首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High alpine karst plateaus are recharge areas for major drinking water resources in the Alps and many other regions. Well-established methods for the vulnerability mapping of groundwater to contamination have not been applied to such areas yet. The paper characterises this karst type and shows that two common vulnerability assessment methods (COP and PI) classify most of the areas with high vulnerability classes. In the test site on the Hochschwab plateau (Northern Calcareous Alps, Austria), overlying layers are mostly absent, not protective or even enhance point recharge, where they have aquiclude character. The COP method classifies 82% of the area as highly or extremely vulnerable. The resulting maps are reasonable, but do not differentiate vulnerabilities to the extent that the results can be used for protective measures. An extension for the upper end of the vulnerability scale is presented that allows identifying ultra vulnerable areas. The proposed enhancement of the conventional approach points out that infiltration conditions are of key importance for vulnerability. The method accounts for karst genetical and hydrologic processes using qualitative and quantitative properties of karst depressions and sinking streams including parameters calculated from digital elevations models. The method is tested on the Hochschwab plateau where 1.7% of the area is delineated as ultra vulnerable. This differentiation could not be reached by the COP and PI methods. The resulting vulnerability map highlights spots of maximum vulnerability and the combination with a hazard map enables protective measures for a manageable area and number of sites.  相似文献   

2.
Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC   总被引:2,自引:0,他引:2  
The main usefulness of groundwater vulnerability assessment maps is their ability to be an effective preliminary tool for planning, policy, and operational levels of decision-making. DRASTIC is one such assessment method. The DRASTIC index is made up of a calculated sum of products rating and weights for seven hydrogeological parameters that contribute to aquifer vulnerability. With the help of GIS, and based on the available data, maps of DRASTIC parameters were prepared for the Gaza Strip area in a case study. Each map was given a proper rate and a special weight factor developed. The final vulnerability map was obtained as a summation of the seven maps after multiplying each one with the appropriate weight. The vulnerability map was checked against the actual pollution potential in the area and nitrate concentration. The obtained vulnerability map is strongly correlated to known pollution values in the area.  相似文献   

3.
 The concept of groundwater vulnerability is a useful tool for environmental planning and decision-making. Many different methods have been developed for assessing this vulnerability. Hydrogeologists have failed to reach a consensus concerning the definitions of and reference terms for groundwater vulnerability assessment. Therefore, a review of vulnerability assessment and mapping methods providing a new classification system is necessary. This is focused on techniques that use the overlay and index class methods. New research challenges in vulnerability assessment are identified, especially the need for developing dynamic links between numerical models and overlay and index methods. Received: 28 October 1998 · Accepted: 31 May 1999  相似文献   

4.
This study outlines an improved method, MLPI (modified leaching potential index) model, for delineating and mapping groundwater vulnerability and assessing groundwater vulnerability to contaminants, including degradable contaminants, radioactive elements and nondegradable pollutants. The primary objective is to produce specific sensitivity maps at city or county scale that can be used for recognition of aquifer sensitivity and for protection of groundwater quality. Groundwater vulnerability assessment using the MLPI method is applied to Datong city, Shanxi Province, with the following conclusions: (1) specific vulnerability was differentiated and ; (2) groundwater vulnerability is of temporal variation.  相似文献   

5.
Aquifer vulnerability assessment techniques have been developed to predict which areas are more likely than others to become contaminated as a result of activities at or near the land surface. This research focuses on the evaluation of groundwater vulnerability to pollution in an urban area. Among several assessment methods, DRASTIC has been selected for this study. ArcGIS has been used to overlay and calculate different layers and obtain the vulnerability map. In order to show the importance of fuzzy algorithms in classification, both Boolean and fuzzy algorithms were used and compared. The fuzzy algorithm could recognize the areas with low and negligible vulnerability potentials whereas the Boolean model classified them as moderate. Two sensitivity tests, the map removal sensitivity analyses and single-parameter sensitivity analysis, were performed to show the importance of each parameter in the index calculation.  相似文献   

