首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重质非水相有机污染物(DNAPL)泄漏到地下后,其运移与分布特征受渗透率非均质性影响显著。为刻画DNAPL污染源区结构特征,需进行参数估计以描述水文地质参数的非均质性。本研究构建了基于集合卡尔曼滤波方法(EnKF)与多相流运移模型的同化方案,通过融合DNAPL饱和度观测数据推估非均质介质渗透率空间分布。通过二维砂箱实际与理想算例,验证了同化方法的推估效果,并探讨了不同因素对同化的影响。研究结果表明:基于EnKF方法同化饱和度观测资料可有效地推估非均质渗透率场;参数推估精度随观测时空密度的增大而提高;观测点位置分布对同化效果有所影响,布置在污染集中区域的观测数据对于参数估计具有较高的数据价值。  相似文献   

2.
Following the accidental subsurface release of dense nonaqueous phase liquids (DNAPLs), spatial variability of physical and chemical soil/contaminant properties can exert a controlling influence on infiltration pathways and organic entrapment. DNAPL spreading, fingering, and pooling typically result in source zones characterized by irregular contaminated regions with complex boundaries. Spatial variability in aquifer properties also influences subsequent DNAPL dissolution and aqueous transport dynamics. An increasing number of studies have investigated the effects of subsurface heterogeneity on the fate of DNAPL; however, previous work was limited to the examination of the behavior of single-component DNAPL in systems with simple and well-defined aqueous and solid surface chemistry. From a DNAPL remediation point of view, such an idealized assumption will bring a large discrepancy between the designs based on the model simulation and the reality. The research undertaken in this study seeks to stochastically explore the influence of spatially variable porous media on DNAPL entrapment and dissolution profiles in the saturated groundwater aquifer. A 3D, multicomponent, multiphase, compositional model, UTCHEM, was used to simulate natural gradient water flooding processes in spatially variable soils. Porosity was assumed to be uniform or simulated using sequential Gaussian simulation (SGS) and sequential indicator simulation (SIS). Soil permeability was treated as a spatially random variable and modeled independently of porosity, and a geostatistical method was used to generate random distributions of soil permeability using SGS and SIS (derived from measured grain size distribution curves). Equally possible 3D ensembles of aquifer realizations with spatially variable permeability accounting of physical heterogeneity could be generated. Tetrachloroethene (PCE) was selected as a DNAPL representative as it was frequently discovered at many contaminated groundwater sites worldwide, including Thailand. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL source zone architecture under 96-L hypothetical PCE spill in heterogeneous media and stochastic analysis was conducted based on the simulated results. Simulations revealed considerable variations in the predicted PCE source zone architecture with a similar degree of heterogeneity, and complex initial PCE source zone distribution profoundly affected PCE recovery time in heterogeneous media when subject to natural gradient water flush. The necessary time to lower PCE concentrations below Thai groundwater quality standard ranged from 39 years to more than 55 years, suggesting that spatial variability of subsurface formation significantly affected the dissolution behavior of entrapped PCE. The temporal distributions of PCE saturation were significantly altered owing to natural gradient water flush. Therefore, soil heterogeneity is a critical factor to design strategies for characterization and remediation of DNAPL contaminated sites. The systematic and comprehensive design algorithm developed and described herein perhaps serves as a template for application at other DNAPL sites in Thailand.  相似文献   

3.
包气带土壤组成对三氯乙烯的吸附影响研究   总被引:1,自引:0,他引:1  
有机质和矿物质是包气带土壤中的主要吸附介质,其吸附特性直接影响有机污染物在环境中的迁移、转化等过程。分别采用分析纯石英砂和典型粘土矿物高岭石模拟土壤的原生矿物和粘土矿物,利用批实验的方法研究土壤中各组成部分对三氯乙烯(TCE)的吸附行为。土壤有机质的吸附行为通过全土样和矿物质的对比得出。结果表明,粘土矿物是吸附氯代烃的主要矿物质,原生矿物对氯代烃的吸附量很小;土壤有机质含量和土壤吸附量之间有很好的正相关性;土壤有机碳含量与土壤粘土矿物含量的比值是影响吸附行为的另一重要因素,比值越小,Koc值越大,土壤对TCE的亲和力就越强。由于自然界中的土壤有机质大都与矿物质形成有机质-粘土矿物结合体,据此推测有机质-矿物质结合体会影响有机质的组成和形态,从而对其吸附行为有重要作用。  相似文献   

