首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The depth-related distribution of seastar (Echinodermata: Asteroidea) species between 150 and 4950 m in the Porcupine Seabight and Porcupine Abyssal Plain is described. 47 species of asteroid were identified from ∼14,000 individuals collected. The bathymetric range of each species is recorded. What are considered quantitative data, from an acoustically monitored epibenthic sledge and supplementary data from otter trawls, are used to display the relative abundance of individuals within their bathymetric range. Asteroid species are found to have very narrow centres of distribution in which they are abundant, despite much wider total adult depth ranges. Centres of distribution may be skewed. This might result from competition for resources or be related to the occurrence of favourable habitats at particular depths. The bathymetric distributions of the juveniles of some species extend outside the adult depth ranges. There is a distinct pattern of zonation with two major regions of faunal change and six distinct zones. An upper slope zone ranges from 150 to ∼700 m depth, an upper bathyal zone between 700 and 1100 m, a mid-bathyal zone from 1100 to1700 m and a lower bathyal zone between 1700 and 2500 m. Below 2500 m the lower continental slope and continental rise have a characteristic asteroid fauna. The abyssal zone starts at about 2800 m. Regions of major faunal change are identified at the boundaries of both upper and mid-bathyal zones and at the transition of bathyal to abyssal fauna. Diversity is greatest at ∼1800 m, decreasing with depth to ∼2600 m before increasing again to high levels at ∼4700 m.  相似文献   

2.
The paper describes new deep-water edwardsiid sea anemone Edwardsia sojabio sp. n. which is very common on soft muddy bottoms at lower bathyal and upper abyssal depths in the Sea of Japan. It was recorded in high quantity in depths between 2545 and 3550 m and is the second abyssal species of the genus Edwardsia.  相似文献   

3.
In the framework of the deep-sea environmental programme BIOZAIRE (Ifremer-Total), colonization trays were deployed for 283–433 days at three sites along the equatorial West African margin: ZA at 1300-m depth, ZC at 4000-m depth far from the Congo canyon and ZD at 4000-m depth close to the Congo canyon. The experiments aimed at determining the influence of depth and local environmental settings on macrofaunal colonization patterns and organic carbon degradation rates. The trays were filled with glass beads and this artificial substrate was enriched with ground particulate organic matter in a gradient of 0%, 0.34%, 1.02% and 3.43% organic carbon. The highest rates of organic carbon degradation ranged, according to the duration of the experiments, from 1.59 to 2.36 gC m−2 day−1 but were independent of depth or location. Colonization rates, conversely, varied by one order of magnitude between bathyal and abyssal experiments. The influence of experimental treatments on the structure of the colonizing macrofauna also varied according to location and depth. At ZA, colonization patterns were highly predictable and driven by a shift in dominance of opportunistic taxa along the enrichment gradient. To a lesser extent, this was also true at ZD, near the Congo canyon, while at ZC the treatments had no significant effect on the composition of the colonizing fauna. At abyssal depth, high rates of organic matter degradation associated with low rates of colonization suggested that pulse of organic matter would mainly benefit the resident community. At bathyal depth, high colonization rates of a specialized fauna might conversely play an important role in the functioning of the ecosystem. The regional and local coexistence of an opportunistic fauna via a spatial storage effect associated with dispersal might significantly contribute to the maintenance of high diversity on continental margins.  相似文献   

4.
The mid-domain effect was tested to evaluate the bathymetric patterns of the polychaete species richness in the Upper and Lower Gulf of California as a possible hypothesis to explain the species richness gradient, exploring the overlapping of species depth ranges towards the middle continental shelf. The bathymetric gradient of the number of species was estimated with the depth ranges of 554 polychaete species, and the mid-domain effect was tested using a Monte Carlo simulation program at bands of 10 m depth. The Upper (251 species) and Lower (491 species) Gulf regions showed clear differences in their faunal composition (Jaccard similarity index = 0.34); the species richness pattern was characterized by a highly significant presence of polychaetes with short depth ranges (< 10 m). The richness distribution could be described as a cubic polynomial curve, but the maximum values in both Gulf regions (141 and 317 species, respectively for Upper and Lower Gulf regions) are strongly biased to shallow waters (40 m). This is not consistent with the peak of diversity at 60–70 m predicted by the model. The observed patterns cannot be reproduced by the mid-domain effect, suggesting the existence of non-random factors affecting the species richness gradients in the Gulf.  相似文献   

