首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reliability of inversion of apparent resistivity pseudosection data to determine accurately the true resistivity distribution over 2D structures has been investigated, using a common inversion scheme based on a smoothness‐constrained non‐linear least‐squares optimization, for the Wenner array. This involved calculation of synthetic apparent resistivity pseudosection data, which were then inverted and the model estimated from the inversion was compared with the original 2D model. The models examined include (i) horizontal layering, (ii) a vertical fault, (iii) a low‐resistivity fill within a high‐resistivity basement, and (iv) an upfaulted basement block beneath a conductive overburden. Over vertical structures, the resistivity models obtained from inversion are usually much sharper than the measured data. However, the inverted resistivities can be smaller than the lowest, or greater than the highest, true model resistivity. The substantial reduction generally recorded in the data misfit during the least‐squares inversion of 2D apparent resistivity data is not always accompanied by any noticeable reduction in the model misfit. Conversely, the model misfit may, for all practical purposes, remain invariant for successive iterations. It can also increase with the iteration number, especially where the resistivity contrast at the bedrock interface exceeds a factor of about 10; in such instances, the optimum model estimated from inversion is attained at a very low iteration number. The largest model misfit is encountered in the zone adjacent to a contact where there is a large change in the resistivity contrast. It is concluded that smooth inversion can provide only an approximate guide to the true geometry and true formation resistivity.  相似文献   

2.
In this paper, we discuss the effects of anomalous out‐of‐plane bodies in two‐dimensional (2D) borehole‐to‐surface electrical resistivity tomography with numerical resistivity modelling and synthetic inversion tests. The results of the two groups of synthetic resistivity model tests illustrate that anomalous bodies out of the plane of interest have an effect on two‐dimensional inversion and that the degree of influence of out‐of‐plane body on inverted images varies. The different influences are derived from two cases. One case is different resistivity models with the same electrode array, and the other case is the same resistivity model with different electrode arrays. Qualitative interpretation based on the inversion tests shows that we cannot find a reasonable electrode array to determine the best inverse solution and reveal the subsurface resistivity distribution for all types of geoelectrical models. Because of the three‐dimensional effect arising from neighbouring anomalous bodies, the qualitative interpretation of inverted images from the two‐dimensional inversion of electrical resistivity tomography data without prior information can be misleading. Two‐dimensional inversion with drilling data can decrease the three‐dimensional effect. We employed two‐ and three‐dimensional borehole‐to‐surface electrical resistivity tomography methods with a pole–pole array and a bipole–bipole array for mineral exploration at Abag Banner and Hexigten Banner in Inner Mongolia, China. Different inverse schemes were carried out for different cases. The subsurface resistivity distribution obtained from the two‐dimensional inversion of the field electrical resistivity tomography data with sufficient prior information, such as drilling data and other non‐electrical data, can better describe the actual geological situation. When there is not enough prior information to carry out constrained two‐dimensional inversion, the three‐dimensional electrical resistivity tomography survey is the better choice.  相似文献   

3.
Introduction The research on the structure and physical property of ancient hidden hill, igneous rocks and basement is relatively difficult by using seismic data only. If we combine seismic data, magneto-telluric (MT) data and geophysical data together, better results can be obtained for the above problem. A number of geophysicists at home and abroad, such as CHEN and WANG (1990), Siri-punvarapor and Egbert (2000) have tried many methods to solve the problem by the inversion of seismic da…  相似文献   

4.
Airborne electromagnetic (AEM) surveys are currently being flown over populated areas and applied to detailed problems using high flight line densities. Interpretation information is supplied through a model of the subsurface resistivity distribution. Theoretical and survey data are used here to study the character and reliability of such models. Although the survey data were obtained using a fixed-wing system, the corresponding associations with helicopter, towed-bird systems are discussed. Both Fraser half-space and 1D inversion techniques are considered in relation to their ability to distinguish geological, cultural and environmental influences on the survey data. Fraser half-space modelling provides the dual interpretation parameters of apparent resistivity and apparent depth at each operational frequency. The apparent resistivity was found to be a remarkably stable parameter and appears robust to the presence of a variety of at-surface cultural features. Such features provide both incorrect altitude data and multidimensional influences. Their influences are observed most strongly in the joint estimate of apparent depth and this accounts for the stability of the apparent resistivity. Positive apparent depths, in the example data, result from underestimated altitude measurements. It is demonstrated that increasingly negative apparent depths are associated with increasing misfits between a 1D model and the data. Centroid depth calculations, which are a transform of the Fraser half-space parameters, provide an example of the detection of non-1D influences on data obtained above a populated area. 1D inversion of both theoretical and survey data is examined. The simplest use of the 1D inversion method is in providing an estimate of a half-space resistivity. This can be undertaken prior to multilayer inversion as an initial assessment. Underestimated altitude measurements also enter the problem and, in keeping with the Fraser pseudo-layer concept, an at-surface highly resistive layer of variable thickness can be usefully introduced as a constrained parameter. It is clearly difficult to ascribe levels of significance to a ‘measure’ of misfit contained in a negative apparent depth with the dimensions of metres. The reliability of 1D models is better assessed using a formal misfit parameter. With the misfit parameter in place, the example data suggest that the 1D inversion methods provide reliable apparent resistivity values with a higher resolution than the equivalent information from the Fraser half-space estimates.  相似文献   

