between 2416 ind m−2 in the northern part and 1458?935 ind m−2 in the south. The biomass ranged between 81 and 19?078 mg DW m−2. Three groups differed greatly in composition, abundance and biomass as delineated by cluster analysis. Copepod species Calanus finmarchicus, Pseudocalanus species and Limnocalanus macrurus dominated in terms of the total biomass within each single cluster. There were significant Spearman rank correlations between mesozooplankton abundance and oceanographic variables, and phytoplankton concentration. Salinity was the main factor affecting the mesozooplankton distribution in the coastal waters, while temperature had greater influence on the abundance and biomass in the central and northern parts. The mean mesozooplankton biomass in the region was higher in comparison with some previous investigations probably due to higher water temperature in summer 2001.  相似文献   

3.
The role of mesozooplankton as consumers and transformers of primary and secondary production in the Beaufort and Chukchi Seas was examined during four cruises in spring and summer of both 2002 and 2004 as part of the western Arctic Shelf–Basin Interactions (SBI) program. Forty-seven grazing experiments using dominant mesozooplankton species and life stages were conducted at locations across the shelf, slope, and basin of the Chukchi and Beaufort Seas to measure feeding rates on both chlorophyll and microzooplankton and to determine mesozooplankton prey preferences.Mesozooplankton biomass was at all times dominated by life stages of four copepod taxa: Calanus glacialis, Calanus hyperboreus, Metridia longa, and Pseudocalanus spp. Significant interannual, seasonal, regional, between species and within species differences in grazing rates were observed. Overall, the dominant zooplankton exhibited typical feeding behavior in response to chlorophyll concentration that could be modeled using species and life-stage specific Ivlev functions. Microzooplankton were preferred prey at almost all times, with the strength of the preference positively related to the proportion of microzooplankton prey availability. Average mesozooplankton grazing impacts on both chlorophyll standing stock (0.6±0.5% d−1 in spring, 5.1±6.3% d−1 in summer) and primary production (12.8±11.8% d−1 in spring, 27.6±24.5% d−1 in summer) were quite low and varied between shelf, slope, and basin. Coincident microzooplankton grazing experiments [Sherr, E.B., Sherr, B.F., Hartz, A.J., 2009. Microzooplankton grazing impact in the Western Arctic Ocean. Deep-Sea Research II] were conducted at most stations. Together, microzooplankton–mesozooplankton grazing consumed only 44% of the total water-column primary production, leaving more than half directly available for local export to the benthos or for offshore transport into the adjacent basin.  相似文献   

4.
The distribution and demography of Calanus finmarchicus, C. glacialis and C. hyperboreus were studied throughout their growth season on a basin scale in the Norwegian Sea using ordination techniques and generalized additive models. The distribution and demographic data were related to the seasonal development of the phytoplankton bloom and physical characteristics of water masses. The resulting quantified relationships were related to knowledge on life cycle and adaptations of Calanus species. C. finmarchicus was the numerically dominant Calanus species in Coastal, Atlantic and Arctic waters, showing strong association with both Atlantic and Arctic waters. C. hyperboreus and C. glacialis were associated with Arctic water; however, C. glacialis was occasionally observed in the Norwegian Sea and is probably an expatriate advected into the area from various origins. Demography indicated one generation per year of C. finmarchicus, a two-year life cycle of C. hyperboreus, and both one- and two-year life cycles for C. glacialis in the water masses where they were most abundant. For the examined Calanus species, young copepodites of the new generation seemed to be tuned to the phytoplankton bloom in their main water mass. The development of C. finmarchicus was delayed in Arctic water, and mis-match between feeding stages and the phytoplankton bloom may reduce survival and reproductive success of C. finmarchicus in Arctic water. Based on low abundances of C. hyperboreus CI–III in Atlantic water and main recruitment to CI prior to the phytoplankton bloom, we suggest that reproduction of C. hyperboreus in Atlantic water is not successful.  相似文献   