4.
Solute transport experiments were conducted in a one-dimensional saturated column using dissolved methoxy-nonafluorobutane (HFE-7100), a Novec engineered fluid developed by the 3M Corporation, as the solute. Novec engineered fluids are considered dense non-aqueous phase liquids (DNAPLs) because they are immiscible with water and have a specific gravity greater than one. The HFE-7100 fluid is safer and environmentally friendlier than common DNAPL contaminants such as tetrachloroethylene (PCE) or trichloroethylene (TCE); thus, it is an ideal substitute DNAPL for laboratory groundwater contamination research. Three sets of solute transport experiments were conducted. The first set of experiments was conducted in a glass-bead-packed column using dissolved HFE-7100 as the solute. The second set of experiments was conducted in a sand-packed column using dissolved HFE-7100 as the solute. The third set of experiments was conducted in a sand-packed column using dissolved PCE as the solute. The dissolved HFE-7100 column breakthrough concentrations were compared with dissolved PCE breakthrough concentrations. Results show that the one-dimensional solute transport equation was successful in describing the transport behavior of dissolved HFE-7100. This study demonstrates that the HFE-7100 fluid can be used as a safer substitute DNAPL for groundwater contaminant dissolution and transport research.  相似文献   

5.
Volatile organic compound (VOC) contamination of subsurface geological material and groundwater was discovered on the Nortel Monkstown industrial site, Belfast, Northern Ireland. The objectives of this study were to (1) investigate the characteristics of the geological material and its influences on contaminated groundwater flow across the site using borehole logs and hydrological evaluations, and (2) identify the contaminants and examine their distribution in the subsurface geological material and groundwater using chemical analysis. This report focuses on the eastern car park (ECP) which was a former storage area associated with trichloroethene (TCE) degreasing operations. This is where the greatest amount of volatile organic compounds (VOCs), particularly TCE, were detected. The study site is on a complex deposit of clayey glacial till with discontinuous coarser grained lenses, mainly silts, sands and gravel, which occur at 0.45–7.82 m below ground level (bgl). The lenses overall form an elongated formation that acts as a small unconfined shallow aquifer. There is a continuous low permeable stiff clayey till layer beneath the lenses that performs as an aquitard to the groundwater. Highest concentrations of VOCs, mainly TCE, in the geological material and groundwater are in these coarser lenses at ∼4.5–7 m bgl. Highest TCE measurements at 390,000 μg L−1 for groundwater and at 39,000 μg kg−1 at 5.7 m for geological material were in borehole GA19 in the coarse lens zone. It is assumed that TCE gained entrance to the subsurface near this borehole where the clayey till was thin to absent above coarse lenses which provided little retardation to the vertical migration of this dense non-aqueous phase liquid (DNAPL) into the groundwater. However, TCE is present in low concentrations in the geological material overlying the coarse lens zone. Additionally, VOCs appear to be associated with poorly drained layers and in peat <3.0 m bgl in the ECP. Some indication of natural attenuation as VOCs degradation products vinyl chloride (VC) and dichloromethane (DCM) also occur on the site.  相似文献   

6.
选用四氯乙烯(PCE)作为典型DNAPL污染物,以NaCl作为地下水中溶解盐代表,研究盐度对DNAPL在饱和多孔介质中运移和分布的影响。通过批次实验测定NaCl水溶液/石英砂/PCE三相体系下的接触角和界面张力,结果表明,PCE在石英砂表面的接触角随着水中NaCl浓度的增大而减小,而PCE和NaCl水溶液的界面张力随着NaCl浓度的增大而增大,尤其当氯化钠浓度较高时(>0.1 mol/L),影响程度更为显著。在此基础上,采用透射光法监测不同介质情景下DNAPL在二维砂箱中的运移和分布,定量测定DNAPL在介质中的饱和度。实验结果表明,地下水盐度的增加将促进DNAPL的垂向入渗,减少被截留在运移路径上的DNAPL量,使得DNAPL运移路径及累积形成的池状DNAPL(pool)向水流方向偏移。在均质多孔介质和含有透镜体的非均质多孔介质中,随着盐度的增加,DNAPL在横向和垂向上的展布均呈现出增加趋势,导致污染源区变大,且介质中以离散状存在的DNAPL量明显增加。  相似文献   