5.
The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel–sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel–sand and clay–silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.  相似文献   

6.
Inversion of DC resistivity data using neural networks   总被引:9,自引:0,他引:9  
The inversion of geoelectrical resistivity data is a difficult task due to its non-linear nature. In this work, the neural network (NN) approach is studied to solve both 1D and 2D resistivity inverse problems. The efficiency of a widespread, supervised training network, the back-propagation technique and its applicability to the resistivity problem, is investigated. Several NN paradigms have been tried on a basis of trial-and-error for two types of data set. In the 1D problem, the batch back-propagation paradigm was efficient while another paradigm, called resilient propagation, was used in the 2D problem. The network was trained with synthetic examples and tested on another set of synthetic data as well as on the field data. The neural network gave a result highly correlated with that of conventional serial algorithms. It proved to be a fast, accurate and objective method for depth and resistivity estimation of both 1D and 2D DC resistivity data. The main advantage of using NN for resistivity inversion is that once the network has been trained it can perform the inversion of any vertical electrical sounding data set very rapidly.  相似文献   

7.
Within the framework of the National Marine Geological and Geophysical Program, we re‐examined deep vertical electrical sounding (VES) data. The data, measured in 1968 by the General Directorate of Mineral Research and Exploration (MTA) of Turkey with the aim of exploring the deep resistivity structure of the Dikili–Bergama region, focus on the geothermal potential. The geoelectrical resistivity survey was conducted using a Schlumberger array with a maximum electrode half‐spacing of 4.5 km. The two‐dimensional (2D) inversion was utilized to interpret the VES data that were collected along 15‐ to 30‐km profiles. The 2D resistivity–depth cross‐sections obtained show very low resistivity values near the Dikili and Kaynarca hot springs. The 2D inversion results also indicate the presence of fault zones striking nearly N–S and E–W, and fault‐bounded graben‐horst structures that show promising potential for geothermal field resources. The 2D gravity model, which is in good agreement with the density variation of the region, supports the resistivity structure revealed by 2D inversion. The lithology information obtained from the borehole near Kaynarca also confirms the results of the resistivity interpretation and the density model.  相似文献   

8.
A detailed magnetotelluric survey was conducted in 2013 in the Sehqanat oil field, southwestern Iran to map the geoelectrical structures of the sedimentary Zagros zone, particularly the boundary between the Gachsaran Formation acting as cap rock and the Asmari Formation as the reservoir. According to the electrical well logs, a large resistivity contrast exists between the two formations. The Gachsaran Formation is formed by tens to hundreds of metres of evaporites and it is highly conductive (ca. 1 Ωm–10 Ωm), and the Asmari Formation consists of dense carbonates, which are considerably more resistive (more than 100 Ωm). Broadband magnetotelluric data were collected along five southwest–northeast directed parallel lines with more than 600 stations crossing the main geological trend. Although dimensionality and strike analysis of the magnetotelluric transfer functions showed that overall they satisfied local 2D conditions, there were also strong 3D conditions found in some of the sites. Therefore, in order to obtain a more reliable image of the resistivity distribution in the Sehqanat oil field, in addition to standard 2D inversion, we investigated to what extent 3D inversion of the data was feasible and what improvements in the resistivity image could be obtained. The 2D inversion models using the determinant average of the impedance tensor depict the main resistivity structures well, whereas the estimated 3D model shows significantly more details although problems were encountered in fitting the data with the latter. Both approaches resolved the Gachsaran–Asmari transition from high conductivity to moderate conductivity. The well‐known Sehqanat anticline could also be delineated throughout the 2D and 3D resistivity models as a resistive dome‐shaped body in the middle parts of the magnetotelluric profiles.  相似文献   

