首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
地震滑坡会对自然环境和人民生活带来极大破坏,在大区域范围内对边坡遭受地震影响的程度进行评价判断,主要采用具有预测性质的潜在地震诱发滑坡危险性评估的方法。因此,深入研究边坡地震危险性分析的基本理论并作出符合实际的危险性分布图对工程建设和灾害防治具有较大意义。梳理并阐述具有预测性质的边坡地震危险性分析所需数据资料及各类数据的研究进展,将利用永久位移法进行边坡地震危险性评价所需数据归纳为三种:(1)边坡在地震影响下破坏程度的判定依据;(2)区域地震动参数如峰值加速度、阿里亚斯强度;(3)边坡坡体基本参数如黏聚力、摩擦角、重度、滑块厚度、坡角等。边坡地震危险性评价的准确程度与这三类数据的研究程度与准确性有关。文章对三类数据分别详细阐述各自的研究现状与成果应用,最后分析理论存在的部分问题以及以后的研究方向。  相似文献   

2.
The M w = 8.0 Wenchuan earthquake of May 12, 2008, caused destruction over a wide area. The earthquake cost more than 69,000 lives and the damage is reported to have left more than 5 million people homeless. It is estimated that 5.36 million buildings were destroyed and 21 million buildings were damaged in Sichuan and the nearby provinces. Economic losses due to the event are estimated to be 124 billion USD. From a field reconnaissance trip conducted in October 2008, it is evident that the combination of several factors, including mountainous landscape, strong ground shaking, extensive landslides and rock-falls, has exacerbated the human and economic consequences of this earthquake. Extensive damage occurred over a wide area due to the shear size of the earthquake rupture combined with poor quality building construction. In order to investigate the ground shaking during the earthquake, we have conducted a strong ground motion simulation study, applying a hybrid broadband frequency technique. The preliminary results show large spatial variation in the ground shaking, with the strongest ground motions along the fault plane. The simulation results have been calibrated against the recorded ground motion from several near-field stations in the area, and acceleration values of the order of 1 g are obtained, similar to what was recorded during the event. Comparison with the damage distribution observed in the field confirms that the effect of fault rupture complexity on the resulting ground motion distribution also controls to a large extent the damage distribution. The applied simulation technique provides a promising platform for predictive studies.  相似文献   

3.
利用高分辨率无人机航拍影像,结合基本地质资料,分析了影响2014年8月3日鲁甸M_S6.5地震震后崩塌滑坡分布的主要因素,使用M5'模型树算法建立了崩塌滑坡密度与其影响因子间的分段线性模型,并检验了该模型的预测性能。结果表明,地震诱发的崩塌滑坡分布受断层距、岩土体结构强度、坡度、植被条件等的影响,其中,断层距、岩土体结构强度及坡度等为主要影响因素;崩塌滑坡易发生在结构破裂区及坡度为38°~50°的区域,其分布密度随断层距的增加而减小;利用M5'模型树算法建立的模型体现出崩塌滑坡分布与其影响因子间复杂的非线性关系,模型检验结果显示,理论模型与实际关联函数间的相关系数达到0.88,因此,可利用该模型预测地震诱发的崩塌滑坡的分布。  相似文献   

4.
5.
潜在地震滑坡危险区区划方法   总被引:5,自引:0,他引:5       下载免费PDF全文
不同地区地震活动的强度和频率是不同的.基于地震危险性分析的地震滑坡危险研究在综合了地震烈度、位置、复发时间等因素的基础上,考虑了地震动峰值加速度时空分布的特点,可以有效地应用于潜在地震滑坡危险区区划.以汶川地震灾区为研究对象,根据研究区的地质构造、地震活动特点等划分出灾区的潜在震源区,对该区进行地震危险性分析,并在此基础上采用综合指标法做出基于地震危险性分析的地震滑坡危险性区划.所得地震滑坡危险性区划按照滑坡危险程度分为高危险、较高危险、较低危险和低危险四级,表示未来一段时间内研究区在遭受一定超越概率水平的地震动作用下,不同地区地震滑坡发生的可能程度. 本文给出的地震滑坡危险性区划结果中,汶川地震滑坡崩塌较发育的汶川、北川、茂县等部分区域均处于高危险或较高危险区域;在对具有较高DEM精度的北川擂鼓镇地区所作的地震滑坡危险性区划中,汶川地震中实际发生的地震滑坡灾害与地震滑坡危险区划结果表现出较好的一致性.对区域范围而言,基于地震危险性分析的地震滑坡区划,可为初期阶段的土地规划使用及重大工程选址提供参考.  相似文献   