5.
Only a few historical assessments of the zooplankton biomass in the Arctic Ocean exist are difficult to compare due to methodological differences including incomplete sampling of the water column. We present assessments of the zooplankton biomass for 66 locations scattered over the Eurasian and Makarov Basins of the Arctic Ocean and analyze regional variability and factors affecting the biomass distribution. The study is based on material from several summer expeditions of RV Polarstern (1993–1998) that was collected and processed using consistent methods, i.e. stratified sampling of the entire water column from the bottom to the surface with very similar gear and standardized calculation of biomass. Total zooplankton biomass varied strongly from 1.9 to 23.9 g DW m−2 dry mass. Regional variability was mainly related to the circulation pattern, but local food availability was also important. A belt of elevated biomass along the Eurasian continental margin was associated with the advection of Atlantic pelagic populations within the Arctic Ocean Boundary Current along the Siberian shelves and returning branches along mid-ocean ridges. Biomass was highest in the core of the Atlantic inflow and remained rather stable along the continental margins, but species composition changed, pointing to different adaptation levels to local conditions by advected species. Biomass gradually decreased towards the shelves and basins and was lowest in the centers of the basins north of 85°N. In the slope region, three Calanus species (C. hyperboreus, C. glacialis, C. finmarchicus) and Metridia longa contributed most to the biomass, chaetognaths (Eukrohnia hamata) were also important. In the basins, C. hyperboreus was dominant, copepods made up to 97% of total biomass. Vertical distribution was similar at all stations with biomass maxima in the upper 50 m layer except for stations near Fram Strait and northern Kara Sea, the gateways of Atlantic water to the Arctic Ocean, where maxima where between 25 and 100 m. As there was only very little interannual variability of temperature and current velocity in the regions of the Atlantic inflow we suggest that the majority of our samples, collected in 1993 and 1995, represents the phase of the 1990s warm event in the Nordic Seas.  相似文献   

6.
We estimated primary and bacterial production, mineral nutrients, suspended chlorophyll a (Chl), particulate organic carbon (POC) and nitrogen (PON), abundance of planktonic organisms, mesozooplankton fecal pellet production, and the vertical flux of organic particles of the central Arctic Ocean (Amundsen basin, 89-88° N) during a 3 week quasi-Lagrangian ice drift experiment at the peak of the productive season (August 2001). A visual estimate of ≈15% ice-free surface, plus numerous melt ponds on ice sheets, supported a planktonic particulate primary production of 50-150 mg C m−2 d−1 (mean 93 mg C m−2 d−1, n = 7), mostly confined to the upper 10 m of the nutrient replete water column. The surface mixed layer was separated from the rest of the water column by a strong halocline at 20 m depth. Phototrophic biomass was low, generally 0.03-0.3 mg Chl m−3 in the upper 20 m and <0.02 mg Chl m−3 below, dominated by various flagellates, dinoflagellates and diatoms. Bacterial abundance (typically 3.7-5.3 × 105, mean 4.1 × 105 cells ml−1 in the upper 20 m and 1.3-3.7 × 105, mean 1.9 × 105 cells ml−1 below) and Chl concentrations were closely correlated (r = 0.75). Mineral nutrients (3 μmol NO3 l−1, 0.45 μmol PO4 l−1, 4-5 μmol SiO4 l−1) were probably not limiting the primary production in the upper layer. Suspended POC concentration was ∼30-105 (mean 53) mg C m−3 and PON ∼5.4-14.9 (mean 8.2) mg N m−3 with no clear vertical trend. The vertical flux of POC in the upper 30-100 m water column was ∼37-92 (mean 55) mg C m−2 d−1 without clear decrease with depth, and was quite similar at the six investigated stations. The mesozooplankton biomass (≈2 g DW m−2, mostly in the upper 50 m water column) was dominated by adult females of the large calanoid copepods Calanus hyperboreus and Calanus glacialis (≈1.6 g DW m−2). The grazing of these copepods (estimated via fecal pellet production rates) was ≈15 mg C m−2 d−1, being on the order of 3% and 20% of the expected food-saturated ingestion rates of C. hyperboreus and C. glacialis, respectively. The stage structure of these copepods, dominated by adult females, and their unsatisfied grazing capacity during peak productive period suggest allochthonous origin of these species from productive shelf areas, supported by their long life span and the prevailing surface currents in the Arctic Ocean. We propose that the grazing capacity of the expatriated mesozooplankton population would match the potential seasonal increase of primary production in the future decreased ice perspective, diminishing the likelihood of algal blooms.  相似文献   