9.
Two techniques have been presented for the delineation of boundaries from smooth models obtained by smooth inversion techniques of geoelectrical sounding data, such as straightforward inversion scheme, Occam’s and Zohdy’s methods. The smooth model consists of a large number of equally spaced layers, wherein the real geological boundaries are missing. The techniques proposed here suppress the geologically irrelevant boundaries and support the real structural boundaries present in the geoelectrical data. In the first technique, solution of linear inverse problem is improved iteratively through weighted minimum norm inverse, the weight being taken from the current solution. The technique is referred as Iterative Straightforward Inversion Scheme. The second method is analytical, based on the application of smoothing filter, referred in the literature as edge-preserving smoothing. A few examples of theoretical magnetotelluric, dc resistivity and field sounding data have been presented to demonstrate the capabilities of the techniques. The methodologies also reduce the conspicuous oscillations in the smooth solutions caused by the conversion of sharp boundaries to the smooth ones.  相似文献   

10.
SOTEM数据一维OCCAM反演及其应用于三维模型的效果   总被引:6,自引:0,他引:6       下载免费PDF全文
本文基于垂直磁场分量研究了SOTEM数据的一维OCCAM反演方法,并将其应用于理论三维数据及野外实测数据的反演.对于大部分一维模型,OCCAM反演可取得较好的反演效果,且反演结果不依赖于偏移距;噪声对SOTEM数据的OCCAM反演具有较大影响,但当信号含噪水平不超过5%时,反演结果仍具有较好的准确性;若浅层存在较厚的低阻层,OCCAM反演结果对下部地层的分辨能力下降,仅能获得具有平均效应的电阻率.将一维算法应用于SOTEM三维数据的反演,会产生较大的误差,尤其是在异常体边缘地带影响最为严重.该影响程度与异常体和背景电阻率之间的差异有关,对于大多数电性近似呈连续变化的真实大地而言,一维OCCAM反演算法仍可获得较好的效果.最后通过陕西某煤田深部富水性调查的实测SOTEM数据反演验证了本文的研究成果.  相似文献   

11.
地震各向异性是反映地球内部介质特性的重要指针之一。常用的横波分裂法和二维面波方位各向异性层析成像方法很难准确反映各向异性随深度的变化。将与周期相关的区域化面波方位各向异性转换成与深度相关的一维横波速度方位各向异性可以弥补深度信息不足的缺陷。现有三维横波速度各向异性研究多是通过两步方法来实现的,即逐个周期二维面波方位各向异性层析成像以及逐个格点一维横波速度方位各向异性反演。这种分步反演的方式既不利于三维先验约束的引入,也不利于利用原始观测拟合误差对三维模型进行直接评估。因此本文开发了基于面波频散曲线的三维横波速度方位各向异性层析成像方法,并编制了相关正演和反演程序。为了检测方法和程序的有效性,我们对规律分布的三维检测板模型进行了模拟测试。测试结果显示:该方法可以很好地恢复各向同性波速异常、各向异性相对强度和快波方向等三维结构信息;而且反演模型相对于参考模型明显改善了对观测数据的拟合,降低了对观测数据的均方根误差。但对各向同性理论模型进行各向异性反演时,在波速均匀区可产生小于0.5%的假各向异性幅值,在波速非均匀区该假的各向异性幅值会更大,浅部可达3.5%。因此在实际应用中需要谨慎解释(浅部)非均匀区的各向异性结果。   相似文献   

12.
Electrical resistivity mapping and electrical resistivity profiling are powerful instruments for investigating archaeological structures. Interpretation of geoelectrical data is complicated by near-surface anomalies and the characteristics of the applied electrode arrays. Averaging Wenner α and Wenner β data as an alternative method of focused imaging is presented to overcome these problems. The mechanism of focused imaging is explained using the sensitivity distribution of the combined arrays. Various methods of imaging geoelectrical data are examined with synthetic and field data. In electrical resistivity mapping, inversion of the data is unnecessary when using focused imaging. In electrical resistivity profiling, focused imaging gives a first idea about the subsurface resistivity distribution without achieving the quality obtainable by inversion.  相似文献   

