首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Fourier-amplitude spectrum is one of the most important parameters describing earthquake ground motion, and it is widely used for strong ground motion prediction and seismic hazard estimation. The relationships between Fourier-acceleration spectra, earthquake magnitude and distance were analysed for different seismic regions (the Caucasus and Taiwan island) on the basis of ground motion recordings of small to moderate (3.5≤ML≤6.5) earthquakes. It has been found that the acceleration spectra of the most significant part of the records, starting from S-wave arrival, can be modelled accurately by the Brune's “ω-squared” point-source model. Parameters of the model are found to be region-dependent. Peak ground accelerations and response spectra for condition of rock sites were calculated using stochastic simulation technique and obtained models of source spectra. The modelled ground-motion parameters are compared with those predicted by recent empirical attenuation relationship for California.  相似文献   

2.
The JMA (Japan Meteorological Agency) seismic intensity scale has been used in Japan as a measure of earthquake ground shaking effects since 1949. It has traditionally been assessed after an earthquake based on the judgment of JMA officials. In 1996 the scale was revised as an instrumental seismic intensity measure (IJMA) that could be used to rapidly assess the expected damage after an earthquake without having to conduct a survey. Since its revision, Japanese researchers have developed several ground motion prediction equations (GMPEs) for IJMA using Japanese ground motion data. In this paper, we develop a new empirical GMPE for IJMA based on the strong motion database and functional forms used to develop similar GMPEs for peak response parameters as part of the PEER (Pacific Earthquake Engineering Research Center) Next Generation Attenuation (NGA) project. We consider this relationship to be valid for shallow crustal earthquakes in active tectonic regimes for moment magnitudes ( M ) ranging from 5.0 up to 7.5–8.5 (depending on fault mechanism) and rupture distances ranging from 0 to 200 km. A comparison of this GMPE with relationships developed by Japanese researchers for crustal and shallow subduction earthquakes shows relatively good agreement among all of the relationships at M 7.0 but relatively poor agreement at small magnitudes. Our GMPE predicts the highest intensities at small magnitudes, which together with research on other ground motion parameters, indicates that it provides conservative or upwardly biased estimates of IJMA for M <5.5. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Rigid sliding block analysis is a common analytical procedure used to predict the potential for earthquake-induced landslides for natural slopes. Currently, predictive models provide the expected level of displacement as a function of the characteristics of the slope (e.g., geometry, strength, yield acceleration) and the characteristics of earthquake shaking (e.g., peak ground acceleration, peak ground velocity). These predictive models are used for developing seismic landslide hazard maps which identify zones with risk of earthquake-induced landslides. Alternatively, these models can be combined with Shakemaps to generate “near-real-time” Slidemaps which could be used, among others, as a tool in disaster management. Shakemaps (a publicly available free service of the United States Geological Survey, USGS) provide near-real-time ground motion conditions during the time of an earthquake event. The ground motion parameters provided by a Shakemap are very useful for the development of Slidemaps. By providing ground motion parameters from an actual earthquake event, Shakemaps also serve as a tool to decouple the uncertainty of the ground motion in sliding displacements prediction. Campania region in Italy is studied for assessing the applicability of using Shakemaps for regional landslide-risk assessment. This region is selected based on the availability of soil shear strength parameters and the proximity to the 1980 Irpina (M w  = 6.9) Earthquake.  相似文献   

4.
利用《中国地震动参数区划图》采用的地震动参数衰减关系,以及《中国地震动参数区划图》中地震动峰值加速度和地震动加速度反应谱特征周期反推不同设防烈度和设计地震分组对应的震级和震中距,再根据《建筑抗震设计规范》中各设防水准的峰值加速度确定对应的震级和震中距,进而根据地震动强度包线参数与震级和震中距关系计算地震动强度包线参数的取值,为基于强度包线函数生成人工地震动提供参考,并讨论强度包线参数的取值规律:(1)随着设防烈度的提高,加速度时程曲线上升段持续时间t1和平稳段持续时间ts减小,下降段衰减指数c增大;(2)随着地震水准和设计地震分组的提高,加速度时程曲线上升段持续时间t1和平稳段持续时间ts增加,下降段衰减指数c减小;(3)在生成人工地震动时,除考虑峰值加速度和设计地震分组影响外,还需要考虑设防烈度影响。  相似文献   

5.
对意大利国家强震台网在2016年8月24日获得的其中部拉齐奥大区阿库莫利市发生的MW6.2地震强震动三分向记录进行处理和分析。完成原始数据基线校正、滤波等基本数据处理,回归此次地震动幅值衰减规律,发现其整体与ITA08及BA08的衰减趋势一致,但远场实际值低于预测值,不同场地条件下的衰减特性与ITA10一致,近震源幅值较大,且方向性明显;计算并回归分析几种持时,与全球经验预测方程均基本吻合;比较4个幅值较大的近震源台站的反应谱,发现其明显高于欧洲抗震设计规范中的设计反应谱。结合此次震害特点,该地区在实际建设中仍需提高抗震设防能力,以确保安全性等级。  相似文献   