7.
重非水相污染物(DNAPL)在地下介质中运移和分布受多种因素控制,包括DNAPL本身的物理化学性质,土的性质,泄漏条件等等。由于介质的非均质性,使得多相流运移行为更为复杂。基于地下水随机理论构建渗透率随机场,采用蒙特卡罗方法探讨泄漏速率对非均质饱和介质中DNAPL运移的影响。数值结果表明,在泄漏总量一定的情况下,泄漏速率越低,介质非均质性对DNAPL运移的影响程度越高。反之,DNAPL的渗漏速率越高,小尺度地层的非均质性影响越低。由于DNAPL运移过程中在垂直方向受重力的影响,污染羽在空间上的质心位置(一阶矩)以及展布范围(二阶矩)在垂直方向上的变异程度要高于水平方向。  相似文献   

8.
Stable isotopes of water and 3H–3He were used to delineate recharge patterns and contaminant transport for a granitic regolith aquifer in an industrial complex in Wonju, South Korea, that has historically been contaminated with chlorinated solvents including trichloroethene (TCE) and carbon tetrachloride (CT). Groundwater recharge mainly occurred in upgradient forested areas while little recharge occurred in the downgradient industrial areas covered with extensive sections of impermeable pavement and paddy fields. δ18O and δD data indicated that groundwater was mainly derived from summer precipitation. The apparent groundwater ages using 3H–3He ranged from 1 to 4 yrs in the upgradient area and from 9 to 10 yrs in the downgradient area. Comparison of groundwater flow velocities based on Darcy’s law and those calculated with simple mass balance models and groundwater age supported the presence of preferential pathways for TCE movement in the study area. Measureable TCE was observed in groundwater irrespective of groundwater age. Considering the 3-yr duration of the TCE spill, 14 yrs before sampling, this indicates that TCE plumes were continuously fed from sources in the unsaturated zone after the spill ended and moved downgradient without significant degradation in the aquifer.  相似文献   

9.
A train derailment near Lewisburg, Tennessee, in October 1990 prompted two series of groundwater investigations. The first was to determine the subsurface flow route of chloroform and styrene that sank into the underlying karst aquifer. The second was to determine the source of contamination for two nearby residential wells which were found to be contaminated with trichloroethylene (TCE). Water-sample analysis and a dye trace performed at the time of the train derailment indicated groundwater flow to Wilson Spring. A dam was constructed to contain the entire discharge from the spring so that it could be treated before being discharged into Big Rock Creek. Three springs and three water wells were contaminated with chloroform and styrene. Dye traces were performed to determine groundwater flow directions in the vicinities of the TCE-contaminated wells and in the vicinities of potential sources. At the train derailment, the chloroform and styrene sank into the Upper Ridley Karst Aquifer and pooled on top of the Lower Ridley Confining Layer. An exploratory well revealed a layer of chloroform (a Dense Non-Aqueous Phase Liquid DNAPL) on the bottom, a layer of groundwater in the middle, and a layer of styrene (a Light Non-Aqueous Phase Liquid LNAPL) on top. Groundwater with relatively low levels of chloroform and styrene in solution was carried by a small cave stream southeast along the strike to Wilson Spring. Chloroform product moved by gravity southwest down-dip along weathered bedding planes. Treatment of contaminated groundwater from Wilson Spring and recovery wells at the spill site has occurred continuously since October, 1990.  相似文献   

10.
Extensive hydrogeological investigations followed by three-dimensional groundwater flow and contaminant transport modelling were carried out around a proposed uranium tailings pond at Seripalli in Andhra Pradesh, India, to estimate its radiological impact. The hydrogeological parameters and measured groundwater level were used to model the groundwater flow and contaminant transport from the uranium tailings pond using a finite-element-based model. The simulated groundwater level compares reasonably with the observed groundwater level. Subsequently, the transport of long-lived radionuclides such as 238U, 234U, 230Th and 226Ra from the proposed tailings pond was modelled. The ingrowths of progenies were also considered in the modelling. It was observed that these radionuclides move very little from the tailings pond, even at the end of 10,000 y, due to their high distribution coefficients and low groundwater velocities. These concentrations were translated into committed effective dose rates at different distances in the vicinity of the uranium tailings pond. The results indicated that the highest effective dose rate to members of the public along the groundwater flow pathway is 2.5 times lower than the drinking water guideline of 0.1?mSv/y, even after a long time period of 10,000 y.  相似文献   

11.
A passive sampling system for use with rhodamine WT (RWT) in groundwater tracing experiments was developed to assist in the characterisation of groundwater flow paths. Amberlite XAD-7 resin was found to be suitable for adsorption of RWT, which can then be extracted using an ethanol/water mix and analysed fluorometrically. Batch and column experiments showed that XAD-7 resin has a high RWT capacity. The adsorption was slightly dependent on pH, but was always above 75% under batch conditions. The resin had a high percentage mass recovery at flow velocities around 1.5 m/day, but this decreased with increasing flow velocities. Desorption of RWT off the resin in water is dependent on the flow velocity of water and the time after the peak RWT has passed. The mass of RWT extracted from the resin bags correlated very well with both the RWT mass flux in the water and the peak concentrations observed in the monitoring wells in a field experiment. The results of resin bags were reproducible in the field with a mean coefficient of variation equal to 16%. This method has been successfully applied to two field situations with different flow velocities to indicate groundwater flow paths. Electronic Publication  相似文献   