13.
Electrical imaging provides important subsurface information for the construction of hypervelocity impact models. We here provide an overview and evaluation of the current electrical imaging methods used in impact cratering studies. Although apparent resistivity models are commonly used in the geoelectrical imaging of impact structures, the reliability of these models has not hitherto been determined. In order to assess these imaging approaches in impact cratering, we investigate for the first time the discrepancies between the apparent resistivity and true resistivity models of an impact structure. To this end, we present (1) a new true resistivity model of the Araguainha impact structure in central Brazil by applying L2-norm inversion to previously published data, (2) apparent resistivity model of the impact structure, and (3) models obtained from different stages of the iterative tomographic inversions. Our results show that changes in vertical resistivity gradient are significantly better defined in the true resistivity models than in the apparent resistivity model. On the basis of these results, we outline a new approach that true resistivity models can be effectively assessed by applying both L1- and L2-norm inversion schemes together with the monitoring of intermediate models from iterative inversion. The results of our study highlight the importance of tomographic inversion of resistivity data in impact cratering studies, and they provide a data modeling framework and foundation for cost-effective subsurface imaging of impact structures in the future.  相似文献   

14.
In order to interpret field data from small-loop electromagnetic (EM) instruments with fixed source–receiver separation, 1D inversion method is commonly used due to its efficiency with regard to computation costs. This application of 1D inversion is based on the assumption that small-offset broadband EM signals are insensitive to lateral resistivity variation. However, this assumption can be false when isolated conductive bodies such as man-made objects are embedded in the earth. Thus, we need to clarify the applicability of the 1D inversion method for small-loop EM data. In order to systematically analyze this conventional inversion approach, we developed a 2D EM inversion algorithm and verified this algorithm with a synthetic EM data set. 1D and 2D inversions were applied to synthetic and field EM data sets. The comparison of these inversion results shows that the resistivity distribution of the subsurface constructed by the 1D inversion approach can be distorted when the earth contains man-made objects, because they induce drastic variation of the resistivity distribution. By analyzing the integrated sensitivity of the small-loop EM method, we found that this pitfall of 1D inversion may be caused by the considerable sensitivity of the small-loop EM responses to lateral resistivity variation. However, the application of our 2D inversion algorithm to synthetic and field EM data sets demonstrate that the pitfall of 1D inversion due to man-made objects can be successfully alleviated. Thus, 2D EM inversion is strongly recommended for detecting conductive isolated bodies, such as man-made objects, whereas this approach may not always be essential for interpreting the EM field data.  相似文献   

15.
基于非结构网格的电阻率三维带地形反演   总被引:6,自引:3,他引:3       下载免费PDF全文
吴小平  刘洋  王威 《地球物理学报》2015,58(8):2706-2717
地表起伏地形在野外矿产资源勘察中不可避免,其对直流电阻率法勘探影响巨大.近年来,电阻率三维正演取得诸多进展,特别是应用非结构网格我们能够进行任意复杂地形和几何模型的电阻率三维数值模拟,但面向实际应用的起伏地形下电阻率三维反演依然困难.本文基于非结构化四面体网格,并考虑到应用GPS/GNSS时,区域地球物理调查中可非规则布设测网的实际特点,实现了任意地形(平坦或起伏)条件下、任意布设的偶极-偶极视电阻率数据的不完全Gauss-Newton三维反演.合成数据的反演结果表明了方法的有效性,可应用于复杂野外环境下的三维电法勘探.  相似文献   

16.
稀疏测线大地电磁资料三维反演研究:合成算例(英文)   总被引:2,自引:1,他引:1  
受勘探成本和工区环境等因素的影响,当前大多数大地电磁实际工作采取布置稀疏测线采集数据和使用二维反演方法解释这些稀疏测线数据的方式。然而,二维反演方法在解释三维地电构造数据时存在局限性,有时甚至做出错误的地质解释。本文尝试了使用三维反演方法对大地电磁稀疏测线数据进行反演解释。使用大地电磁全信息资料三维共轭梯度反演程序对理论模型合成稀疏测线数据进行了三维反演。结果表明:这种反演方案是可行与有效的。同时,我们发现在不同数据的三维反演结果中,四个张量阻抗元素和两个倾子数据同时反演的结果相对更为准确,更接近理论模型。  相似文献   

17.
We propose the approach to 3D inversion of airborne electromagnetic data, which is intended for discovering subvertical bodies overlapped by essentially inhomogeneous conductive layers. The approach is based on the geometric inversion in which a geoelectrical medium is parameterized with the use of block structures. During the inversion, the coordinates of the borders between the blocks and the rows of the blocks as well as resistivities inside them are determined. In order to solve the forward problem of the airborne electromagnetic survey, we use the non-conforming optimized mesh with the hexahedral cells, which enables us to reduce the number of degrees of freedom and smoothly approximate the curved borders of a geological medium. For a more reliable discovery of subvertical objects, we propose to carry out 3D inversions at several rotations of block structures relative to the flight lines. The workability of this approach is demonstrated using the data which are synthesized for complex geoelectrical models with topography, inhomogeneous overlapping layers and target subvertical bodies oriented differently relative to the flight lines. The results of this investigation show that, in some way or other, the elongated subvertical object is discovered and its orientation (the direction of its long side) is defined at different rotations of block structures used in 3D inversions. However, the most accurate recovery of the subvertical object length is achieved when the direction of its long side almost coincides with the direction of one of the block structures axes. Thus, the block structures rotations allow not only more reliably discovering a target object in complex geoelectrical conditions, but also more exactly defining its orientation and length.  相似文献   

