首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
测绘学   1篇
大气科学   2篇
地球物理   5篇
地质学   7篇
海洋学   3篇
天文学   1篇
  2022年   1篇
  2020年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   6篇
  2010年   4篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有19条查询结果,搜索用时 46 毫秒
1.
2.
3.
Cheng  Wei  Horrillo  Juan  Sunny  Richards 《Natural Hazards》2022,110(3):1719-1734
Natural Hazards - Although relatively rare, meteotsunamis are capable of causing coastal infrastructure damage and casualties. Analyses of water level and meteorological data in the U.S. show that...  相似文献   
4.
This study investigates aerosol indirect effects on the development of heavy rainfall near Seoul, South Korea, on 12 July 2006, focusing on precipitation amount. The impact of the aerosol concentration on simulated precipitation is evaluated by varying the initial cloud condensation nuclei (CCN) number concentration in the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) microphysics scheme. The simulations are performed under clean, semi-polluted, and polluted conditions. Detailed analysis of the physical processes that are responsible for surface precipitation, including moisture and cloud microphysical budgets shows enhanced ice-phase processes to be the primary driver of increased surface precipitation under the semi-polluted condition. Under the polluted condition, suppressed auto-conversion and the enhanced evaporation of rain cause surface precipitation to decrease. To investigate the role of environmental conditions on precipitation response under different aerosol number concentrations, a set of sensitivity experiments are conducted with a 5?% decrease in relative humidity at the initial time, relative to the base simulations. Results show ice-phase processes having small sensitivity to CCN number concentration, compared with the base simulations. Surface precipitation responds differently to CCN number concentration under the lower humidity initial condition, being greatest under the clean condition, followed by the semi-polluted and polluted conditions.  相似文献   
5.
This study examines a scenario of future summer climate change for the Korean peninsula using a multi-nested regional climate system. The global-scale scenario from the ECHAM5, which has a 200 km grid, was downscaled to a 50 km grid over Asia using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). This allowed us to obtain large-scale forcing information for a one-way, double-nested Weather and Research Forecasting (WRF) model that consists of a 12 km grid over Korea and a 3 km grid near Seoul. As a pilot study prior to the multi-year simulation work the years 1995 and 2055 were selected for the present and future summers. This RSM-WRF multi-nested downscaling system was evaluated by examining a downscaled climatology in 1995 with the largescale forcing from the NCEP/Department of Energy (DOE) reanalysis. The changes in monsoonal flows over East Asia and the associated precipitation change scenario over Korea are highlighted. It is found that the RSM-WRF system is capable of reproducing large-scale features associated with the East-Asian summer monsoon (EASM) and its associated hydro-climate when it is nested by the NCEP/DOE reanalysis. The ECHAM5-based downscaled climate for the present (1995) summer is found to suffer from a weakening of the low-level jet and sub-tropical high when compared the reanalysis-based climate. Predicted changes in summer monsoon circulations between 1995 and 2055 include a strengthened subtropical high and an intensified mid-level trough. The resulting projected summer precipitation is doubled over much of South Korea, accompanied by a pronounced surface warming with a maximum of about 2 K. It is suggested that downscaling strategy of this study, with its cloud-resolving scale, makes it suitable for providing high-resolution meteorological data with which to derive hydrology or air pollution models.  相似文献   
6.
Following a major beach closure due to bacterial contamination, a survey of beachgoers was conducted in Huntington Beach, California in 1999 to assess perceived health risk from swimming. Responses were compared to those of beachgoers at the unaffected Laguna Main Beach. No significant differences were found in risk perception. Respondents were aware of the closures (83%), yet the majority (83%) felt the water was safe for swimming. Proximity of residence to the beach was strongly associated with closure awareness (Spearman's rho=0.427, p<0.0001). Although 83% of respondents felt that water quality was important in deciding to go to the beach, only 25% of respondents who did not plan to swim cited pollution or contamination as a reason not to swim. Most respondents (70%) trusted local health agency officials' decisions about when to open/close beaches. Surveyed beach visitors were likely to bathe (84%) and were not highly concerned with swimming-related health risks.  相似文献   
7.