5.
The deep sea has been shown to exhibit strong depth zonation in species composition and abundance. Examination of these patterns can offer ecological insight into how organisms adapt and respond to changing environmental parameters that co-occur with depth. Here we provide the first tropical study on bathymetric zonation and other depth-related trends (size, abundance, and species richness) spanning shelf to abyssal depths of scavenging megafauna. Baited time-lapse free-vehicle cameras were used to examine the deep-sea benthic and demersal scavenging communities of the Hawaiian Islands, an area for which the biology and ecology have remained poorly studied below 2000 m. Twenty-two deployments ranging in depth from 250 to 4783 m yielded 37 taxa attracted to bait, including the first known occurrence of the family Zoarcidae in the Hawaiian Islands. Cluster analysis of Bray–Curtis similarity of species peak abundance (nmax) revealed four main faunal zones (250–500, 1000, 1500–3000, and ?4000 m) with significant separation (ANOSIM, global R=0.907, p=0.001) between designated depth groups. A major faunal break was identified at the 500–1000 m transition where species turnover was greatest, coinciding with the location of the local oxygen minimum zone. Dominance in species assemblage shifted from decapod crustaceans to teleosts moving from shallow to deeper faunal zones. Significant size differences in total length with depth were found for two of the four fish species examined. A logarithmic decline was observed in scavenger relative abundance with depth. Evidence of interaction between scavenging species was also noted between Synaphobranchus affinis and Neolithodes sp. (competition) and Histiobranchus sp. and aristeid shrimp (predation), suggesting that interactions between scavengers could influence indices of abundance generated from baited camera data.  相似文献   

6.
Vertical changes in abundance, biomass and community structure of copepods down to 3000 m depth were studied at a single station of the Aleutian Basin of the Bering Sea (53°28′N, 177°00′W, depth 3779 m) on the 14th June 2006. Both abundance and biomass of copepods were greatest near the surface layer and decreased with increase in depth. Abundance and biomass of copepods integrated over 0–3000 m were 1,390,000 inds. m?2 and 5056 mg C m?2, respectively. Copepod carcasses occurred throughout the layer, and the carcass:living specimen ratio was the greatest in the oxygen minimum layer (750–100 m, the ratio was 2.3). A total of 72 calanoid copepod species belonging to 34 genera and 15 families occurred in the 0–3000 m water column (Cyclopoida, Harpacticoida and Poecilostomatoida were not identified to species level). Cluster analysis separated calanoid copepod communities into 5 groups (A–E). Each group was separated by depth, and the depth range of each group was at 0–75 m (A), 75–500 m (B), 500–750 m (C), 750–1500 m (D) and 1500–3000 m (E). Copepods were divided into four types based on the feeding pattern: suspension feeders, suspension feeders in diapause, detritivores and carnivores. In terms of abundance the most dominant group was suspension feeders (mainly Cyclopoida) in the epipelagic zone, and detritivores (mainly Poecilostomatoida) were dominant in the meso- and bathypelagic zones. In terms of biomass, suspension feeders in diapause (calanoid copepods Neocalanus spp. and Eucalanus bungii) were the major component (ca. 10–45%), especially in the 250–3000 m depth. These results are compared with the previous studies in the same region and that down to greater depths in the worldwide oceans.  相似文献   