18.
It is proposed that the Straightforward Inversion Scheme (SIS) developed by the authors for 1D inversion of resistivity sounding and magneto-telluric sounding data can also be used in similar fashion for time-domain induced polarization sounding data. The necessary formulations based on dynamic dipole theory are presented. It is shown that by using induced polarization potential, measured at the instant when steady state current is switched off, an equation can be developed for apparent ‘chargeability–resistivity’ which is similar to the one for apparent resistivity. The two data sets of apparent resistivity and apparent chargeability–resistivity can be inverted in a combined manner, using SIS for a common uniform thickness layer earth model to estimate the respective subsurface distributions of resistivity and chargeability–resistivity. The quotient of the two profiles will give the sought after chargeability profile. A brief outline of SIS is provided for completeness. Three theoretical models are included to confirm the efficacy of SIS software by inverting only the synthetic resistivity sounding data. Then one synthetic data set based on a geological model and three field data sets (combination of resistivity and IP soundings) from diverse geological and geographical regions are included as validation of the proposal. It is hoped that the proposed scheme would complement the resistivity interpretation with special reference to shaly sand formations.  相似文献   

19.
起伏地形下CSAMT二维正反演研究与应用   总被引:13,自引:5,他引:8       下载免费PDF全文
雷达 《地球物理学报》2010,53(4):982-993
CSAMT在山区金属矿勘查中,采用各种滤波和相位积分之类的处理方法,校正因地形起伏和局部电性不均匀引起的静态效应,往往难保奏效,开发消除静态效应的新方法是提高CSAMT资料处理与解释水平和方法应用效果的重要研究课题. 本文以如何消除地形影响为重点,对起伏地形下CSAMT二维大地三维源地电模型,采用加权余弦数值积分法,进行波数域电磁场二维有限单元法正演. 为模拟复杂地形地电模型,选取交叉对称网格三角形剖分法,实现了在国内常用赤道电偶极装置的CSAMT二维正演计算;在二维正演的基础上,开发了基于奥克姆反演法的CSAMT二维反演技术,研制出一套起伏地形下CSAMT二维正反演处理与解释方法技术系统. 通过理论模型试算和实测数据处理证实,本系统能有效地削减起伏地形影响. 在找矿应用中,该系统反演的电阻率断面,极大地消除了起伏地形影响和静态效应,突显出清晰的控矿构造和矿体的异常,取得了重要成效.  相似文献   

20.
The oil shale exploration program in Jordan is undertaking great activity in the domain of applied geophysical methods to evaluate bitumen‐bearing rock. In the study area, the bituminous marl or oil shale exhibits a rock type dominated by lithofacies layers composed of chalky limestone, marls, clayey marls, and phosphatic marls. The study aims to present enhancements for oil shale seam detection using progressive interpretation from a one‐dimensional inversion to a three‐dimensional modelling and inversion of ground‐based transient electromagnetic data at an area of stressed geological layers. The geophysical survey combined 58 transient electromagnetic sites to produce geoelectrical structures at different depth slices, and cross sections were used to characterise the horizon of the most likely sites for mining oil shale. The results show valuable information on the thickness of the oil shale seam at 3.7 Ωm, which is correlated to the geoelectrical layer between 2‐ and 4 ms transient time delays, and at depths ranging between 85 and 105 m. The 300 m penetrated depth of the transient electromagnetic soundings allows the resolution of the main geological units at narrow resistivity contrast and the distinction of the main geological structures that constrain the detection of the oil shale seam. This geoelectrical layer at different depth slices illustrates a localised oil shale setting and can be spatially correlated with an area bounded by fold and fault systems. Also, three‐dimensional modelling and inversion for synthetic and experimental data are introduced at the faulted area. The results show the limitations of oil shale imaging at a depth exceeding 130 m, which depends on the near‐surface resistivity layer, the low resistivity contrast of the main lithological units, and the degree of geological detail achieved at a suitable model's misfit value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号