The cruise conducted in the spring inter-monsoon (pre-monsoon) of April 2015 in the frame of a funded project epitomized an open ocean survey that allowed procuring a quasi-synoptic picture of cyclopoid copepod community structure in 18 open ocean stations of the Minicoy Island, Lakshadweep archipelago, off the southwestern Indian coast, based on the analysis of standing stock and composition in the integrated 0–10 m water column. The main objective was to explore the community structure of cyclopoid copepods prevailing here and which environmental variable influences the same. It is witnessed that sea surface temperature (SST) (30.42 ± 0.19°C), sea surface salinity (SSS) (33.56 ± 1.15 psu), and dissolved oxygen (DO) (4.32 ± 0.06 ml/L) with SSS and DO are the best matching variables diversifying cyclopoid copepod species (av. abundance 700 ± 386 no. of individuals/100 m3). Average zooplankton biomass (0.03 ml/m3) and abundance (8,989 ± 3,866 no. of individuals/100 m3) were also observed. Fifty-one cyclopoid copepod species belonging to four families and seven genera were identified, with the dominance of high saline species such as Sapphirina, Copilia, Farranula, and Oncaea. An abundance biomass curve (ABC) plot analysis indicated an undisturbed community with normal environmental conditions. TAXDTEST (taxonomic distinctness) depicted a diverse condition where all points clustered together within a 95% confidence level. Our results indicate that the cyclopoid copepod assemblage near Minicoy Island is a diverse, undisturbed community and hypothesize that the stable environmental conditions during pre-monsoon (spring inter-monsoon) preferred the diversification of cyclopoid copepods with the prevalence of high saline species. The data evolved could be used as a standard reference/benchmark to detect any deviation from an undisturbed/diverse community status of Minicoy Island in the looming scenario of climate change in and around the Indian Ocean.  相似文献   
8.
9.
The screw anchor piles are installed in ground by screwing which is done with the help of torque motors. In this paper, the lateral load capacity of screw anchor piles is examined through an experimental investigation carried on model piles embedded in dry sand. The tests were carried on screw anchor piles with different number of helices provided in continuation. Lateral loads were applied at different height above the soil surface. The embedment length of screw anchor piles was also varied to study the behaviour of screw anchor piles under lateral loads. Some tests were conducted on plain shaft pile to compare the lateral load capacity of screw anchor piles with that of plain shaft piles. An empirical equation for computation of lateral loads has been developed considering lateral resistance, bearing resistance, uplift resistance and lateral resistance offered by soil in pile on the basis of experimental results. A theoretical model for predicting lateral load capacity of screw anchor piles in dry sand, consistent with the experimental findings has been developed in this study.  相似文献   
10.
Differences of modeled surface upward and downward longwave and shortwave irradiances are calculated using modeled irradiance computed with active sensor-derived and passive sensor-derived cloud and aerosol properties. The irradiance differences are calculated for various temporal and spatial scales, monthly gridded, monthly zonal, monthly global, and annual global. Using the irradiance differences, the uncertainty of surface irradiances is estimated. The uncertainty (1σ) of the annual global surface downward longwave and shortwave is, respectively, 7?W?m?2 (out of 345?W?m?2) and 4?W?m?2 (out of 192?W?m?2), after known bias errors are removed. Similarly, the uncertainty of the annual global surface upward longwave and shortwave is, respectively, 3?W?m?2 (out of 398?W?m?2) and 3?W?m?2 (out of 23?W?m?2). The uncertainty is for modeled irradiances computed using cloud properties derived from imagers on a sun-synchronous orbit that covers the globe every day (e.g., moderate-resolution imaging spectrometer) or modeled irradiances computed for nadir view only active sensors on a sun-synchronous orbit such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation and CloudSat. If we assume that longwave and shortwave uncertainties are independent of each other, but up- and downward components are correlated with each other, the uncertainty in global annual mean net surface irradiance is 12?W?m?2. One-sigma uncertainty bounds of the satellite-based net surface irradiance are 106?W?m?2 and 130?W?m?2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号