7.
8.
Replicate sediment samples were obtained from 3 closely spaced stations in the Kaplan East (KE) area of the abyssal eastern Equatorial Pacific (∼15°N, 119°W; ∼4100 m water depth), just below the carbonate compensation depth. At each site, 2 (Stns 827, 838) or 3 (Stn 824) complete cores (57 mm i.d.) were subsampled using 2–3 cut-off syringes of 6.6 cm3 cross-sectional area. The 0–1 cm sediment layers (>32 μm fraction) of these 20 subsamples together yielded 12,513 small, rose-Bengal stained benthic foraminifera dominated by agglutinated taxa, most of them morphologically simple monothalamous types or komokiaceans. Almost two-thirds (65%) of specimens were either obvious fragments, mainly of komokiaceans and tubular foraminifera, or single chambers or small groups of chambers believed to be fragments of very fragile komokiaceans. The remaining 4438 specimens (35%) were considered to be complete individuals. Most (78%) of these complete tests were indeterminate agglutinated spheres (termed ‘psammosphaerids’) that constituted 27.6% of all specimens (complete plus fragments). Complete individuals that could be assigned to either described or undescribed species accounted for 983 specimens (22% of complete tests=7.6% of all specimens); only 26 specimens (0.59% of complete individuals) were calcareous and these had invariably lost their tests through dissolution. Some groups exhibited considerable spatial heterogeneity. For example, 45% of the 3455 indeterminate psammosphaerids and 45% of the 3087 Komokiacean-like chambers occurred in single subcores. A total of 252 morphospecies was recognised; 168 were represented by complete individuals and 84 by fragments. There are clear differences between these Pacific assemblages and those from other oceans; in particular, psammosphaerids and isolated komokiacean chambers appear to be much more prevalent in the Pacific compared to the Atlantic Ocean. Some morphospecies present in Kaplan samples are known from the Atlantic but many are not. Such species may either (1) be ubiquitous but undersampled because they are rare or (2) have geographically patterned distributions. Without further sampling, there is no way to distinguish between these 2 possibilities. Fossilisable tests represent a very small component of the KE assemblage. Many of the delicate, monothalamous species that have little fossilisation potential, including the komokiaceans, accumulate stercomata (waste pellets) and may consume organic material and bacteria associated with sediment. Because of their enormous abundance at abyssal depths, these poorly known taxa probably play a substantial role in carbon cycling over vast areas of the Pacific seafloor.  相似文献   

9.
There have been comparatively few large-scale studies on spatial genetic structure of bathyal seafloor fauna, despite the importance of these data to the successful management of the world's oceans. We use a comparative analysis of mitochondrial DNA from five bathyal (200–3500 m) species of brittle-stars (Ophiuroidea) to assess phylogeographic structure along an extensive (8000 km) longitudinal gradient at temperate latitudes (28–56°S) from south-west Australia (113°E) to seamounts east of New Zealand (175°W). We found no evidence of a genetic discontinuity between Australia and New Zealand, either across the temperate Tasman Sea or across the Southern Ocean between the South Tasman Rise and the Macquarie Ridge. However, there were latitudinal phylogeographical breaks between tropical, temperate and polar regions; longitudinal breaks across the eastern Indian Ocean; and a bathymetric break at approximately 1700 m. Although there was limited regional structure in the frequency of haplotype distributions within the major clades, and no clade appeared to be strictly panmictic, the regional structure in general was not concordant with a simple isolation-by-distance model. Demographic structure varied with three clades having a simplified haplotype network, low effective population sizes and no evidence of significant population expansion, and two clades having a high diversity of haplotypes, relatively high effective population sizes and signs of recent population expansion. These results are discussed with respect to putative dispersal strategies. We hypothesise that the ‘brooding’ species produce both brooded young and pelagic larvae, allowing for both the maintenance of local populations and long-distance dispersal.  相似文献   

10.
Photographs of the deep-sea floor not infrequently show conspicuous spiral fecal trails, sometimes with an enteropneust hemichordate at the leading end. Here, we report on the dynamics of enteropneust trail production and disappearance at an abyssal station. A time-lapse camera deployed in the abyssal NE Pacific (Station M, 4100 m depth) photographed the same field of view at hourly intervals for 4 months in 2001–2002. Fortuitously, the final 10 days of the time-lapse sequence showed an enteropneust (of an undescribed species) abruptly appear in the field of view and spend 39 h foraging and producing a clockwise, four-whorl spiral fecal trail before ascending off the sea floor. The selection of the foraging site was not obviously influenced by previous biological or sedimentation processes observed in the time-lapse photographs over the 3-month period prior to the enteropneust arrival. After departure of the enteropneust, the fecal trail degraded rapidly over the remaining 8.5 days of the deployment. In an ancillary analysis of 52 camera sled transects over a 15-year period (1989–2004) at Station M, the photographs revealed that the same enteropneust species was present in small numbers through the 1990s but increased four-fold in abundance between 2002 and 2004. Similarly, the number and length of fecal trials increased over the same period. We were unsuccessful in collecting any of these enteropneusts in a semi-balloon trawl routinely towed behind the camera sled, presumably because of their fragility.  相似文献   