12.
多孔介质中毛细压力、饱和度和相对渗透率的确定方法   总被引:3,自引:0,他引:3  
目前石油溢出或者地下储油罐泄漏等原因引起的土壤和地下水非水相流体(NAPLs)污染问题越来越引起人们的关注,由NAPLs、水和气所组成的两相或三相系统中的多相流问题亦是当前的研究热点。其中毛细压力(h),饱和度(S)和相对渗透率(k)是多孔介质多相流研究中的三个重要参数,在多相流室内试验研究中是主要的物理监测量,而且三者之间基本关系式的确定是多相流模拟时进行流动控制方程求解的前提条件。本文从室内试验和模型关系两个方面综述了土壤中NAPLs、水和气所组成的多相流系统中毛细压力、饱和度和相对渗透率以及它们之间相关关系的确定方法。  相似文献   

13.
重非水相液体(dense nonaqueous phase liquid,DNAPL)污染土壤和地下水的问题已引起广泛关注,研究其在不同粒径多孔介质及其界面的运移特征形态是确定污染区域、修复治理土壤和地下水环境的前提。文章通过室内试验研究多孔介质界面对DNAPL运移与分布特性的影响。首先在二维砂槽上进行DNAPL污染物的入渗试验,试验过程中用数码相机拍照,将DNAPL扩散过程以图像的形式记录下来;然后用AutoCAD对图片进行处理,绘制出DNAPL迁移过程的锋面变化图。结果表明:DNAPL入渗过程中,迁移主要受到重力作用与毛细作用的控制,毛细作用力随着介质粒径的增大逐层减小,重力作用逐渐起主导作用使污染物入渗速度逐层增大;介质结构影响DNAPL的迁移形态,介质粒径逐层增大,DNAPL污染物的渗流面与指进扩散宽度逐层减小,扩散方式由面状变为指状;在不同粒径介质界面介质结构发生突变时,DNAPL迁移锋面线曲率也相应变大,此时DNAPL的迁移呈现“凸”型特征,另外,不同的界面横向扩散的滞留宽度不同,随着介质粒径的增大,界面的横向扩散宽度相对变短。  相似文献   

14.
Delineation of contaminant sources is vital for successful groundwater and soil remediation. With reliable source information, remediation time and cost can be dramatically reduced. An optimal contamination source search strategy incorporating Monte Carlo method, Kalman filtering and fuzzy set theory was applied to a contaminated site in Nanjing to define suspected multiple DNAPL source locations. Using the available nine sample data, the algorithm identified sources #1 and #4 as true sources, and sources #5 and #6 as false ones. The algorithm results for sources #2 and #3 were inconclusive. Three numerical experiments based on specific site conditions were then designed and conducted to determine the influencing factors on the algorithm’s convergence in sources #2 and #3. The numerical experiments tested the effect of multiple sources, the effect of the sources location in relation to the groundwater flow direction and the effect of a low permeability field on the convergence of the algorithm. Based on the numerical experiments and an understanding of the manufacturing site operations, sources #2 and #3 are likely to be true sources. Their moderate weights have been stabilized due to the existence of multiple true sources and the scarcity of informative sampling data, caused by the low permeability field. The moderate weight value of source #3 also includes a contribution from an overlapping plume caused by the sources’ parallel-to-flow layout pattern. It can be concluded that the algorithm works best for high permeability sites where potential source locations are scattered and source location patterns are orthogonal to the groundwater flow.  相似文献   