7.
The biomass, species and chemical composition of the mesozooplankton and their impact on lower food levels were estimated along a transect across the Arctic Ocean. Mesozooplankton biomass in the upper 200 m of the water column was significantly higher (19–42 mg DW m-3) than has previously been reported for the Arctic Ocean, and it reached a maximum at ca. 87°N in the Amundsen Basin. The lowest values were recorded in the Chukchi Sea and Nansen Basin, where ice cover was lower (50–80%) than in the central Arctic Ocean. In the deeper strata (200–500 m) of the Canadian and Eurasian Basins, the biomass was always much lower (4.35–16.44 mg DW m-3). The C/N (g/g) ratio for the mesozooplankton population was high (6.5–8.5) but within the documented range. These high values (when compared to 4.5 at lower latitudes) may be explained by the high lipid content. Mesozooplankton accounted for approximately 40% of the total particulate organic carbon in the upper 100 m of the water column. Mesozooplankton species composition was homogeneous along the transect, consisting mainly of copepods (70–90% of the total number). It was dominated by four large copepod species (Calanus hyperboreus, C. glacialis, C. finmarchicus and Metridia longa), which together accounted for more than 80% of the total biomass. According to measurements of gut pigment and gut turnover rates, the mesozooplankton on average ingested between 6 and 30% of their body carbon per day as phytoplankton. Microzooplankton may have provided an additional source of energy for the mesozooplankton community. These data emphasize the importance of mesozooplankton in the arctic food web and reinforce the idea that the Arctic Ocean should no longer be considered to be a “biological desert”.  相似文献   

8.
Morphological studies of the females of Calanus finmarchicus, C. glacialis, and C. hyperboreus were performed for specimens sampled in different areas of the Greenland, Barents, Kara, and Laptev seas. Intraspecific variability was found for the ratio of the specimens characterized by different types of setae patterns on the endopodites of C. glacialis and C. finmarchicus. The variability of this parameter did not relate to the environmental peculiarities of the sampling sites and did not depend on the temperature regime. We assume that such differences may be the result of the hybridization of C. glacialis and C. finmarchicus due to the similarity of their reproduction systems and the overlapping of the body size ranges.  相似文献   

9.
We report on the variation in energy reserves of individual C5 copepodites of Calanus finmarchicus from the Newfoundland continental shelf and the Labrador Sea collected from surface and overwintering (or bottom) depths prior to, during and after the expected timing of the onset of diapause. Overall, the trend was for a decreasing average prosome length as the year progressed for all locations although the decline was smallest in the Labrador Sea and greatest in the deep waters of the continental shelf. The size of the oil sac was closely linked to the weight of the copepodite but the form of this relationship showed substantial variations with depth and season. We show a clear increase in the relative oil sac volume for C. finmarchicus between late spring and late summer, by which time some animals had descended to diapause depths. The progressive decrease in oil sac volume of animals sampled at depth in the Labrador Sea between September and December suggests a significant loss of energy reserves during diapause. From the distribution of volumes and body sizes in December we estimate that 23–53% of individuals would not be able to meet the energetic cost of moulting and early gonad development. Overall, some of our observations appear to invalidate earlier hypotheses concerning the governing role of lipids in the life history of C. finmarchicus. However, assessment of the factors that influence entry into dormancy should be based on the relative probabilities of alternative strategies for successful reproduction (e.g. entering dormancy vs. continuing into a second generation).  相似文献   