11.
A novel autonomous free-fall lander vehicle, with a capability down to 6000 m, was deployed off Cape Verde for studies on bioluminescence in the deep sea. The system was equipped with a high-sensitivity Intensified Silicon Intensified Target (ISIT) video camera, a programmable control-recording unit and an acoustic current meter with depth and temperature sensors. The ISIT lander was used in three modes: (1) free falling at 34 m min−1, with the camera looking downwards at a mesh screen, recording impacts of luminescent organisms to obtain a vertical profile down to the abyssal sea floor, sampling at >100 l s−1; (2) rotating, with the lander on the sea floor and the camera orienting to the bottom current using a servo-controlled turntable, impacts of luminescent organisms carried by the bottom current onto a mesh screen mounted 0.5 m in front of the camera were recorded to estimate abundance in the benthic boundary layer; (3) baited, with the camera focused on a bait placed on the sea floor.Profiles recorded abundance of luminescent organisms as 26.7 m−3 at 500–999 m depth, decreasing to 1.6 m−3 at 2000–2499 m and 0.5 m−3 between 2500 m and the sea floor at 4046 m, with no further detectable significant change with depth. Rotator measurements at a 0.5 m height above the sea floor gave a mean abundance of 0.47 m−3 in the benthic boundary layer at 4046 m and of 2.04 m−3 at 3200 m. Thirty five minutes after the bait was placed on the sea floor at 3200 m, bioluminescent fauna apparently arrived at the bait and produced luminescent displays at a rate of 2 min−1. Moving, flashing light sources were observed and luminescent material was released into the bottom current.  相似文献   

12.
This study examines the parasite fauna of Bathypterois mediterraneus, the most common fish below 1500 m in Western Mediterranean waters. Samples were obtained during July 2010 from the continental slope of two different areas (off Catalonia and Balearic Islands) in three different bathymetric strata at depths between 1000 and 2200 m. The parasite fauna of B. mediterraneus included a narrow range of species: Steringophorus cf. dorsolineatum, Scolex pleuronectis, Hysterothylacium aduncum, Anisakis sp. larva 3 type II and Sarcotretes sp. Steringophorus cf. dorsolineatum and H. aduncum were the most predominant parasites. H. aduncum showed significant differences in abundance between depths of 2000–2200 m with 1000–1400 m and 1400–2000 m, irrespective of locality, whereas S. cf. dorsolineatum showed significant differences between the two localities at all depths except for 2000–2200 m. We suggest the possible usefulness of these two parasites as geographical indicators for discriminating discrete stocks of B. mediterraneus in Western Mediterranean waters.  相似文献   

13.
Macrofaunal polychaete communities (>500 µm) in the South Eastern Arabian Sea (SEAS) continental margin (200–1000 m) are described, based on three systematic surveys carried out in 9 transects (at ~200 m, 500 m and 1000 m) between 7°00′and 14°30′N latitudes. A total of 7938 polychaetes belonging to 195 species were obtained in 136 grab samples collected at 27 sites. Three distinct assemblages were identified in the northern part of the SEAS margin (10–14°30′N), occupying the three sampled depth strata (shelf edge, upper and mid-slope) and two assemblages (shelf edge and slope) in the south (7–10°N). Highest density of polychaetes and dominance of a few species were observed in the shelf edge, where the Arabian Sea oxygen minimum zone (OMZ) impinged on the seafloor, particularly in the northern transects. The resident fauna in this region (Cossura coasta, Paraonis gracilis, Prionospio spp. and Tharyx spp.) were characteristically of smaller size, and well suited to thrive in the sandy sediments in OMZ settings. Densities were lowest along the most northerly transect (T9), where dissolved oxygen (DO) concentrations were extremely low (<0.15 ml l−1, i.e.<6.7 μmol l−1). Beyond the realm of influence of the OMZ (i.e. mid-slope, ~1000 m), the faunal density decreased while species diversity increased. The relative proportion of silt increased with depth, and the dominance of the aforementioned species decreased, giving way to forms such as Paraprionospio pinnata, Notomastus sp., Eunoe sp. and lumbrinerids. Relatively high species richness and diversity were observed in the sandy sediments of the southern sector (7–9°N), where influence of the OMZ was less intense. The area was also characterized by certain species (e.g. Aionidella cirrobranchiata, Isolda pulchella) that were nearly absent in the northern region. The gradients in DO concentration across the core and lower boundary of the OMZ, along with bathymetric and latitudinal variation in sediment texture, were responsible for differences in polychaete size and community structure on the SEAS margin. Spatial and temporal variations were observed in organic matter (OM) content of the sediment, but these were not reflected in the density, diversity or distribution pattern of the polychaetes.  相似文献   