6.
Three sites in the UK are taken, representative of low, medium and high hazard levels (by UK standards). For each site, the hazard value at 10−4 annual probability is computed using a generic seismic source model, and a variety of ground motion parameters: peak ground acceleration (PGA), spectral acceleration at 10 Hz and 1 Hz, and intensity. Disaggregation is used to determine the nature of the earthquakes most likely to generate these hazard values. It is found (as might be expected) that the populations are quite different according to which ground motion parameter is used. When PGA is used, the result is a rather flat magnitude distribution with a tendency to low magnitude events (\le 4.5 ML) which are probably not really hazardous. Hazard-consistent scenario earthquakes computed using intensity are found to be in the range 5.8–5.9 ML, which is more in accord with the type of earthquake that one expects to be a worst-case event in the UK. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
本文以汶川地震滑坡震害为例, 设计一种方法, 对几个反映不同地震动特性的地震动参数与地震滑坡灾害的相关性进行了分析比较.结果表明: Arias强度参数与地表破坏的相关性最好, 该参数比较适合小区域范围的震害预测评估; 峰值加速度与地表破坏的相关性较好, 但更适合作为较大区域的震害评估参数; 与持时和频率有关的参数对于具体场地的震害机理分析具有辅助作用; 垂向地震动对滑坡震害的作用不容忽视. 本文结论对于其它震害相关研究中评估因子的选取具有参考意义.   相似文献   

8.
The stochastic method for finite faults is applied to simulate the ground motion of the 12 October 1992, m b = 5.9, Dahshour earthquake. The method includes discritization of the fault plane into certain number of subfaults, and a ω-squared spectrum is assigned to each of them. Contributions from all subfaults are then empirically attenuated to the observation sites, where they are summed to produce the synthetic acceleration time-history. The method is first tested against its ability of reproducing the recording at Kottamya station. The calibrated model is then applied to calculate the synthetics at a large number of grid points covering the area around the fault plane. Simulated peak values are subsequently used to produce the synthetic peak horizontal acceleration map for the area. We compare the peak horizontal acceleration with the attenuation laws proposed for Egypt as well as the macroseismic intensity map of the 1992 Dahshour earthquake. The peak horizontal acceleration contours estimated using the calibrated model are mostly consistent with the observed intensity values and evidences of strong ground motions. Our results encourage the application of the approach as a supplementary tool for site-specific strong ground motion prediction.  相似文献   

9.
We analyze the strong motion accelerograms of the moderate (M w = 6.1), March 31, 2006, Darb-e-Astane earthquake of western Iran and also those of one of its prominently recorded, large (M w = 5.1) foreshock and (M w = 4.9) aftershock. (1) Using derived SH-wave spectral data, we first objectively estimate the parameters W o\mathit{\Omega} _{\rm o} (long period spectral level), f c (corner frequency) and Q(f) (frequency dependent, average shear wave quality factor), appropriate for the best-fit Brune ω  − 2 spectrum of each of these three events. We then perform a non-linear least square analysis of the SH-wave spectral data to provide approximate near-field estimates of the strike, dip, and rake of the causative faults and also the seismic moment, moment magnitude, source size, and average stress drop of these three events. (2) In the next step, we use these approximate values and an empirical Green’s function approach, in an iterative manner, to optimally model the strong ground motion and rupture characteristics of the main event in terms of peak ground acceleration/velocity/displacement and duration of ground shaking and thereby provide improved, more reliable estimates of the causative fault parameters of the main event and its asperities. Our near-field estimates for both the main moderate event and the two smaller events are in good conformity with the corresponding far-field estimates reported by other studies.  相似文献   