6.
Coastal cliff erosion is caused by a combination of marine forcing and sub-aerial processes, but linking cliff erosion to the environmental drivers remains challenging. One key component of these drivers is energy transfer from wave–cliff interaction. The aim of this study is to directly observe cliff ground motion in response to wave impacts at an individual wave scale. Measurements are described from two coastal cliff sites: a 45-minute pilot study in southern California, USA and a 30-day deployment in Taranaki, New Zealand. Seismometers, pressure sensors and video are used to compare cliff-top ground motions with water depth, significant wave height (Hs) and wave impact types to examine cliff ground motion response. Analyses of the dataset demonstrate that individual impact events can be discriminated as discrete events in the seismic signal. Hourly mean ground motion increases with incident Hs, but the largest hourly peak ground motions occurred across a broad range of incident Hs (0.9–3.7 m), including during relatively calm conditions. Mean hourly metrics therefore smooth the short-term dynamics of wave–cliff interaction; hence, to fully assess wave impact energy transfer to cliffs, it is important also to consider peak ground motion. Video analyses showed that the dominant control on peak ground motion magnitude was wave impact type rather than incident Hs. Wave–cliff impacts where breaking occurs directly onto the cliff face consistently produced greater ground motion compared to broken or unbroken wave impacts: breaking, broken and unbroken impacts averaged peak ground motion of 287, 59 and 38 μm s−1, respectively. The results illustrate a novel link between wave impact forcing and cliff ground motion response using individual wave field measurements, and highlight the influence of wave impact type on peak energy transfer to coastal cliffs. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
This paper develops a procedure to select unscaled ground motions for estimating seismic demand hazard curves (SDHCs) in performance‐based earthquake engineering. Currently, SDHCs are estimated from a probabilistic seismic demand analysis, where several ensembles of ground motions are selected and scaled to a user‐specified scalar conditioning intensity measure (IM). In contrast, the procedure developed herein provides a way to select a single ensemble of unscaled ground motions for estimating the SDHC. In the context of unscaled motions, the proposed procedure requires three inputs: (i) database of unscaled ground motions, (ii) I M , the vector of IMs for selecting ground motions, and (iii) sample size, n; in the context of scaled motions, two additional inputs are needed: (i) a maximum acceptable scale factor, SFmax, and (ii) a target fraction of scaled ground motions, γ. Using a recently developed approach for evaluating ground motion selection and modification procedures, the proposed procedure is evaluated for a variety of inputs and is demonstrated to provide accurate estimates of the SDHC when the vector of IMs chosen to select ground motions is sufficient for the response quantity of interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the relationships between seismic intensity and peak ground shaking are studied under no specific condition, separately or simultaneously considering the number of building storey and site category, based on data of mean peak values of horizontal ground motion recorded during strong earthquakes. Then, according to the statistical results, the variation of mean peak value with intensity rating is discussed, and schemes of peak ground velocity, peak ground acceleration or response spectrum of an designed earthquake converted from intensity rating are recommended. Finally, a methodology of converting seismic intensity from response spectrum of design earthquake is also discussed, and the conversion scheme is recommended. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 32–40, 1991. This paper is sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

9.
Three studies of site amplification factors, based on the recorded aftershocks, and one study based on strong motion data, are compared one with another and with the observed distribution of damage from the Northridge, CA, earthquake of 17 January 1994 (ML=6.4). In the epicentral area, when the peak ground velocities are larger than vm≈15 cm/s, nonlinear response of soil begins to distort the amplification factors determined from small amplitude (linear) wave motion. Moving into the area of near-field and strong ground motion (vm>30 cm/s), the site response becomes progressively more affected by the nonlinear soil response. Based on the published results, it is concluded that site amplification factors determined from small amplitude waves (aftershocks, small earthquakes, coda waves) and their transfer-function representation may be useful for small and distant earthquake motions, where soils and structures respond to earthquake waves in a linear manner. However in San Fernando Valley, during the Northridge earthquake, the observed distribution of damage did not correlate with site amplification determined from spectra of recorded weak motions. Mapping geographical distribution of site amplification using other than very strong motion data, therefore appears to be of little use for seismic hazard analyses.  相似文献   