10.
Continuous Plankton Recorder (CPR) sampling on the Newfoundland and Scotian shelves covers three multi-year periods characterised by negative (1962–1971), positive (1992–2000) and negative/neutral (2001–2003) values of the NAO index. Water temperatures respond differently to changes in the NAO in different regions: a positive NAO index tends to lead to reduced temperatures on the Newfoundland shelf and to increased temperatures on the central/western Scotian shelf, and a negative NAO index to the reverse. Since the 1960s, the hydrographic changes due to the NAO have been superimposed on a freshening of the water column throughout the region, which is attributed to increased contribution of Arctic water outflow. Changes in plankton abundance measured by the CPR for the three time periods were generally, but not always, similar on the Newfoundland and eastern and western regions of the Scotian shelf, although Arctic species (e.g. Calanus glacialis, Calanus hyperboreus) were notably more abundant and warm water species (e.g. Metridia lucens, euphausiids) less abundant on the Newfoundland shelf than on the Scotian shelf. Three categories of phytoplankton (colour, diatoms, dinoflagellates) increased in abundance in the 1990s, and these increases generally persisted into 2001–2003. This is believed to be a response to the persistent freshening of the water column, probably due to increased stratification. The Arctic species C. glacialis and C. hyperboreus also showed persistent increases in abundance after 1992, perhaps due to increased transport from the Arctic, although the abundance of the Arctic slope water species Metridia longa decreased. Two groups, Calanus 1–4 and euphausiids, both thought to play important roles in the food chain, showed persistent decreases in abundance after 1992, especially on the Newfoundland shelf. In all regions, Calanus finmarchicus 5–6, Oithona spp. and Centropages hamatus abundance changed in association with variations in the NAO, although no common mechanism could be identified. C. finmarchicus 5–6 abundance decreased in the 1990s and increased after 2001, while the other two species showed the opposite pattern. Centropages typicus and M. lucens abundance on the Scotian shelf increased with rising temperature. This is attributed to increased production rates for the former and an increased influx of warm, M. lucens-rich, slope water on to the shelf for the latter. A comparison between ring net and CPR sampling on the Newfoundland shelf suggests that the Calanus 1–4 category is dominated by C. finmarchicus and that late stage C. glacialis and C. hyperboreus are grossly under-sampled compared to late stage C. finmarchicus.  相似文献   

11.
Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C. finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (>500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving G0 stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year.We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of G0 ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C. finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea.  相似文献   

12.
The distribution of Calanus finmarchicus was studied on a transect across the central Greenland Sea, and on five transects from the Eurasian shelves across the Atlantic Inflow in the Arctic Ocean. Stage composition was used as an indicator for successful growth; gonad maturity and egg production were taken as indicators for reproductive activity. On the Arctic Ocean transects, these parameters were measured simultaneously from the sibling species Calanus glacialis. Response of egg production rate to different temperatures at optimal food conditions was very similar between both species in the laboratory. C. finmarchicus was present at all stations studied, but young developmental stages were only present close to the regions of submergence of Atlantic water under the Polar water. This together with a decreasing abundance and biomass from west to east along the Atlantic Inflow in the Arctic Ocean and reproductive failure indicates that C. finmarchicus is expatriated in the Arctic Ocean. We hypothesize that the late availability of food in the Arctic Ocean, rather than low temperature per se, limits reproductive success. Better reproductive success in the very low temperature regions of the Return Atlantic Current and the marginal ice zone in the Greenland Sea supports this hypothesis. The possibility for a replacement of C. glacialis by C. finmarchicus and consequences for the ecosystem after increasing warming of the Arctic are discussed.  相似文献   