10.
2019年10月28日甘肃省夏河县发生5.7级地震,中国数字强震动台网的18个专业台站在此次地震中触发。本文处理捕获的54条三分向加速度记录,给出近场台站的地震动参数,绘制了震中附近区域峰值加速度等值线图,其长轴呈WN-ES方向展布。将实际观测数据与几种常用地震动衰减关系对比,发现俞言祥[1]短轴衰减预测模型能更好地反映此次地震的影响场。将振幅较大的62LBL、62BLX台的反应谱与我国抗震设计反应谱比较,采用最小二乘法拟合出不同震中距5个台站各周期谱加速度衰减特性,总结了此次地震的反应谱基本特征。运用H/V谱比法对4个典型台站进行场地地震反应分析,研究了局部场地条件对峰值加速度和峰值速度的影响过程。  相似文献   

11.
1936年4月1日广西灵山县平山镇东南罗阳山附近发生M6 3/4 地震,该地震是华南大陆自有地震记载以来发生的最大地震。本研究收集整理了灵山M6 3/4 地震的地质资料、活动断层探测最新成果等,选取适当的研究区域,利用随机振动有限断层模型计算区域内网格点的峰值加速度(PGA)及峰值速度(PGV)等参数,并且加入浅层横波速度结构V30s对地震动参数的影响,最终得到此次地震的地震动分布并分析了地震动特征。本研究将模拟结果与野外调查烈度数据和地震动衰减关系进行对比,结果显示模拟结果与调查烈度值和衰减关系在整体衰减特征、极震区的分布等方面均符合较好,模拟结果可为该地区未来地震危害性评估提供依据。本研究所使用的方法流程亦可应用于本地区地震烈度速报,为震后应急救援及决策指挥提供帮助。  相似文献   

12.
A method for constructing seismic slope failure probability matrices is presented. The core of the method is a probabilistic sliding block model which allows for systematic incorporation of the uncertainties associated with both the ground excitation and the strength of the slope materials. The extent of damage to a slope is defined in terms of the magnitude of the earthquake-induced permanent displacement. The intensity of the ground shaking is characterized by a peak ground acceleration as well as an earthquake magnitude, and the possible scatter in the ground motion details is included through the use of an equivalent stationary motion model. After the effects of essential contributing factors are discussed, regional seismic slope failure probability matrices are presented for general applications.  相似文献   

13.
以编制《中国地震动参数区划图》时所构建的地震潜在震源区模型和地震活动性模型为基本输入,在四川省丹棱县及其周缘地区开展基于阿里亚斯烈度的概率地震危险性分析,计算50年超越概率10%的阿里亚斯烈度(Arias Intensity,Ia)。结果表明:丹棱县及其周缘绝大部分地区的Ia值都在0.11m/s以上,部分地区在0.32m/s甚至0.54m/s以上,具有较高的地震诱发滑坡风险,应当加强人员密集区的地震诱发滑坡危险性评估。根据不同Ia预测方程计算得到的Ia分布有较大差异,因此在计算Ia时应考虑多个Ia预测方程,对最终结果进行加权平均,以减小Ia结果的不确定性。同时还发现Ia值与1.0s的谱加速度具有很好的相关性,这也印证了Ia和1.0s谱加速度与砂土液化的相关性。  相似文献   