6.
Three different parametric methods for the evaluation of intrinsic vulnerability to pollution have been applied in a hydrothermal carbonate aquifer located in central-northern Italy and the results obtained were compared with each other. The study area, large, approximately 152 km2, lies in an area of the northern Apennines. The investigated aquifer feeds the hot thermal springs of Saturnia. The vulnerability assessment methods used are: SINTACS, GODS and COP. The vulnerability maps obtained were first individually examined, and then they were compared with each other by means of spatial analysis. These maps show similar results for the estimation of the vulnerability just in some areas. SINTACS yields areas potentially vulnerable to pollution along the Albegna River and its major tributaries in the northern part of the study area. The GODS index map reflects the great importance that this method gives to the lithological characteristics of the unsaturated zone in the subdivision of areas with different vulnerability. GODS and COP methods agree in classifying low vulnerability in the most part of central-southern study area, where the aquifer is confined by the Pliocene clay deposits. Based on the conceptual model of groundwater flow developed for the aquifer under investigation, COP seems the most appropriate method among those applied in this work, in particular with regard to the assessment of the vulnerability of the recharge area of thermal groundwater. Located in the northern part of the study area, where karst carbonate formations of the Tuscan Nappe outcrop, this recharge area is classified by the COP method as highly vulnerable to pollution.  相似文献   

7.
为了科学评价城市地震灾害状况,降低城市易损性,基于压力-状态-响应模型框架,构建城市地震综合易损性评价指标体系,其中压力类、状态类、响应类指标分别为7、13、8项。应用熵权法确定了各评价指标的权重,提出基于云模型的城市综合易损性评价模型,并运用雷达图分析法实现城市内各个区综合易损性的相对高低。应用上述方法,对兰州市中心城区进行了震害综合易损性评价,结果表明:兰州市综合易损性等级偏向Ⅲ级,易损性中等,其中红古、安宁区的易损性程度较高,城关、七里河易损性程度较低;经济因素对各区域的易损性影响较大,通过对易损区域加强管理建设,提高城市的防震减灾能力。  相似文献   

8.
The time-input method provides a new approach to evaluating groundwater vulnerability especially in mountainous areas. Its main factors are: (1) the travel time from the surface to groundwater (about 60%) enhanced by (2) the amount of input as groundwater recharge (about 40%). In contrast to other assessment schemes comparable to this method, the vulnerability is expressed in real time and not classified by dimensionless numbers with the advantage that the credibility of results is easier to check and the evaluation process is more transparent. The Index-Method was applied in a well-studied forested dolomitic karst area in the front range of the Austrian Northern Calcareous Alps. The aspect and the dip of the bedding planes towards or away from the groundwater have been included in this method. These are additional to the traditionally chosen investigation layers such as vegetation, slope inclination, thickness of soil, unconsolidated sediment and unsaturated rock, and fault zones.  相似文献   

9.
There is an increasing demand for groundwater vulnerability maps which illustrate the exposure of aquifers against pollution. These maps show areas of greatest potential for groundwater contamination on the basis of local subsurface conditions. Parameters affecting vulnerability are mainly permeability and thickness of each protective layer. For unconsolidated sediments, the permeability is strongly related to the clay content, which can be deduced from indirect resistivity methods, like electrical-imaging. Such geophysical methods can be of great help in groundwater vulnerability studies because they disturb neither the structure nor the dynamics of the soil. Sensibility analysis was performed of the electrical resistivity tomography method for accurately mapping soil media. Managers and public administrators may effectively use this method for assessing the potential risk of groundwater contamination. In the studied zone, electrical resistivity exhibits a wide range of variability that can be easily correlated to soil parameters, such as clay content and hydraulic conductivity. A numerical index of protection has been assessed from the geophysical information derived from 2D electrical resistivity tomography. This work represents a preliminary approach on the natural vulnerability evaluation of shallow aquifers at the Empordà basin (NE Spain) that is highly affected by diffuse pollution by nitrates.  相似文献   

10.
The southeast area of the Argentine Pampas is characterized by the presence of an unconfined aquifer in a wide plain. A methodology is proposed that deals with the aquifer vulnerability where the homogeneity of the hydrogeological variables used by traditional methods (in this case, DRASTIC-P) causes vulnerability maps to show more than 80% of the territory under the same class. This absence of discrimination renders vulnerability maps of little use to decision-makers. In addition, the proposed methodology avoids the traditional vague classification (high, low, and moderate vulnerability) which is highly dependent on subjectivity in its association of each class with hydrogeological considerations. That traditional vulnerability assessment methodology was adapted using a geographic information system to reclassify classes, based on the Natural Breaks (Jenks) method. The pixel-to-pixel comparison between the result obtained by the DRASTIC-P and the reclassified classes generates the so-called operational vulnerability index (OVI), which shows four classes, associating each with different hydrogeological requirements to make decisions.  相似文献   