10.
The sensitivity of seismic energy dissipation to ground motion and system characteristics is assessed. It is found that peak ground acceleration, peak ground velocity to acceleration (V/A), dominant period of ground excitation and effective response duration are closely correlated with the energy dissipated by a SDOF system. Ductility ratio and damping ratio have no significant influence on the energy dissipation. An energy dissipation index is proposed for measuring the damage potential of earthquake ground motion records which includes the effects of basic excitation and response characteristics contributing to the seismic energy dissipation. The proposed index is compared with several intensity measures for the set of 94 ground motion records considered in the study.  相似文献   

11.
This study examines the effect of the angle of seismic incidence θ on the fragility curves of bridges. Although currently, fragility curves of bridges are usually expressed only as a function of intensity measure of ground motion (IM) such as peak ground acceleration, peak ground velocity, or Sa(ω1), in this study they are expressed as a function of IM with θ as a parameter. Lognormal distribution function is used for this purpose with fragility parameters, median cm and standard deviation ζ to be estimated for each value of θ chosen from 0 < θ < 360°. A nonlinear 3D finite element dynamic analysis is performed, and key response values are calculated as demand on the bridge under a set of acceleration time histories with different IM values representing the seismic hazard in Los Angeles area. This method is applied to typical straight reinforced concrete bridges located in California. The results are validated with existing empirical damage data from the 1994 Northridge earthquake. Even though the sample bridges are regular and symmetric with respect to the longitudinal axis, the results indicate that the weakest direction is neither longitudinal nor transverse. Therefore, if the angle of seismic incidence is not considered, the damageability of a bridge can be underestimated depending on the incidence angle of seismic wave. Because a regional highway transportation network is composed of hundreds or even thousands of bridges, its vulnerability can also be underestimated. Hence, it is prudent to use fragility curves taking the incident angle of seismic waves into consideration as developed here when the seismic performance of a highway network is to be analyzed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
核电厂在遭遇超设计基准地震时需要考虑安全停堆,以避免造成核泄漏事故。采用地震动的峰值加速度参数(PGA)作为判别停堆的参数具有一定的局限性,PGA参数不能反映地震动的频谱和持时特征,因而可能引起不必要的停堆。针对此问题,基于我国本土大量实际强震记录,遴选出7种典型的工程相关地震动参数,进而基于地震烈度指标,分析发现地震动的标准累计绝对速度参数能更好地表征地震对核电厂的整体潜在破坏能力,适合作为判别停堆的参数,然后提出两种确定预警参数阈值的方法,最终建议考虑我国强震数据特征的核电厂判别停堆的预警参数阈值,为我国核电厂的地震安全停堆参数的确定提供了参考。  相似文献   

13.
山地和平原地形在破坏性地震中对震害和地震动有很大影响,不同地形对地震动有不同的地形效应。为研究山地和平原地形对地震动的影响规律,基于集集地震后续M L6.6余震的强震观测记录,对位于不同地形且与震中位于同一直线上的四个强震台记录处理计算,从波形特征、频谱分析、加速度反应谱计算、与规范谱比较等方面进行对比分析,完成长周期地震动反应谱分布的计算。研究表明,山地地形对地震动的高频成分有地形放大效应,沉积平原对地震动的低频长周期部分有放大作用,并且长周期反应谱的峰值区域始终位于沉积平原中部。平原上强震记录产生的长周期放大系数谱已超出规范谱,沉积平原上长周期建筑的抗震设防应引起重视。  相似文献   

14.
Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW(East-West) direction, NS(South- North) direction and perpendicular to the surface(z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations:(1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined;(2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and(3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage to structures following earthquakes and explaining the seismic damage. Meanwhile, it also provides a reference value for research into the most severe ground motion.  相似文献   

15.
2018年9月12日陕西省宁强县发生5.3级地震,中国数字强震动台网的39个专业台站在此次地震中触发。文章中通过处理捕获的117条三分向加速度记录,给出近场台站的地震动参数,绘制震中附近区域峰值加速度等值线图,其长轴呈西南-东北方向展布。采用实际观测数据与几种常用地震动衰减关系对比,发现霍俊荣衰减预测模型能更好地反映此次地震的影响场。将振幅最大的51GYD台的反应谱与我国抗震设计反应谱比较,采用最小二乘法拟合出不同震中距5个台站各周期谱加速度衰减特性,总结出此次地震的反应谱基本特征。运用H/V谱比法对51GYD土层台和62ZM台阵进行局部场地地震反应分析,研究覆盖土层对地震动的放大作用,及局部地形对峰值加速度和峰值速度的影响过程。  相似文献   