14.
During the SoJaBio expedition, the deep sea fauna of the north-western Sea of Japan was sampled in August–September 2010. From this study, 11 epibenthic sledge stations are analyzed, with a focus on species composition, diversity and distribution patterns of polychaetes. A total of 92 polychaete taxa belonging to 70 genera and 28 families and 3 indeterminate species were found. Twelve species and eight genera have not been reported from the Sea of Japan before, but were registered from other deep-sea basins. Calculation of diversity (Shannon–Wiener Index, Pielou's Evenness) showed that the upper bathyal of the Sea of Japan is an area of higher polychaete diversity than the abyssal plain. The increased richness and diversity here could possibly be explained by a zoogeographic overlapping with the shallower species' assemblages of the shelf. At a higher taxonomic level the polychaete fauna of the deep Sea of Japan does not seem to differ from that of other deep-sea regions world-wide. In depths below 2000 m about 30% polychaete species have wide distributional ranges.  相似文献   

15.
A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12°S). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440–548 ind. 10 cm−2 (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2–5 cm interval. At the deeper sites, about 50% were restricted to the top 1 cm. The importance of copepods and nauplii increased consistently with depth, reaching ∼12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02 ml l−1 supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r=0.99, p<0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites.  相似文献   

16.
Near the Azores Triple Junction as the Azores Plateau is approached, the ridge axis becomes shallower; its depth decreases from ca. 2400 m in the Rainbow vent field (36°13′N) to ca. 850 m in the Menez Gwen vent field (37°35′N). In this area, extensive mussel beds of the mytilid Bathymodiolus azoricus dominate the hydrothermal vent fauna, along with populations of three shrimps (Rimicaris exoculata, Mirocaris fortunata and Chorocaris chacei). The main physical and chemical characteristics of the vent habitat were studied by discrete sampling, in situ analysis and sediment trap moorings. The vent fauna is distributed along a variable band where the vent fluids and seawater mix, with R. exoculata living in the most concentrated areas and Bathymodiolus azoricus in the most diluted zones. Various non-endemic species live at the border of the vent field. The variations observed in structure and composition of the communities along the depth gradient are most likely due to changes in vent fluid toxicity (metallic and sulphide content) and suspended mineral particles, which render the fluids harsher for species living there. The main faunal differences observed between Lucky Strike and Menez Gwen hydrothermal fields are due to an impoverishment in the hydrothermal endemic species and to the penetration of bathyal species. The comparison of the three studied vent fields suggests the existence of a succession of several biogeographic islands rather than a single province.  相似文献   

17.
Since the first major hadal sampling efforts in the 1950s, crustaceans of the order Decapoda have been thought absent from the hadal zone (6000–11,000 m) with no representatives documented >5700 m. A baited video lander deployed at 6007, 6890 and 7966 m in the Kermadec Trench, 8798 and 9729 m in the Tonga Trench (SW Pacific), 6945 and 7703 m in the Japan Trench and 5469 m in the Marianas region (NW Pacific) has now revealed a conspicuous presence of the Benthesicymid prawn Benthesicymus crenatus Bate 1881. Decapods were observed at all sites except at 7966 m in the Kermadec Trench and the two Tonga Trench sites, making the deepest finding 7703 m in the Japan Trench, 2000 m deeper than previously thought. These natantian decapods were readily attracted to fish bait and, rather than feeding on the bait itself, were observed preying upon smaller scavenging amphipods. These are the first observations of predation in the hadal zone. In less than 10 h of bottom time, 12 observations of 10 individuals were documented at 6007 m and 5 observations of 3 individuals were documented at 6890 m in the Kermadec Trench. In the Japan Trench at 6945 m 29 observations of 20 individuals were documented whilst only one individual was seen at 7703 m. Two individuals were observed in the abyssal Marianas Region (5575 m). Also, in the Kermadec Trench, individual caridean prawns (Acanthephyra spp.) were observed at 6007 and 6890 m, proving categorically that the crustacean order of Decapoda is represented in the hadal zone.  相似文献   