11.
12.
The assessment of groundwater vulnerability to pollution aims at highlighting areas at a high risk of being polluted. This study presents a methodology, to estimate the risk of an aquifer to be polluted from concentrated and/or dispersed sources, which applies an overlay and index method involving several parameters. The parameters are categorized into three factor groups: factor group 1 includes parameters relevant to the internal aquifer system’s properties, thus determining the intrinsic aquifer vulnerability to pollution; factor group 2 comprises parameters relevant to the external stresses to the system, such as human activities and rainfall effects; factor group 3 incorporates specific geological settings, such as the presence of geothermal fields or salt intrusion zones, into the computation process. Geographical information systems have been used for data acquisition and processing, coupled with a multicriteria evaluation technique enhanced with fuzzy factor standardization. Moreover, besides assigning weights to factors, a second set of weights, i.e., order weights, has been applied to factors on a pixel by pixel basis, thus allowing control of the level of risk in the vulnerability determination and the enhancement of local site characteristics. Individual analysis of each factor group resulted in three intermediate groundwater vulnerability to pollution maps, which were combined in order to produce the final composite groundwater vulnerability map for the study area. The method has been applied in the region of Eastern Macedonia and Thrace (Northern Greece), an area of approximately 14,000 km2. The methodology has been tested and calibrated against the measured nitrate concentration in wells, in the northwest part of the study area, providing results related to the aggregation and weighting procedure.  相似文献   

13.
A simplified methodology for mapping groundwater vulnerability and contamination risk is proposed, and the first application of the methodology, in a mountainous tropical karst area, is presented. The test site is the Tam Duong area, one of the poorest and remotest regions in northern Vietnam. The methodology requires a minimum of input data, which makes it particularly useful for developing countries. Vulnerability is assessed on the basis of two factors, which take into account the duality of recharge processes in karst aquifer systems: the overlying layers (O) and the concentration of flow (C). The risk map is obtained by putting together the vulnerability map and a simplified hazard assessment. The resulting maps provide a basis for groundwater protection zoning and land-use planning. Tracer tests and microbiological data confirmed the vulnerability and risk assessment in the test site.  相似文献   

14.
地下水脆弱性研究综述   总被引:2,自引:0,他引:2  
地下水脆弱性评价是合理开发利用和保护水资源的基础,主要用于地下水保护。综述了地下水脆弱性的概念,评价指标体系以及评价方法,提出了地下水脆弱性评价过程中存在的一些问题,并预测灰色理论,模糊优选识别理论,神经网络法等先进的方法及思路会在未来的地下水脆弱性评价中广泛应用。  相似文献   

15.
Vulnerability and disaster risk assessment has been evaluated from different perspectives with focus on global or national scale. There is a lack of methodologies on city scale, which are able to capture inner-city disparities with regard to socioeconomic aspects. Therefore, the main objective was to develop a transparent and comprehensive indicator-based approach which is flexible in terms of data availability and is not tied to a specific case study side. This research proposes two flexible methodological approaches on how to perform socioeconomic vulnerability assessment. Susceptibility, Coping and Adaptation are the main elements of a modular hierarchical structure to capture the societal sphere of vulnerability. The first method is completely based on official census data at block scale. The second method is an expansion and includes data derived from a field survey to add components of risk perception. The proposed methodologies were developed and applied in the city of Genoa (Italy). The results are displayed spatially explicit on maps. Furthermore statistical analysis, to reveal the driving forces which influence vulnerability, was performed. The census-based approach revealed that vulnerability is forced along the river by the inherent susceptibility, as well as the lack of adaptation. The two approaches can be used effectively in gaining different insights. The flexibility of the framework proved to be suitable to the objective of the research. However, the values computed in this research do not claim completeness, and the aim was to provide useful information for stakeholders in decision making process to reduce vulnerability and risk.  相似文献   