13.
The plankton community composition comprising heterotrophic bacteria, pro-/eukaryotes, heterotrophic nanoflagellates, microzooplankton and mesozooplankton was assessed during the spring bloom and at non-bloom stations in the English Channel and Celtic Sea between 6 and 12 April 2002. Non-bloom sites were characterised by a dominance of pro-/eukaryotic phytoplankton <20 μm, higher abundance of heterotrophic nanoflagellates, microzooplankton standing stocks ranging between 60 and 380 mg C m−2, lower mesozooplankton diversity and copepod abundance of between 760 and 2600 ind m−3. Within the bloom, the phytoplankton community was typically dominated by larger cells with low abundance of pro-/eukaryotes. Heterotrophic nanoflagellate cell bio-volume decreased leading to a reduction in biomass whereas microzooplankton biomass increased (360–1500 mg C m−2) due to an increase in cell bio-volume and copepod abundance ranged between 1400 and 3800 ind m−3. Mesozooplankton diversity increased with an increase in productivity. Relationships between the plankton community and environmental data were examined using multivariate statistics and these highlighted significant differences in the abiotic variables, the pro-/eukaryotic phytoplankton communities, heterotrophic nanoflagellate, microzooplankton and total zooplankton communities between the bloom and non-bloom sites. The variables which best described variation in the microzooplankton community were temperature and silicate. The spatial variation in zooplankton diversity was best explained by temperature. This study provides an insight into the changes that occur between trophic levels within the plankton in response to the spring bloom in this area.  相似文献   

14.
Understanding the physical and biogeochemical processes that control the exchange of biogenic carbon within and between the arctic shelves, slopes, and deep basins is a key objective of the Western Arctic Shelf-Basin Interaction program (SBI). Here, egg production (EP) of the dominant copepod Calanus glacialis/marshallae was used as an indicator of food limitation for the mesozooplankton community in the Chukchi and Beaufort Seas in spring and summer, 2002. Both C. glacialis and C. marshallae may occur in this region but the two cannot easily be differentiated visually. Four oceanographic regions were objectively identified that roughly corresponded to the different pathways in circulation of nutrient-rich Pacific water. A ‘transition’ region characterized by ‘older’ Pacific water was located at the shelfbreak and separated the nutrient-rich shelf water and the low-nutrient waters of the deep basin. The observed spatial pattern in EP in C. glacialis/marshallae in spring and summer resulted both from the different water mass environments and from the reproductive cycle of the species. EP was greater on the shelf than in the basin, corresponding to differences in body size and nitrogen condition factor (NCF) in females, while the egg viability was generally high throughout the study area. EP showed no relationship with low-chlorophyll a biomass under heavy ice-cover in spring, while a significant relationship was observed in the more open water in summer. Adult female carbon condition factor (CCF) was much higher in summer, reflecting the accumulation of lipids during the growth season. Small animals with a markedly greater NCF dominated on the shelf. The shelfbreak region contained a mixture of females from the shelf and the basin with intermediate sizes, conditions, and EP rates. The occurrence of water typical of the ‘transition’ shelfbreak region and elevated EP in C. glacialis/marshallae offshore on the Barrow Canyon and East Barrow sections indicated offshore transport of productive shelf water and the associated plankton community. The input of nutrient-rich Pacific water and accompanying elevated production to the northern Chukchi Sea and the Chukchi-Beaufort shelfbreak region may contribute to the reproductive success of C. glacialis/marshallae in this region.  相似文献   