18.
An integrated chemostratigraphic (87Sr/86Sr, δ13C and δ18O) study of benthic foraminifera is presented for a 210 m-thick, intermediate depth (upper/middle bathyal transition), Miocene nannofossil ooze section of Ocean Drilling Program Site 1120, Campbell Plateau off New Zealand. Our results indicate that new 87Sr/86Sr, δ13C and δ18O profiles are wholly consistent with their respective Miocene reference curves. These observations facilitate identification of a total of five reliable chemostratigraphic datums, which are based on the fundamental structural changes in the 87Sr/86Sr curve and paired simultaneous δ13C and δ18O events. The resultant age–depth relationship clearly shows that the Miocene (20–5 Ma) biopelagic sedimentation on the Campbell Plateau was essentially continuous at a moderate to high, linear sedimentation rate (17.5 m/m.y. with an exception of the uppermost 13 m). Our findings do not support the shipboard biostratigraphic age model, which assumes that the critical early–middle Miocene transition was interrupted by a major hiatus (<~3 m.y.). Because of its unique bathymetric setting at a paleowater-depth of ~ 600 m, which is among the shallowest of the coeval isotopically studied deep-sea sections in the South Pacific/Southern Ocean, Site 1120 will serve as a reference section for surveying the evolution of intermediate-water paleoceanography in the Southern Hemisphere across the middle Miocene climatic transition.  相似文献   

19.
For the investigation of organic carbon fluxes reaching the seafloor, oxygen microprofiles were measured at 145 sites in different sub-regions of the Southern Ocean. At 11 sites, an in situ oxygen microprofiler was deployed for the measurement of oxygen profiles and the calculation of organic carbon fluxes. At four sites, both in situ and ex situ data were determined for high latitudes. Based on this data set as well as on previous published data, a relationship was established for the estimation of fluxes derived by ex situ measured O2 profiles. The fluxes of labile organic matter range from 0.5 to 37.1 mg C m?2 d?1. The high values determined by in situ measurements were observed in the Polar Front region (water depth of more than 4290 m) and are comparable to organic matter fluxes observed for high-productivity, upwelling areas like off West Africa. The oxygen penetration depth, which reflects the long-term organic matter flux to the sediment, was correlated with assemblages of key diatom species. In the Scotia Sea (~3000 m water depth), oxygen penetration depths of less than 15 cm were observed, indicating high benthic organic carbon fluxes. In contrast, the oxic zone extends down to several decimeters in abyssal sediments of the Weddell Sea and the southeastern South Atlantic. The regional pattern of organic carbon fluxes derived from microsensor data suggests that episodic and seasonal sedimentation pulses are important for the carbon supply to the seafloor of the deep Southern Ocean.  相似文献   

20.
In the southern Arabian Sea (between the Equator and 10°N), the shoaling of isotherms at subsurface levels (20 °C isotherm depth is located at ∼90 m) leads to cooling at 100 m by 2–3 °C relative to surrounding waters during the winter monsoon. The annual and interannual variations of this upwelling zone, which we call the Arabian Sea dome (ASD), are studied using results from an eddy-permitting ocean general circulation model in conjunction with hydrography and TOPEX/ERS altimeter data. The ASD first appears in the southeastern Arabian Sea during September–October, maturing during November–December to extend across the entire southern Arabian Sea (along ∼5°N). It begins to weaken in January and dissipates by March in the southwestern Arabian Sea. From the analysis of heat-budget balance terms and a pair of model control experiments, it is shown that the local Ekman upwelling induced by the positive wind-stress curl of the winter monsoon generates the ASD in the southeastern Arabian Sea. The ASD decays due to the weakening of the cyclonic curl of the wind and the westward penetration of warm water from the east (Southern Arabian Sea High). The interannual variation of the ASD is governed by variations in the Ekman upwelling induced by the cyclonic wind-stress curl. Associated with the unusual winds during 1994–1995 and 1997–1998 Indian Ocean dipole (IOD) periods, the ASD failed to develop. In the absence of the ASD during the IOD events, the 20 °C isotherm depth was 20–30 m deeper than normal in the southern Arabian Sea resulting in a temperature increase at 97 m of 4–5 °C. An implication is that the SST evolution in the southern Arabian Sea during the winter monsoon is primarily controlled by advective cooling: the shoaling of isotherms associated with the ASD leads to SST cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号