16.
In this paper, groundwater aquifer vulnerability map has been developed by incorporating the major geological and hydro-geological factors that affect and control the groundwater contamination using GIS based DRASTIC model. This work demonstrates the potential of GIS to derive a map by overlying various spatially referenced digital data layers that portrays cumulative aquifer sensitivity ratings across the Kathmandu Valley, Nepal, providing a relative indication of groundwater vulnerability to contamination. In fact, the groundwater is the major natural resources in Kathmandu for drinking purpose. The decline in groundwater levels due to the over exploitation and thus extracted water from shallow aquifer has been contaminated by the infiltration of pollutants from polluted river and land surface is continuous and serious. As the demand for water for human and industrial use has escalated and at the same time, the engineering and environmental costs are much higher for new water supplies than maintaining the existing sources already in use. Management of groundwater source and protecting its quality is therefore essential to increase efficient use of existing water supplies. Aquifer vulnerability maps developed in this study are valuable tools for environmental planning and predictive groundwater management. Further, a sensitivity analysis has been performed to evaluate the influence of single parameters on aquifer vulnerability assessment such that some subjectivity can be reduced to some extent and then new weights have been computed for each DRASTIC parameters.  相似文献   

17.
Four methods of groundwater vulnerability mapping have been applied in a Slovene karst catchment and validated by tracer tests. The test site is characterised by high water table fluctuations, manifested in intermittent lakes and variable drainage divides. A first multi-tracer test (two injections) allowed subdivision of the catchment into zones of different degrees of contribution (‘inner zone’ and ‘outer zone’). For vulnerability mapping, only methods that consider the specific nature of karst aquifers such as heterogeneity and duality of infiltration processes, were selected: EPIK, PI, the ‘Simplified Method’ and the ‘Slovene Approach’. For validation, a second multi-tracer test (four injections) was carried out. The time of first detection and the normalised recovery were used as validation criteria. The results suggest that EPIK and the Simplified Method sometimes overestimate vulnerability, while PI and the Slovene Approach tend to deliver more realistic results, at least during low-flow conditions. The Slovene Approach gives the clearest guidance on how to deal with hydrologic variability, for example by assigning lower vulnerability to occasionally active sinking surface waters than to permanent ones. As a conclusion, commonly accepted validation techniques are needed and should be applied by default to evaluate different vulnerability mapping methods and the resulting maps.  相似文献   

18.
Based on the special hydrogeological conditions of the Dahei River Plain in the Inner Mongolia area, assessment of shallow groundwater vulnerability is conducted based on DRASTIC model. Each evaluation indicator weight is determined by using analytic hierarchy process (AHP). The most important indicators are lithology in soil media and vadose zone. Assessment model of shallow groundwater vulnerability of the Dahei River plain is constructed. Distribution map of vulnerability index in this area is made with the spatial analysis function of ARCGIS. The results show that the particularly sensitive area is the piedmont of the Daqing Mountain, where the upstream place of the groundwater and the south-central place of the plain has the lowest vulnerability. The assessment results are more in accordance with the actual vulnerability conditions of this area by using analytic hierarchy process, and is helpful for groundwater protection.  相似文献   

19.
Indexing methods are used for the evaluation of aquifer vulnerability and establishing guidelines for the protection of ground-water resources. The principle of the indexing method is to rank influences on groundwater to determine overall vulnerability of an aquifer to contamination. The analytic element method (AEM) of ground-water flow modeling is used to enhance indexing methods by rapidly calculating a potentiometric surface based primarily on surface-water features. This potentiometric map is combined with a digital-elevation model to produce a map of water-table depth. This is an improvement over simple water-table interpolation methods. It is physically based, properly representing surface-water features, hydraulic boundaries, and changes in hydraulic conductivity. The AEM software, SPLIT, is used to improve an aquifer vulnerability assessment for a valley-fill aquifer in western New York State. A GIS-based graphical user interface allows automated conversion of hydrography vector data into analytic elements.  相似文献   

20.
岩溶塌陷是山东省临沂市区最重要的地质灾害类型,一旦发生,会带来较大的经济和财产损失,因此对岩溶塌陷的风险评价十分必要。风险评价包括现状评价和预测评价,主要分3个步骤来完成:危险性评价,易损性评价和期望损失评价。利用地下水流模型确定调采方案下的相关评价因子,预测了岩溶塌陷的风险性。通过比较发现,经过地下水调采后,原岩溶塌陷高风险区范围大为缩小。地下水流数值模型和风险评价方法结合,可以确定合理的岩溶水规划开采方案,对于指导和防治岩溶塌陷具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号