14.
El-Fayoum New City represents one of the new urban settlements that are recently erected all over Egypt. Because seismic recordings are not available, I used the stochastic method to simulate the largest damaging earthquake from the closest seismic source to the proposed area of the city. To verify the method and its computed results in Egypt, a study termed “method verification” was performed. I found that the October 12, 1992, earthquake (M b = 5.8) that occurred southwest of Cairo in the vicinity of the Dahshour region, at the coordinates 29.77°N, 31.07°E, is a significant earthquake to the city. The parameters of the path from the hypocenter of the event to the city were taken into consideration. To determine the site parameters, a shallow seismic refraction survey was carried out in the studied area. Accordingly, I simulated time-histories and pseudo-spectral accelerations from the October 12, 1992, earthquake at the location of seismic profiles. Finally, it is demonstrated that the site is characterized by high ground motion amplification factors, producing a high ground motion acceleration value.  相似文献   

15.
2018年9月12日陕西省宁强县发生5.3级地震,中国数字强震动台网的39个专业台站在此次地震中触发。文章中通过处理捕获的117条三分向加速度记录,给出近场台站的地震动参数,绘制震中附近区域峰值加速度等值线图,其长轴呈西南-东北方向展布。采用实际观测数据与几种常用地震动衰减关系对比,发现霍俊荣衰减预测模型能更好地反映此次地震的影响场。将振幅最大的51GYD台的反应谱与我国抗震设计反应谱比较,采用最小二乘法拟合出不同震中距5个台站各周期谱加速度衰减特性,总结出此次地震的反应谱基本特征。运用H/V谱比法对51GYD土层台和62ZM台阵进行局部场地地震反应分析,研究覆盖土层对地震动的放大作用,及局部地形对峰值加速度和峰值速度的影响过程。  相似文献   

16.
Different models were developed for evaluating the probabilistic three-dimensional (3D) stability analysis of earth slopes and embankments under earthquake loading using both the safety factor and the displacement criteria of slope failure. In the 3D analysis, the critical and total slope widths become two new and important parameters.The probabilistic models evaluate the probability of failure under seismic loading considering the different sources of uncertainties involved in the problem, i.e. uncertainties stemming from the discrepancies between laboratory-measured and in-situ values of shear strength parameters, randomness of earthquake occurrence, and earthquake-induced acceleration. The models also takes into consideration the spatial variabilities and correlations of soil properties.Five probabilistic models of earthquake-induced displacement were developed based on the non-exceedance of a limited value criterion. Moreover, a probabilistic model for dynamic slope stability analysis was developed based on 3D dynamic safety factor.These models are formulated and incorporated within a computer program (PTDDSSA).A sensitivity analysis was conducted on the different parameters involved in the developed models by applying those models to a well-known landslides (Selset landslide) under different levels of seismic hazard.The parametric study was conducted to evaluate the effect of different input parameters on the resulting critical failure width, 3D dynamic safety factor, earthquake-induced displacement and the probability of failure. Input parameters include: average values and coefficients of variations of water table, cohesion and angle of friction for effective stress analysis, scales of fluctuations in both distance and time, hypocentral distance, earthquake magnitude, earthquake strong shaking period, etc.The hypocentral distance and earthquake magnitude were found to have major influence on the earthquake-induced displacement, probability of failure (i.e. probability of allowable displacement exceedance), and dynamic 2D and 3D safety factors.  相似文献   

17.
Abstract The Chi‐chi earthquake (MS = 7.7), which occurred in September 1999, seriously damaged central Taiwan. Approximately 2 years later (July 2001), the Toraji typhoon brought a heavy rainstorm (650 mm rain/day) and triggered widespread landslides in central Taiwan and parts of eastern Taiwan. Approximately 10 000 Chi‐chi earthquake‐induced landslides and 6000 Toraji typhoon‐related mass movements were delineated in an area of 2400 km2 using Satellite Pour l’Observation de la Terre (SPOT; French earth resource satellite) images. The landslide distribution could be closely related to the distribution of peak ground acceleration registered during the Chi‐chi earthquake. The study area was composed of Tertiary sedimentary and metamorphic rocks, whose age and induration increased eastward. The earthquake‐induced landslides were mostly distributed in the region between the Chelungpu Fault and the Lishan Fault to the east, whereas they were few in the region east of the Lishan Fault. The Toraji typhoon in 2001 severely damaged both regions that had been shattered by the Chi‐chi earthquake in 1999. The occurrence of earthquake‐induced landslides can be correlated with epicentral distance, and their occurrence has more influence from the rock type than from the ground motion.  相似文献   