15.
传统原位化学氧化地下水修复技术存在氧化剂迁移距离短和利用率低等问题。本研究在双井循环模式促进传质的基础上,通过注水井中的地下水电解原位提供O2和H2,配合乙二胺四乙酸(ethylenediamine tetraacetic acid,EDTA)络合溶解出含水层Fe(Ⅱ),活化O2产生羟基自由基(•OH),实现地下水三氯乙烯(TCE)的氧化降解。在填充了砂土和黏土互层的二维砂槽中,设置电流为0.2 A、流速为72 cm/d、初始TCE浓度为3 mg/L,经过9 d的连续通电处理后,TCE浓度降低到1 mg/L,降解率达到67%。通电前投加0.5 mmol/L EDTA,经过1 d水流循环后含水层中溶解态Fe(Ⅱ)浓度从02 mg/L增加到414 mg/L,黏土区域较高。通电过程中,循环井促进O2、Fe(Ⅱ)-EDTA和TCE的有效接触与反应,使TCE氧化降解。通电初期,黏土区域Fe(Ⅱ)氧化速率、TCE降解速率较周围慢,后期差异逐渐减小。未通电时加入醋酸钠可促进Fe(Ⅲ)还原,使含水层中铁循环利用。该修复过程通过循环井提升了氧化剂迁移距离,使用源于含水层的Fe(Ⅱ)-EDTA和稳定性较好的O2提高了氧化剂利用率,有望应用于有机污染地下水修复。  相似文献   

16.
Numerically modeling groundwater flow on finely discretized two- and three-dimensional domains requires solution algorithms appropriate for distributed memory multiprocessor architectures. Multilevel and domain decomposition algorithms are appropriate for preconditioning or solving linear systems in parallel and have, therefore, been applied to linear models for saturated groundwater flow. These algorithms have also been incorporated into more complex nonlinear multiphase flow models in the context of a linearization procedure such as Newton's method. In this work, we study a class of parallel preconditioners based on two-level Schwarz domain decomposition applied in a nonlinear two-phase flow numerical model. The restriction and interpolation operators are based on an aggregation approach that has a straightforward implementation for a variety of applications arising in subsurface modeling: structured and unstructured discretizations, finite elements and finite differences, and multicomponent model equations. We present model formulations, results from numerical experiments, and a comparison of a standard one-level Schwarz method to three two-level aggregation-based methods.  相似文献   

17.
Tritium?Chelium groundwater dating was carried out in a trichloroethylene (TCE)-contaminated valley-fill aquifer system in Quebec, Canada, where a numerical groundwater flow model was developed. Forty seven discrete groundwater and dissolved gas samples were obtained along two flow paths originating from known TCE source zones whose related plumes converge down gradient to form a single plume. Sampling points in monitoring wells were projected onto vertical sections showing particle tracks along the two flow paths. At these points, simulated advective ages obtained from particle tracking were matched to tritium?Chelium ages using different porosity values; the best match was 0.35. Ages were also obtained above and below a prodeltaic silty aquitard in a portion of the aquifer where some source zones are located, which provide groundwater and TCE transit times through the aquitard as well as a mean vertical hydraulic conductivity that agrees with previous estimates used in the model. In certain locations, anomalously old ages associated with high terrigenic 4He indicate areas where groundwater from the underlying proglacial unit flows upward into the deltaic sand aquifer through aquitard windows. Upflow locations correspond with increased TCE concentrations, suggesting significant TCE provenance through the proglacial unit originating from a previously unrecognized TCE source zone.  相似文献   

18.
Modern geostatistical techniques allow the generation of high-resolution heterogeneous models of hydraulic conductivity containing millions to billions of cells. Selective upscaling is a numerical approach for the change of scale of fine-scale hydraulic conductivity models into coarser scale models that are suitable for numerical simulations of groundwater flow and mass transport. Selective upscaling uses an elastic gridding technique to selectively determine the geometry of the coarse grid by an iterative procedure. The geometry of the coarse grid is built so that the variances of flow velocities within the coarse blocks are minimum. Selective upscaling is able to handle complex geological formations and flow patterns, and provides full hydraulic conductivity tensor for each block. Selective upscaling is applied to a cross-bedded formation in which the fine-scale hydraulic conductivities are full tensors with principal directions not parallel to the statistical anisotropy of their spatial distribution. Mass transport results from three coarse-scale models constructed by different upscaling techniques are compared to the fine-scale results for different flow conditions. Selective upscaling provides coarse grids in which mass transport simulation is in good agreement with the fine-scale simulations, and consistently superior to simulations on traditional regular (equal-sized) grids or elastic grids built without accounting for flow velocities.  相似文献   

19.
Multiphase flow modelling is a major issue in the assessment of groundwater pollution. Three-phase flows are commonly governed by mathematical models that associate a pressure equation with two saturation equations. These equations involve a number of secondary variables that reflect the fluid behaviour in a porous medium. To improve the computational efficiency of multiphase flow simulators, several simplified reformulations of three-phase flow equations have been proposed. However, they require the construction of new secondary variables adapted to the reformulated flow equations. In this article, two different approaches are compared to quantify these variables. A numerical example is given for a typical fine sand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号