15.
在北冰洋的高纬度海区,陆坡—海盆之间的交换对极北哲水蚤(Calanus hyperboreus)的种群补充具有非常重要的意义。为了研究极北哲水蚤在西北冰洋种群补充的地理差异,我们利用2003年夏季所采集的样品,分析了该物种的丰度、种群结构和体长分布。从总丰度的地理分布来看,极北哲水蚤主要分布在楚科奇海与楚科奇深海平原之间的陆坡区(CS-slope),而在水深较浅的楚科奇海并没有记录。在CS-slope区域,极北哲水蚤的总丰度在1 110.0—5 815.0个/m3之间,而其他海区的总丰度在40.0—950.0个/m3之间。从不同的发育期分布上来看,早期幼体(CI-CIV)在CS-slope区域占优势,而CV期幼体和成体在深水海盆区占优势。从体长的地理分布上来看,差异最为明显的是CⅢ期幼体,其在CS-slope区域的前体长在2.48—2.61 mm之间,而在其他海区的前体长在2.16—2.37 mm之间。与环境因子相关性的分析结果显示,早期幼体(CI-CIV)的丰度与叶绿素a的浓度呈正相关关系,而CV期幼体和成体却与叶绿素a的浓度呈负相关关系。我们的结果表明,极北哲水蚤可以通过加快第一个生长季节的发育速度而受益于初级生产力的增加,并且高生产力的CS-slope区域是陆坡-海盆之间种群补充的潜在来源。  相似文献   

16.
Microzooplankton grazing impact on phytoplankton was assessed using the Landry–Hassett dilution technique in the Western Arctic Ocean during spring and summer 2002 and 2004. Forty experiments were completed in a region encompassing productive shelf regions of the Chukchi Sea, mesotrophic slope regions of the Beaufort Sea off the North Slope of Alaska, and oligotrophic deep-water sites in the Canada Basin. A variety of conditions were encountered, from heavy sea-ice cover during both spring cruises, moderate sea-ice cover during summer of 2002, and light to no sea ice during summer of 2004, with a concomitant range of trophic conditions, from low chlorophyll-a (Chl-a; <0.5 μg L−1) during heavy ice cover in spring and in the open basin, to late spring and summer shelf and slope open-water diatom blooms with Chl-a >5 μg L−1. The microzooplankton community was dominated by large naked ciliates and heterotrophic gymnodinoid dinoflagellates. Significant, but low, rates of microzooplankton herbivory were found in half of the experiments. The maximum grazing rate was 0.16 d−1 and average grazing rate, including experiments with no significant grazing, was 0.04±0.06 d−1. Phytoplankton intrinsic growth rates varied from the highest values of about 0.4 d−1 to the lowest values of zero to slightly negative growth, on average 0.16±0.15 d−1. Light limitation in spring and post-bloom senescence during summer were likely explanations of observed low phytoplankton growth rates. Microzooplankton grazing consumed 0–120% (average 22±26%) of phytoplankton daily growth. Grazing and growth rates found in this study were low compared to rates reported in another Arctic system, the Barents Sea, and in major geographic regions of the world ocean.  相似文献   

17.
On a transect across the Lomonosov Ridge stratified zooplankton tows were made to the bottom at seven stations. A species inventory was established and compared with earlier observations in the Arctic Ocean. Differences between the Amundsen and Makarov basins are relatively small and correspond well with the general circulation patterns for Atlantic, Pacific, and neritic waters, suggesting slow mixing rates for the different basins. There were no remarkable differences in the species composition or their vertical distribution between the two sides of the Lomonosov Ridge. This indicates effective faunistic exchange across the ridge, although several bathy-pelagic species were almost or completely absent on top of the Ridge. Biomass showed a strong gradient along the transect, with a pronounced peak (9.5 g dry weight m−2) in the core of Atlantic water over the ridge, and minima over the deep basins. These differences were related to the effect of bottom topography for deep-living species, and the dynamics of the Atlantic layer for the meso- and epipelagic species. The maximum was formed mainly by the copepods Calanus hyperboreus and Metridia longa together with chaetognaths and ostracods. The presence of young developmental stages in some of the abundant species (C. hyperboreus, M. longa) suggests successful reproduction at all stations but C. finmarchicus was almost exclusively represented as old stages and adults. Comparison with earlier data on abundance and biomass from the Canada Basin (Russian Drift station “North Pole-22”) shows a pronounced difference with respect to both absolute quantities and relative composition. The copepod C. finmarchicus is completely absent in the central Canada Basin, and the portion of non-copepod zooplankton is dramatically decreased. This points to a reduced advection of Atlantic water or more severe food conditions in this basin.  相似文献   