18.
A complete landslide inventory and attribute database is the importantly fundamental for the study of the earthquake-induced landslide. Substantial landslides were triggered by the MW7.9 Wenchuan earthquake on May 12th, 2008. Google Earth images of pre- and post-earthquakes show that 52 194 co-seismic landslides were recognized and mapped, with a total landslides area of 1 021 km2.Based on the statistics,we assigned all landslide parameters and established the co-seismic landslides database, which includes area, length, and width of landslides, elevation of the scarp top and foot edge, and the top and bottom elevations of each located slope. Finally, the spatial distribution and the above attribute parameters of landslides were analyzed. The results show that the spatial distribution of the co-seismic landslides is extremely uneven. The landslides that mainly occur in a rectangular area (a width of 30 km of the hanging wall of the Yingxiu-Beichuan fault and a length of 120 km between Yingxiu and Beichuan) are obviously controlled by surface rupture, terrain, and peak ground acceleration. Meanwhile, a large number of small landslides (individual landslide area less than 10 000 m2)contribute less to the total landslides area. The number of landslides larger than 10 000 m2 accounts for 38.7% of the total number of co-seismic landslides, while the area of those landslides account for 88% of the total landslides area. The 52 194 co-seismic landslides are caused by bedrock collapse that usually consists of three parts:source area, transport area, and accumulation area. However, based on the area-volume power-law relationship, the resulting regional landslide volume may be much larger than the true landslide volume if the landslide volume is calculated using the influenced area from each landslide.  相似文献   

19.
利用《中国地震动参数区划图》采用的地震动参数衰减关系,以及《中国地震动参数区划图》中地震动峰值加速度和地震动加速度反应谱特征周期反推不同设防烈度和设计地震分组对应的震级和震中距,再根据《建筑抗震设计规范》中各设防水准的峰值加速度确定对应的震级和震中距,进而根据地震动强度包线参数与震级和震中距关系计算地震动强度包线参数的取值,为基于强度包线函数生成人工地震动提供参考,并讨论强度包线参数的取值规律:(1)随着设防烈度的提高,加速度时程曲线上升段持续时间t1和平稳段持续时间ts减小,下降段衰减指数c增大;(2)随着地震水准和设计地震分组的提高,加速度时程曲线上升段持续时间t1和平稳段持续时间ts增加,下降段衰减指数c减小;(3)在生成人工地震动时,除考虑峰值加速度和设计地震分组影响外,还需要考虑设防烈度影响。  相似文献   

20.
In this study near field strong ground motion generation of Mw 6.9 scenario events on Gemlik Bay was presented at broadband frequency (0.5–10 Hz) ground motion at 9 stations. In the first stage of the study, focal mechanism of a small earthquake, which was used as the Empirical Green’s Function (EGF) throughout the scenario simulation, was decided by simulating it with a smaller magnitude event. The best waveform fitting was judged with the smallest misfit value. In the second stage, near field ground motion simulation of scenario events was performed. Calculations were achieved by considering three different rupture processes which have the same magnitude but different asperity locations. Fault and asperity parameters for each scenario were determined from empirical scaling laws. It has been found that the peak ground acceleration and peak ground velocities reach maximum values of 1,440 cm/s2 and 125 cm/s, respectively for the worst case scenario. Rupture directivity effect is observed with clear peaks at a forward station. The design spectra for Turkish seismic design code (TSDC 2007) were either nearly or actually exceeded by the scenario earthquakes at periods lower than 0.6  s at all near field stations. Majority of structures in the area were built to lower design spectra before the 1998 code was implemented. The strength of many structures would have been insufficient to resist the forces that may be generated by an earthquake that is similar to Scenario I and Scenario II in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号