16.
2019年10月28日甘肃省夏河县发生5.7级地震,中国数字强震动台网的18个专业台站在此次地震中触发。本文处理捕获的54条三分向加速度记录,给出近场台站的地震动参数,绘制了震中附近区域峰值加速度等值线图,其长轴呈WN-ES方向展布。将实际观测数据与几种常用地震动衰减关系对比,发现俞言祥[1]短轴衰减预测模型能更好地反映此次地震的影响场。将振幅较大的62LBL、62BLX台的反应谱与我国抗震设计反应谱比较,采用最小二乘法拟合出不同震中距5个台站各周期谱加速度衰减特性,总结了此次地震的反应谱基本特征。运用H/V谱比法对4个典型台站进行场地地震反应分析,研究了局部场地条件对峰值加速度和峰值速度的影响过程。  相似文献   

17.
Displacement response spectrum (DRS), as the input, is of great significance to the displacement-based design just like the acceleration response spectrum to the traditional force-based design. Although the procedure of performance-based, in particular the displacement-based design has achieved considerable development, there is not a general DRS covering an enough long period range for common seismic design yet. This paper develops a systematic ground motion data processing procedure for the purpose of correcting the noise in the earthquake records and generating consistent DRS for seismic design. An adaptive algorithm is proposed to determine the cutoff frequency of the high-pass digital filter. The DRS of more than 500 recorded earthquake ground motions are generated and they are classified into three groups according to the ratio of the peak ground acceleration to the peak ground velocity (A/V) and/or the ratio of the peak ground velocity to the peak ground displacement (V/D). In each group, all the ground motions are normalized with respect to a selected scaling factor. Their corresponding DRS are obtained and then averaged to get the mean and standard deviation DRS, which can be used for both deterministic and probabilistic displacement-based design.  相似文献   

18.
There remains much uncertainty on the absolute elastic wave energy released by fault rupture. Few direct estimates of the partition of seismic wave energy in ground shaking have been made. In this work, ground particle velocities from integrated accelerograms are used to compute the kinetic energy crossing unit area per unit time. Simplified theory for the near-field strong-motion case would appear to give a valid lower energy bound; the wave attenuation does not present a major problem. The partition of energy in predominantly P, S, and surface wave portions, for given frequency windows, is tabulated using strong-motion accelerograms recorded at different azimuths to the fault-sources of six California earthquakes (5.5<M L<7.2). Checks against earlier magnitudeM L and momentM 0 correlations indicate significantly higher overall wave energy outputs than expected, but further calibration is needed.The study demonstrates that stable estimates of frequency-dependent seismic wave energies in the nearfield can be obtained from strong-motion records. Hence, energy flux may have a wider application to risk mapping than previously thought. In particular, a shift from peak acceleration scaling to (kinetic) energy inputs for engineering design appears to involve only routine processing.  相似文献   

19.
Ground motion models for the Molise region (Southern Italy)   总被引:1,自引:0,他引:1  
The aim of this paper is to evaluate empirical attenuation relationships in order to validate peak values and pseudo-velocity spectra to calibrate shaking scenarios for the Molise area, which was struck by two earthquakes of Mw=5.7 (INGV-Harvard European-Mediterranean Regional Centroid-Moment tensor project) on October 31st and November 1st, 2002. Before the earthquake occurrence this region was classified as not hazardous, according to the former Italian seismic code. After the main-shocks, felt in many towns of the Molise and Puglia regions, a strong motion and a seismic temporary network were installed in the epicentral area and surrounding regions. This allowed the collection of a large data set, useful to characterize this area. The joint velocity-acceleration data set has been used to derive ground motion models for peak ground acceleration, peak ground velocity, and pseudo-velocity response spectra for both maximum horizontal and vertical components of the motion.The results obtained for the Molise area have been compared with the attenuation pattern of the Umbria-Marche region (central Italy) and the Italian territory. Remarkable differences have been observed leading to a discussion of the possible regional dependence of ground motion.  相似文献   

20.
Following a brief overview of past applications of, and more recent advances on seismic microzonation, the results of a seismic microzonation study for the city of Chania, Greece, are presented. The study was based on Vs vs. depth profiles obtained at 19 sites of the urban area by performing SASW measurements. The spatial distribution of Vs values was utilized in estimating Vs30 values, depth to bedrock and the fundamental ground period variation across the area of the city as well as for conducting 1-D finite element non-linear inelastic site response analyses. The input earthquake excitations employed in the response analyses were based on the results of an available seismic hazard study for the Chania Area. The results of analyses were utilized for establishing the spatial distribution of rock motion amplification, the expected ground motions and spectral values in the area of the city. Contour maps providing values of the expected ground motion in the urban area are given which may become a practical tool in assessing the seismic risk and expected damage in the Chania area. The maps can also be used in the design of new earthquake resistant structures or the seismic retrofitting of existing ones. Finally, the results were utilized to demonstrate the inadequacy of using Vs,30 values for classifying the soil conditions in the Chania area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号