18.
Changes in the air–sea freshwater flux (equivalently Precipitation minus Evaporation, P − E) over the interior of the Labrador Sea have been examined using the NCEP/NCAR and ERA40 reanalyses. A major increase in the net precipitation, equivalent to 9 cm yr−1, is observed in the mid-1970s, consistent with a recent study that reported a similar change in the eastern sub-polar gyre. The increase in the Labrador Sea is primarily driven by changes in the P component which occur in spring (and to a lesser extent summer). The seasonality of the change is markedly different to that found for the eastern gyre which had a strong winter increase in precipitation. Potential links between the Labrador Sea P − E increase and the NAO and other leading modes of atmospheric variability have been explored, but it has been found that the increase is not driven by long-term trends in these modes. The magnitudes of the increase in freshwater content for a range of depths (500, 1000, 1500, 2000 m) in the Labrador Sea are then calculated. Finally, it is suggested that the P − E increase must have played some role in causing the observed freshening of the Labrador Sea and the wider North Atlantic sub-polar gyre region in recent decades, although the exact impact can not be quantified.  相似文献   

19.
In the spring and summer of 2002 primary production in the Chukchi Sea was measured, using 14C uptake experiments. Our cruise track encompassed the shelf and continental slope area of the Chukchi and Beaufort Seas progressing into deep water over the Canada Basin. The study area experienced upwards of 90% ice cover during the spring, with ice retreating into the basin during the summer. Production in the spring was light-limited due to ice cover, with average euphotic zone production rates of <0.3 g C m−2 d−1. Values of 8 g C m−2 d−1 were observed in association with surface bloom conditions during the initial ice breakup. Considerable nutrient reduction in the surface waters took place between the spring and summer cruise, and although not observed, this was attributed to a spring bloom. Decreased ice cover and increased clarity of surface waters in the summer allowed greater light penetration. The highest rates of production during the second cruise were found at 25–30 m, coincident with the top of the nutricline. Daily euphotic zone productivity in the summer averaged 0.78 g C m−2 d−1 on the shelf and 0.32 g C m−2 d−1 on the edge of the Canada basin. These data provide an estimated annual production of 90 g C m−2 yr−1 in the study area.  相似文献   

20.
Pteropods in Southern Ocean ecosystems   总被引:1,自引:0,他引:1  
To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group.Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m−3 (max = 800 ind m−3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m−3 (max = 2681 ind m−3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m−3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed <5% to total zooplankton in the Lazarev Sea, but 15% (max = 93%) to macrozooplankton in the East Antarctic. In addition to regional density distributions we have synthesized data on vertical distributions, seasonal cycles, and inter-annual density variation.Trophically, gymnosome are specialist predators on thecosomes, while thecosomes are considered predominantly herbivorous, capturing food with a mucous web. The ingestion rates of L. retroversa australis are in the upper range for sub-Antarctic mesozooplankton (31.2-4196.9 ng pig ind−1 d−1), while those of L. helicina antarctica and C. pyramidata are in the upper range for all Southern Ocean zooplankton, in the latter species reaching 27,757 ng pig ind−1 d−1 and >40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes.Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also contribute significantly to organic carbon flux through the production of fast sinking faecal pellets and mucous flocs, and rapid sinking of dead animals ballasted by their aragonite shells. Quantification of these contributions requires data on mucous web production rates, egestion rates, assimilation efficiencies, metabolic rates, and faecal pellet morphology for application to sediment trap studies.Based on the available data, pteropods are regionally significant components of the Southern Ocean pelagic ecosystem. However, there is an urgent need for focused research on this group in order to quantify how a decline in pteropod densities may impact on Southern Ocean ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号